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AbstractÐIn this paper, we give a formal definition of a document image structure representation and we formulate document image

structure extraction as a partitioning problem: Finding an optimal solution partitioning the set of glyphs of an input document image into

a hierarchical tree structure where entities within the hierarchy at each level have similar physical properties and compatable semantic

labels. We present a unified methodology that is applicable to construction of document structures at different hierarchical levels. An

iterative, relaxation-like method is used to find a partitioning solution that maximizes the probability of the extracted structure. All the

probabilities used in the partioning process are estimated from an extensive training set of various kinds of measurements among the

entities within the hierarchy. The offline probabilities estimated in the training then drive all decisions in the online document structure

extraction. We have implemented a text line extraction algorithm using this framework. The algorithm was evaluated on the

UW-III database of some 1,600 scanned document image pages. An area-overlap measure is used to find the correspondence

between the detected entities and the ground-truth. For a total of 105,020 text lines, the text line extraction algorithm identifies and

segments 104,773 correctly, an accuracy of 99.76 percent. The detail of the algorithm is presented in this paper.

Index TermsÐDocument image analysis, statistical pattern analysis, text line extraction, performance evaluation.
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1 INTRODUCTION

THE technology of the OCR (Optical Character Recogni-
tion) and document image analysis systems today has

reached far beyond the simple transformation of textual
document images into sequences of characters and words.
Instead, the technology has moved onto the development of
the correct detection of the structure of the document, as it
is the first step in almost every document image under-
standing task such as information retrieval, document
routing and archiving, and perhaps even for the duplicate
document detection. In this paper, we present a methodol-
ogy for formulating and solving the document structure
detection problem.

Document structures can be represented in a hierarchy.
Given a document image, the end result of a document
structure detection algorithm is a hierarchical structure that
captures the physical layout and the logical meaning of the
document. The top of the hierarchical structure presents the
entire page, and the bottom of the structure includes all
glyphs on the document. Entities in the hierarchy are
labeled and are associated with a set of attributes describing
the nature of the entities. For example, the extracted

characters would reside at the bottom of the hierarchy,
each character would be labeled as a ªglyphº and the
attributes for the glyph may be the ASCII/UNICODE value,
the font style, and the position of the character. The next
level up may be words, then, text lines, and then, text and
nontext zones, and so forth.

As posed in this paper, the problem is to find an optimal
solution partitioning of the set of glyphs of an input
document into a hierarchical tree structure where entities
within the hierarchy at each level have similar properties
and compatible semantic labels. A Bayesian framework is
used to assign and update the probabilities during the
partitioning process. An iterative, relaxation-like method is
used to find the partitioning solution that maximizes the
probability of the extracted structure. All the probabilities
used in the partitioning process are estimated from an
extensive training set of various kinds of measurements
among the entities within the hierarchy. The offline
probabilities estimated in the training then drive all
decisions in the online document structure extraction.

Using this methodology, we have implemented a text
line extraction algorithm. The algorithm was evaluated on
the 1,600 scanned document images of the UW-III database
[23], [19]. For a total of 105,020 text lines, the text line
extraction algorithm identifies and segments 104,773 cor-
rectly, an accuracy of 99.76 percent.

2 LITERATURE REVIEW

The construction of a document hierarchy, given an input

document, consists of two major steps. The first step is the

correct detection and partitioning of entities within the
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hierarchy, and the second step is the correct classification of
those detected entities.

Most of the current document image analysis algorithms
in the literature can be categorized either by the direction
that the algorithms take to construct document hierarchies
or by the methods or strategies that the algorithms employ
in constructing the hierarchies. Algorithms can be classified
into two major direction classes: 1) bottom-up and 2) top-
down. There are algorithms that use a mixture of the two
(hybrid), however, their main construction directions are
still within these two classes.

Algorithms taking the bottom-up approach, by-and-large
are the majority, the document structure extraction task is
done by recursively grouping smaller document entities
into larger document entities. For example, the characters
are extracted from the connected-components, the basic
document entities. Extracted characters are grouped into
words; words are grouped to form text lines, and text lines
are grouped into text blocks and text columns, and so forth.
For algorithms using the top-down approach, the segmen-
tation task is done in a reverse order, i.e., by recursively
dividing the document from larger document entities to
smaller entities. The classic example of this approach is
Nagy and Seth's X-Y tree [2].

Relative to the strategies, the algorithms can be classified
into two major categories: 1) rule-based/grammar-driven
and 2) statistical-based (either parametric or nonpara-
metric.) The rule-based/grammar-driven algorithms use a
set of ad hoc rules or predefined syntax rules of the
grammars to derive decisions in the process of dividing or
grouping document entities. The number of rules used can
range from a few to a very large set. And the ad hoc rules or
the syntax of the grammar can be very domain specific. As
for the statistical-based algorithms, their free parameters are
estimated in the offline training processes. The estimated
parameters are used in the decisions which govern the
processes of dividing or grouping the document entities.

Most of the current document structure analysis algo-
rithms assume some prior knowledge of the typographical
and layout conventions of the document. One way of
knowledge acquisition is manually generating the heuristic
rules, or grammars, by carefully looking through a set of
representative document pages. Not only is this task
tedious and requires much expertise, but the handcrafted
rules tend to be brittle and only work for a specific kind of
document. This means that these algorithms successfully
analyze only those documents having previously defined
formatting properties and may fail on documents that do
not meet the formatting assumptions. Moreover, most of the
rule or grammar-based algorithms use fixed, global dis-
tance thresholds for grouping or dividing document
entities. These thresholds are either ad hoc given or
empirically determined. However, the measurements made
on the document entities may have errors and the knowl-
edge about the document style may be ambiguous. The
problem of uncertainty in knowledge and evidence and the
information integration of multiple evidences have to be
solved. Hence, to build a document structure extraction
algorithm that is error-tolerant and robust remains a
challenging task for the researchers and developers in the

field. The following are a handful of selected algorithms
within the above defined categories.

Ittner and Baird [5] developed a system for isolating
blocks, lines, words, and symbols within images of
machine-printed textual documents. Their algorithm is
independent of language and writing systems by using a
small number of nearly universal typesetting and layout
conventions. They use a wide variety of techniques,
including Fourier theory, computational geometry, and
statistical decision theory. The algorithm achieves a
measure of robustness by following a ªglobal-to-localº
strategy.

Dengel and Dubiel [6] developed a system for partition-
ing raster images of business letters into logically labeled
area items. It employs various knowledge resources
utilizing spatial and geometric characteristics about the
formal style of business letters. Due to the unsupervised
learning of document models, the system allows the
establishment of a specific decision tree classifier which
serves as the knowledge representation.

Chen [11] describes a text word, line, and block
segmentation algorithm for horizontal rectangular layouts.
The morphological closing transform is applied to the
binary document image. The extracted segments are
classified as words or nontext according to their size. The
algorithm groups extracted words into text lines based on
statistical models of the colinearity and equal spacing of
words within the text lines. The text lines are then merged
into text blocks according to a statistical model of the
homogeneity of height, width, leading, and justification
within text blocks.

Ha et al. [3], Liang et al. [4] describe an algorithm based
on recursive cutting of connected component projection
profiles for segmenting binary document images into zones;
zones are classified as textual and nontextual; then the text
zones are decomposed to text blocks, text lines, and words.
Empirically determined thresholds are used at each cutting
step.

Palumbo et al. [12] developed a postal automation
system that locates and interprets destination address
blocks on letter mail pieces with a high success rate and
high speed. The system is based on data-driven processing.
It extracts primitive information from the image and groups
the information into possible address blocks. The evidence
combination tool integrates pieces of evidence generated for
a block into a single block labeling hypothesis. The best
candidate block is selected by verifying the consistency of
labeling hypotheses by using spatial relations.

Etemad et al. [13] present an algorithm for layout-
independent document page segmentation based on docu-
ment texture using multiscale feature vectors and fuzzy
local decision information. Multiscale feature vectors are
classified locally using a neural network to allow soft/fuzzy
multiclass membership assignments. Segmentation is per-
formed by integrating soft local decision vectors to reduce
their ªambiguities.º

Kise et al. [8] present a method of page segmentation
based on the approximated area Voronoi diagram. The
Voronoi diagram helps obtain the candidates of bound-
aries of document components from page images with
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non-Manhattan layout and a skew. Then, the candidates
are utilized to estimate the intercharacter and interline
gaps without the use of domain-specific parameters to
select the boundaries.

Wang and Yagasaki [9] present a page segmentation
method called block selection which segments the page
image into categorized blocks and provides a tree structure
to represent the page blocks for selection. Block selection
identifies the major document elements such as text,
picture, table, frame, and line. The direction of text could
be horizontal, vertical, slanted, or mixed. No skew correc-
tion is involved regardless of the document style.

Jain and Yu [10] use the traditional bottom-up approach
based on the connected component extraction to efficiently
implement page segmentation and region identification.
They use a document model that preserves top-down
generation information. This method is applicable to
documents from various technical journals and can accom-
modate moderate amounts of skew and noise.

In order to build a near-perfect system, it is necessary to

replace heuristics by systematics and rely on mathematical

optimization rather than intuition. Only the algorithm of

Chen [11] takes a systematic approach to integrating the

evidence sources they use. Their algorithm computes

Bayesian estimates of the text lines and text blocks based

on statistical models. However, their algorithm's under-

lying models ignore the fact that some of the parameters are

dependent on the text's font size. Thus the algorithm may

achieve poor results for documents containing a wide

variety of fonts and sizes.
Well-defined and unambiguous performance measures,

combined with reproducible experiments, are necessary in
every area of science and technology. However, it is clear
that many of the early works on document analysis systems
provide illustrative results and hardly any have their
techniques tested on significant sized data sets and give
quantitative performance measures [1]. The main reasons
are the lack of precise and concise mathematical document
image models, the lack of accurate document ground truth
data to train and test the algorithms, and the lack of
appropriate and quantitative performance metrics, and
evaluation protocol.

Currently, no standard testing procedures exist for
measuring and comparing algorithms within a document
analysis system. Randriamasy and Vincent [18] proposed a
pixel-level and region-based approach to compare segmenta-
tion results and manually generated regions. An overlap
matching technique is used to associate each region of one of
the two sets, to the regions in the other set it has a nonempty
intersection. Since the black pixels contained in the regions
are counted rather than the regions themselves, this method is
independent of representation scheme of regions. Quantita-
tive evaluation of segmentation is derived from the cost of
incorrect splittings and mergings. Working on the bit-map
level, their technique involves extensive computation. They
assume there is only one text orientation for the whole page.
Kanai et al. [16] proposed a text based method to evaluate the
zone segmentation performance. They compute an edit
distance which is based on the number of edit operations
(text insertions, deletions, and block moves) required to
transform an OCR output to the correct text. The cost of

segmentation itself is derived by comparing the costs
corresponding to manually and automatically zoned pages.
This metric can be used to test ªblack-boxº commercial
systems, but is not able to help users categorize the
segmentation errors. This method only deals with text
regions. They assume the OCR performance is independent
of the segmentation performance. Garris [17] proposed a
scoring method which computes the coverage and efficiency
of zone segmentation algorithm. The box distance and box
similarity between zones are computed to find the matching
pairs. This technique provides some numbers (scores), which
are not able to help users analyze errors.

In this paper, we adopt an engineering approach to

systematically characterizing the document structures

based on a large document image database, and develop

statistical methods to extract the document structure from

the image. In Section 6, we develop suitable quantitative

performance measures to evaluate our document structure

analysis algorithms. In Section 7, we report the results of

our optimization methodology with a study of its applica-

tion to text line extraction. The next sections give a formal

definition for the document hierarchy we use and the

unified methodology for document structure extraction.

3 DOCUMENT STRUCTURE REPRESENTATION

3.1 Polygonal Structure

A polygonal area on a document page is given by a pair ��; I�,
where � 2 � specifies the label that designates the physical

type of content, i.e., text block, text line, word, table,

equation, drawing, halftone, etc., and I is the area enclosed

by boundary of the polygon. The boundary of the polygon

is given as the sequence of line segments connecting the

successive vertices of the polygon. The vertices are given as

a clockwise ordered list of points. A polygon is homogeneous

if all its area is of one physical type and there is a standard

reading order for the content within the area. Two polygons

are physical adjacent if each has a significant length side that

are nearly parallel to each other, and are separated by a

divider. A set A of nonoverlapping homogeneous poly-

gonal areas and the properties associated with A is called a

polygonal structure. V : }�A� ! � specifies measurement

made on subset of A, where � is the measurement space.
A polygonal structure is associated with the following

basic sets and mappings.

. Content Type � is the set of physical types (text
block, text line, word, table, equation, drawing, etc.).
C : A ! � associates polygonal areas with their
physical types of content. ÿ is the set of functional
types (paragraph, section, word, title, heading,
caption, abstract, author, footnote, page number,
etc.). M : A ! ÿ associates polygonal areas with
their functional types of content.

. Content. � is the alphabet consisting of symbols. Let
�� be the set of all sequences of symbols from �. Let
At � A be the set of text polygonal areas. O : At !
�� associates text polygonal areas with their contents.

. Format Attribute. We denote by F the set of format
attributes (font type, font size, font style,
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justification, indentation, etc.). S : ÿ! F specifies
the format attributes for each functional type of
content.

. Location. We denote by L the set of qualitative
locations (top left, bottom, middle, etc.). P � ÿ� L
specifies the permitted locations of different types
of content.

. Spatial Relation. D is the set of dividers (white space,
ruling, etc.). T : ÿ� ÿ! D specifies the convention
for the type of divider used between different types
of content (interline spacing, intercolumn spacing,
spacing between figure and caption, etc.).

. Reading Order. Let A � fA1; � � � ; AKg be the set of
polygonal areas. The reading order R of A is a tuple
�r1; � � � ; rK� which is a permutation of �1; � � � ; K�.
We define a binary relationReadBefore�a; b� ( is to be
interpretated as a is read before b). ReadBefore is a
partial ordering relation, since if ri 2 R and rj 2 R,
then

1. ReadBefore�ri; ri� is false,
2. if

ReadBefore�ri; rj� ! ReadBefore�rj; ri�
is false,

3. if ReadBefore�ri; rj�, and

ReadBefore�rj; rk� ! ReadBefore�ri; rk�:

3.2 Document Structure Hierarchy

We represent a document structure as a hierarchical
structure.

Let � be the set of all polygonal structures on a given
document page. We define the relation �� in � as: x �� y if
and only if x � y and x; y 2 �. This relation is a partial
ordering E and satisfies

1. �a; a� 2 E; 8a 2 �,
2. �a; b� 2 E; and�b; a� 2 E ) a � b,
3. �a; b� 2 E; �b; c� 2 E ) �a; c� 2 E.

We denote by � � f�1; �2; � � � ; �kg the set of physical content
types on the document page. Let f�1; � � � ;�kg be a partition
of �, where each �i is a set of mutually disjoint polygonal
structures

�i � f�j� 2 �; C��� � �ig
and if there exists �j and i > j, then 8 �p 2 �i, either
�p �� �j, or �p and �j are disjoint. An example of the
document hierarchy is shown in Fig. 1.

Problem Statement. Given a document page �1, extract a
hierarchical document structure f�2;�3; � � ��kg, that
maximizes the conditional probability P ��2;�3; � � ��kj�1�
of the extracted structure given the document image page.

The problem of document hierarchy construction is
usually decomposed into subproblems, based on some
assumptions on conditional independence and ordering.
For example, the joint probability may be decomposed as

P ��2;�3; � � ��6j�1� � P ��6j�1�P ��4;�2j�6�
P ��3j�4;�2�P ��5j�4;�6�;

�1�

where �1;�2; � � � ;�6 represent page, zone, text block, text
line, word, and glyph structures, respectively. Assuming
the decomposition in (1) is valid, the problem exhibits an
optimal substructure and a dynamic programming can be
applied to determine an optimal solution that maximizes
the probability. However, the validation of the
decomposition and the optimal solution of the joint
probability are out of scope of this paper.

In this paper, we introduce a unified approach that is
applicable to each subproblem, which finds an optimal
solution that maximizes each individual probability in (1).
The problem of extraction of document hierarchy levels is
formulated and a generic algorithm is presented in the
following sections.

3.3 Document Structure Analysis Problem

Let �i be the source level and let �j be the target level in

a document hierarchy. And let A be the set of polygonal

areas in �i. Let � be a partition of A and L be a set of

labels that can be assigned to elements of the partition.

Function f : �! L associates each element of �j with a

label. V : }�A� ! � specifies measurement made on

subset of A, where � is the measurement space.
The document structure extraction problem can be

formulated as follows: Given the initial set A, find a partition

� of A, and a labeling function f : �! L that assigns each

element � 2 � a label in L, that maximizes the probability,

P �V ��� : � 2 �; f;� jA� � P �V ��� : � 2 �jA;� ; f�
P ��; f jA� � P �V ��� : � 2 � jA;�; f�P �f j�;A�P ��jA�: �2�

By making the assumption of conditional independence

that when the label f��� is known, then no knowledge of

other labels will alter the probability of V ���, we can

decompose the probability in (2) into

P �V ��� : � 2 �; f;�jA�
�
Y
�2�

P �V ���jf����P �f j�;A�P ��jA�: �3�
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The possible labels in set L is dependent on the target_level
and on the specific application. For example, l 2 L could be
text content, functional content type, style attribute, and so
forth.

The above proposed formulation can be uniformly applied
to the construction of the document hierarchy at any level,
e.g., text word, text line, and text block extractions and so
forth. For example, as for text line extraction, given a set of
glyphs, the goal of the text line extraction is to partition glyphs
into a set of text lines, each text line having homogeneous
properties, and the text lines' properties within the same
region being similar. The text lines' properties include,
deviation of glyphs from the baseline, direction of the
baseline, text line's height, and text lines' width, and so forth.
As for text block segmentation, given a set of text lines, text
block segmentation groups text lines into a set of text blocks,
each block having homogeneous formatting attributes, e.g.,
homogeneous leading, justification, and the attributes be-
tween neighboring blocks being similar.

Note that, a brute-force method for finding the optimal
solution for (3) is to search through all possible partitions with
all possible labels and select the configuration which
produces the highest conditional probability in (3). The
number of partitions of an n-set is called a Bell number and it
gets very large. Fortunately, the entities on a printed
document are usually aligned with certain reading order.
For example, glyphs within a text line are within a proximity
of one another. A glyph on the top of the document never
needs to be hypothesized as grouped with those glyphs on the
bottom of the document. Thus, with the ordering constraint,
the partitioning and labeling problem can be reformulated. A
unified methodology for solving the document structure
analysis problem is given in the next section.

4 A UNIFIED METHODOLOGY

Given an initial set A, we first construct the reading order of

the elements of A. Let A � �A1; A2; � � � ; AM� be a linearly

ordered set (chain in A) of input entities. Let G � fY ;Ng be

the set of grouping labels. Let AP denote a set of element

pairs, such that Ap � A�A and

Ap � f�Ai;Aj�jAi;Aj 2 A and j � i� 1g:
Function g : Ap ! G, associates each pair of adjacent ele-

ments of A with a grouping label, where g�i� � g�Ai;Ai�1�.
Then, the partition probability P ��jA� can be computed as

follows,

P ��jA�
� P �gjA� � P �g�1�; � � � ; g�N ÿ 1�jA1; � � � ; AN�
� P �g�1�jA1; A2� � � � �P �g�N ÿ 1�jANÿ1; AN�

�
YNÿ1

i�1

P �g�i�jAi;Ai�1�:

Therefore, the joint probability can be further decomposed as

P �V ��� : � 2 �; f;�jA� �
Y
�2�

P �V ���jf����

� P �f j�; A�
YNÿ1

i�1

P �g�i�jAi;Ai�1�:
�4�

In principle, we want to find the joint pair of functions
(g, f) that maximizes the probability in (4). Such a search
could be done by brute force. Each of the 2Nÿ1 different g
functions determine a partition. Once a partition is given,
the optimal f function can be determined. To avoid the
exponential search, we use an iterative search method for
finding the consistent partition and labeling that mono-
tonically increases the joint probability of (4).

Algorithm 4.1 Consistent partition and labeling.

1. Determine initial partition

Let t � 0;�t � ffAmggMm�1:

a. Compute P 0
i �Y � � P �g�i� � Y jAi;Ai�1� and

P 0
i �N� � P �g�i� � N jAi;Ai�1�;

where 1 � i �M ÿ 1.
b. Let R � A�A and

R � f�Ai;Ai�1�jP 0
i �Y � > P 0

i �N�g:
Update partition

�t�1 � f� j� � fAi;Ai�1; � � � ; Ajg; where

�Ak;Ak�1� 2 R; k � i; � � � ; jÿ 1g �5�

2. Let t � 1. Search for optimal partition adjustment
Repeat

. For i � 1 to M ÿ 1 Do

- If Ai 2 U; Ai�1 2W , U 6�W where

U;W 2 �t;

Then,

a. Let T � U SW , and

�̂ � T
[
��t ÿ U ÿW�

b. Find labeling f by maximizing

Plabel �
Y
�2�̂

P �V ���jf����P �f jA; �̂�

c. ^Pt
i �Y� / P 0

i �Y � � Plabel, and

^Pt
i �N� � Ptÿ1

i �N�:

- Else If Ai 2W and Ai�1 2W , where

W � fAk; � � � ; Ai; Ai�1; � � � ; Ajg;
Then,

a. S � fAk; � � � ; Aig and

T � fAi�1; � � � ; Ajg
�̂ � ��t ÿW�

[
S
[
T:
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b. Find labeling f by maximizing

Plabel �
Y
�2�̂

P �V ���jf����P �f jA; �̂�

c. ^Pt
i �N� / P 0

i �N� � Plabel, and

^Pt
i �Y� � Ptÿ1

i �Y �

End (For-loop)
. Select k such that,

k � arg max i�maxfP̂ t
i �Y �; P̂ t

i �N�g�

. If ^Pt
k�Y� > ^Pt

k�N�, Then

- T � U SW where Ak 2 U;Ak�1 2W
- �t�1 � ��t ÿ U ÿW�ST
Else, W � fAi; � � � ; Ak; Ak�1; � � � ; Ajg,
- Let S � fAi; � � � ; Akg and T � fAk�1; � � � ; Ajg
- �t�1 � ��t ÿW�SSST

. If P �V ; f;�t�1jA� � P �V ; f;�tjA�, end and re-
turn �t.

Else, let t � t� 1 and continue.

End (Repeat)
All the probabilities used in this algorithm can be

estimated from a large set of data. The probability
estimation procedure is given in the next section.

5 PROBABILITY ESTIMATION

Controlled experiments are an important component of
computer vision, for the controlled experiment demon-
strates that the algorithm, designed by the computer-vision
researcher, recognizes, locates, and measures what it is
designed to do from image data [20]. A properly designed
scientific experiment provides evidence to accept or reject
the hypothesis that the algorithm performs on a specified
accuracy level.

The discrete contingency tables are used to represent the
joint and conditional probabilities (see Section 5.1). In
Section 5.2, we describe the experimental protocol for
estimating probabilities used in the document analysis
algorithms, from a significant sized training set.

5.1 Probability Representation

Discrete contingency tables are used to represent the joint
and conditional probabilities used in our unified methodol-
ogy. Each variable of the table has a finite number of
mutually exclusive states. If A is a variable with states
a1; � � � ; an, then P �A� is a probability distribution over these
states:

P �A� � �x1; � � � ; xn�; xi � 0;
Xn
i�1

xi � 1;

where xi is the probability of A being in state ai [14]. If the
variable B has states b1; � � � ; bm, then P �AjB� is an
n�m table containing numbers P �aijbj�. P �A;B�, the joint
probability for the variables A and B, is also an n�m table.

It consists of a probability for each configuration �ai; bj�.
When the fundamental rule P �AjB�P �B� � P �A;B� is used
on variables A and B, the procedure is to apply the rule to
the n�m configurations �ai; bj�: P �aijbj�P �bj� � P �ai; bj�:
This means that in the table P �AjB�, for each j the column
for bj is multiplied by P �bj� to obtain the table P �A;B�.

Once definitions for the discrete states are established, the
training data can be used to estimate a joint probaiblity by
simply counting. If the training data is given as a matrix D,

D �
d11 . . . d1K

..

.

dI1 . . . dIK

0B@
1CA; �6�

where dik is the state value for the kth variable of the ith
record, then

P �s1; . . . ; sk� � #fi j �di1; . . . ; diK� � �s1; . . . ; sK�g
I

:

An example of the cell count table is shown in Table 1. It
has five variables and two states for each variable. There-
fore, the table has total of 32 cells.

5.2 Estimation of Probability Distribution

Creating a model usually involves determining the vari-
ables to observe, collecting and recording the data observa-
tions, studying graphics and summaries of the collected
data to reveal low-dimensional relationships between
variables, and choosing a model describing the important
relationships seen or hypothesized in the data [15]. We
quantize the value of each continuous variable into a finite
number of mutually exclusive states and compute the cell
count table from the data. A tree structure quantization is
used to partition the value of a variable into bins. At each
node of the tree, we search through all possible threshold
candidates on each variable and select the one which gives
the minimum value of entropy. In growing a tree, the
binary partitioning algorithm recursively splits the data in
each node until either the node is homogeneous or the node
contains too few observations. In order to construct the
quantized table from the tree, one follows the path from the
root to the leafs within a certain level and record the splits
made on each variable. The bins on each variable form the
cells in the space. The total number of cells, is predeter-
mined, based on the memory limitation and the number of
samples in the training set. Given this number, one can
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TABLE 1
Illustrates an Example of the Cell Count Table



determine how many levels of nodes will be used to form
the cells. For example, suppose a domain has two variables
A and B. First, we collect and record the data observations.
Then, a classification tree training process is applied to the
observed data and the constructed tree in shown in Fig. 2. If
we want to limit the total number of cells under 20, the
nodes with depth up to three are used to construct the table.
In our example, four thresholds are determined on variable
A and the variable B is split three times. Therefore, A and B
are quantized into five bins and four bins, respectively. The
constructed table with 20 cells is shown in Table 2.

6 EVALUATION CRITERIA AND MEASUREMENTS

In general, the performance evaluation of any algorithm can
be done by testing the algorithm on a selected testing data
set and then evaluating its results against the corresponding
ground-truth of the test set. On selecting the test data set, a
large quantity of ground-truth data, varying in quality, is
required in order to give an accurate measurement of the
performance of an algorithm under different conditions. On
the evaluation, a set of well-defined metrics needs to be
established to measure the performance of the algorithm.

There are three steps involved in the evaluation. The first
step is finding the correspondences between the ground-
truth entities and the detected entities. The second step is the
measurements on the goodness of the matches and the third
step, is the assignment of an overall performance score to the
algorithm. These steps are given next.

6.1 Matching

Suppose we are given two sets G � fG1; G2; � � � ; GMg for the
ground-truthed entities and D � fD1; D2; � � � ; DNg for the
detected entities. The comparison of G and D can be made in
terms of the following two kinds of measures:

�ij � Area�Gi \Dj�
Area�Gi� and �ij � Area�Gi \Dj�

Area�Dj� ; �7�

where 1 � i �M, 1 � j � N , and Area�A� represents the
area of A. The measures in the above equation constitute

two matrices � � ��ij� and T � ��ij�. Notice that, �ij
indicates how much portion of Gi is occupied by Dj, and
�ij indicates how much portion of Dj is occupied by Gi. Our
strategy of performance evaluation is to analyze these
matrices to determine the correspondence between two sets
of polygonal areas:

. one-to-one match (�ij � 1 and �ij � 1);

. one-to-zero match (�ij � 0 for all 1 � j � N);

. zero-to-one match (�ij � 0 for all 1 � i �M);

. one-to-many match

��ij < 1 for all j; and
X

N
j�1�ij � 1�;

. many-to-one match

��ij < 1 for all i; and
X

M
i�1�ij � 1�;

. many-to-many match (others).

An example of matching between a set of ground truth
entities and the detected entities is illustrated in Fig. 3. By
computing their area overlap, we construct two matrices,
� � ��ij� and T � ��ij�, shown in Table 3. In this example,
we find a one-to-one match (G1 to D1), a one-to-many match
(G2 to D2 and D3), a one-to-zero match (G3 to nothing), and
a many-to-many match (G4, G5 and G6 to D4 and D5).

6.2 Performance Measurement

Once the matching between detected structures and

ground-truth structures is established, a performance

measure can be computed. A one-to-one match means an

object Gi is correctly identified by the segmentation process

as Dj. A one-to-zero match is the case when a certain object

Gi is not detected by the segmentation (misdetection) and

vise versa for the zero-to-one match (false alarm). If an

entity Gi matches to a number of detected entities, we call it

a splitting detection. It is a merging detection when two or

more objects in G are identified as an object Dj. The many-

to-many matches are called spurious detections.
Let us denote the probability of a matching (Gi � G is

identified as Di � D in the sample) as

Pi�G;D� � #Gi �#Di

#G�#D
: �8�

Then, the performance measure of a partition algorithm is
defined as

fpartition �
X
i2M

WiPi�G;D�; �9�
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Fig. 2. Display a constructed tree-based model used for quantization.

TABLE 2
Illustrates a Contingency Table, Where the Quantization of Variables Are

Determined Using the Tree Structure Shown in Fig. 2



where

M � fcorrect;miss; false;merging; splitting; spuriousg
is the set of possible matching, and Wi is the weight
assigned to each type of matching.

7 AN IMPLEMENTATION: TEXT-LINE EXTRACTION

ALGORITHM

We applied the methodology introduced in this paper to the
text line extraction problem. Without loss of generality, we
assume that the reading direction of the text lines on the
input page is left-to-right and top-to-bottom. The text line
extraction algorithm starts with the set of connected-
component (glyph) bounding boxes from a textual document
page's binary image. The glyphs in the set are sorted by their
locations on the page. For each glyph in the sorted set, we
locate its adjacent right neighbor. Associated with each glyph
pair is a grouping probability indicating how probable a pair
with its horizontal and vertical distance relationships will be
within the same text line. An initial set of text lines are
constructed based on the local grouping probabilities.

Next, the baseline direction is computed for each text line

in this set and the median of all the baselines computed is

taken as the page skew angle. If the skew angle is greater

than a predetermined threshold, the page is rotated,

according to the skew angle, and the process repeats.
Then, we start to assign labels to extracted text line

segments and adjust the grouping, by maximizing the
homogeneous labeling probabilities. The measurements that
we make on each line segment are, the text line's x-height,
deviation of glyphs from the text line's baseline, and the
baseline's direction. We group extracted text lines into zones,
where the text lines share the similar left, center, or right
edges. Then, the text lines within each text zone are examined,
statistically, to see whether the text lines are consistent with

their neighbors or need to be split or merged. For example, we
may split a text line when it ªcrossesº two horizontal text
zones. Or, we may split a text line when its x-height is double
in size in comparison to its vertical neighboring text lines
within the same zone. Similarly, we may merge two adjacent
text lines (in horizontal or vertical directions) within the same
zone if the merge results in a better statistical fit with the
global trend of the text zone it belongs.

The homogeneous labeling and the grouping adjustment
process is repeated until no improvement on the grouping
and labeling probability is achieved. Fig. 4 gives an
overview of the text line extraction algorithm.

Algorithm.

1. Extract and order glyphs. We apply a standard
connected-component analysis algorithm to the input
image to obtain the glyph set, A � fA1; A2; � � � ; AMg.
For each Ai 2 A, we search for its adjacent right
neighbor,Aj. The glyph setA is rearranged into a set,
partially ordered by this adjacency relationship,
which consists of a group of linearly ordered glyph
sequences. The right adjacency is defined in
Section 7.1.

2. Compute local grouping probabilities. Let A �
fA1; A2; � � � ; ANg be a linearly ordered subset of A.

For each pair of adjacent glyphs �Ai;Ai�1�, we

compute the probability that they are within the

same text line:

P �SameLine�i; i� 1�jAi;Ai�1�; �10�
based on observations on the spatial relationships
between the pair. The measurements are described
in Section 7.1

3. Group adjacent glyphs. Given the linking probability
P �g�i�� between a pair of adjacent glyphs Ai and
Ai�1, if P �g�i� � Y � > P �g�i� � N�, we group the
pair into a text line; otherwise, Ai and Ai�1 are in
different lines.

During the initial partition,

P �g�i�� � P �SameLine�i; i� 1�jAi;Ai�1�;
and this step yields our initial text line set,

T � fT1; T2; � � � ; TKg.
4. Assign a homogeneous label to text lines. In this

step, we compute the likelihood of an extracted
segment Tk having the homogeneous properties of a
text line:

P �V �Tk�jf�Tk��; �11�
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Fig. 3. Illustrates correspondence between ground-truth and detected

structures.

TABLE 3
Illustrates the Area Overlap Matrices Computed from the Example in Fig. 3



where the measurement V �Tk� includes deviation of

glyphs from the text line's baseline, x-height of the

text line, and direction of the baseline. The computa-

tion of baseline and x-height is given in Section 7.2.
The text lines within the same neighborhood

usually have similar physical properties, such as text

line height, left and right edges, etc. We group text

lines into zones by clustering the edges of all text

lines, where the text lines within the same zone share

the similar left, center or right edges. Given a group

of extracted text lines, we determine f , assignment of

the homogeneous text line labels to extracted line

segments, by maximizing

Plabel �
Y
Tk2T

P �V �Tk�jf�Tk��P �fjT;A�: �12�

The grouping of text lines into zones and computa-

tion of the probability P �f jT;A� are given in
Section 7.3.

5. Update linking probability and adjust partition.
Given the computed labeling probabilities, we
update the linking probability P �g�i��, between each
pair of adjacent glyphs:

P �g�i�� / P �SameLine�i; i� 1�jAi;Ai�1�Plabel: �13�
During each iteration, the adjustment which pro-
duces the maximum improvement of the linking
probability is selected. Then, we continue to Step 3
and adjust the grouping according to the updated
linking probabilities. If there is no improvement on
the linking probability, we stop the iteration and
return the extracted text lines. The detail of this step
is given in Section 7.4.

6. Page deskew. The median of all the computed base-
lines' direction for the entire set T is taken as the page
skew angle, �skew. If the �skew > thresholdskew, we
rotate the image by ÿ�skew, and the process repeats
from Step 1.

Fig. 9a and Fig. 9b illustrate the text line detection
process. Fig. 9a(a) shows a set of connected component
bounding boxes. The extracted initial text line segments by
merging pairs of connected components are illustrated in
Fig. 9a(b). We notice some text lines are split while some
are merged across different columns. Fig. 9b(c) plots the
extracted text zones by grouping the edges of text segments.
Finally, the corrected text lines given the observations on
text zones are shown in Fig. 9b(d).

The following sections give detailed description of steps

in the text line extraction algorithm.

7.1 Adjacent Glyphs and Grouping Probability

Let A � fA1; A2; � � � ; AMg be the set of glyphs extracted

from a document page. Each glyph Ai 2 A is represented by

a bounding box �x; y; w; h�, where x; y is the coordinate of

top-left corner, and w and h are the width and height of the

bounding box, respectively. The spatial relations between

two adjacent boxes are shown in Fig. 5.
For a pair of bounding boxes a and b, the horizontal

distance dh�a; b� and vertical distance dv�a; b� between them
are defined as

dh�a; b� �
xb ÿ xa ÿ wa if xb > xa � wa
xa ÿ xb ÿ wb if xa > xb � wb
0 otherwise

8><>:
dv�a; b� �

yb ÿ ya ÿ ha if yb > ya � ha
ya ÿ yb ÿ hb if ya > yb � hb
0 otherwise:

8><>:
�14�

The horizontal overlap oh�a; b� and vertical overlap ov�a; b�
are defined as

oh�a; b� �
xa � wa ÿ xb if xb > xa; xb < xa � wa
xb � wb ÿ xa if xa > xb; xa < xb � wb
0 otherwise

8<: �15�

ov�a; b� �
ya � ha ÿ yb if yb > ya; yb < ya � ha
yb � hb ÿ ya if ya > yb; ya < yb � hb
0 otherwise:

8<: �16�

Let Aa � �xa; ya; wa; ha� and Ab � �xb; yb; wb; hb� be two
glyphs. We define Ab as a right neighbor of Aa if
Ab 6� Aa; xb > xa, and ov�a; b� > 0. Let Ba be the set of
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Fig. 4. Illustrates the processing steps of the text line extraction algorithm.

Fig. 5. Illustrates the spatial relations between two bounding boxes that

are (a) horizontally adjacent and (b) vertically adjacent.



right neighbors of Aa. The adjacent right neighbor of Aa is
defined as

arg min Ai2Ba
�dh�a; i�jxi > xa; ov�a; i� > 0�:

For each linked pair, Aa and Ab, we associate it with the
probability, P �SameLine�a; b�jAa;Ab�, that indicates how
probable they belong to the same text line. Given the
observations of their heights and widths, and the distance
and the overlaps between the pair: ha; wa; hb; wb; d�a; b�;
o�a; b�, we compute the probability that Aa and Ab belong to
the same text line as:

P �SameLine�a; b�jha; wa; hb; wb; d�a; b�; o�a; b��:

7.2 Baseline, X-Height, and Skew Angle

The baseline coordinate of a text line is estimated using a
robust estimator. We fit a straight line y�x; a; b� � a� bx
through the bottom-right corner of glyph boxes. We use the
bottom-right corner because ascenders are used more often
in Latin texts than descenders (see Fig. 6).

The merit function to be minimized is

XN
i�1

jyi ÿ aÿ bxij: �17�

The median dM of a set of numbers di is also the value
which minimizes the sum of the absolute deviationsX

i

jdi ÿ dM j: �18�

It follows that, for fixed b, the value of a that minimizes the
merit function is a � medianfyi ÿ bxig, where

0 �
X

N
i�1xisgn�yi ÿ aÿ bxi�:

This equation can be solved by the bracketing and bisection

method [21].
Given a set of baseline angles f�1; �2; � � � ; �Pg, the skew

angle of page is estimated as

�skew � median f�1; �2; � � � ; �Pg: �19�
If skew angle �skew is larger than the threshold, thresholdskew,

we rotate the page byÿ�skew, using the technique given in [22].
For each given text line Tk and its estimated baseline

�a; b�, we compute the absolute deviation of glyph positions
from the estimated baseline

��Tk; a; b� �
XN
i�1

jyi ÿ aÿ bxij: �20�

The x-height of a text line is estimated by taking the median
of the distance from the top-left corner of each glyph box to
the baseline

xh�Tk� � median fd�xi; yi; a; b�j1 � i � Ng: �21�
Given the observations on the text line Tk, we can compute
the likelihood that Tk has the homogeneous property of a
text line

P �xh�Tk�; ��Tk; a; b��jTextLine�Tk��: �22�
The linking probability P �g�i; j�� between a pair of glyphs,
Ai;Aj 2 Tk, is then updated according to the probability of
Tk having homogeneous text line property

P �g�i; j�� / P �SameLine�i; j�jAi;Aj�
P �xh�Tk�; ��Tk; a; b��jTextLine�Tk��:

�23�

7.3 Text-Zone Formation

Given a set of text line bounding boxes

T � fT1; T2; � � � ; TMg;
our goal is to group them into a set of zones, where the text
lines within each zone share the similar edges.

Given an entity box �x; y; w; h�, its horizontal projection
(Fig. 7) is defined as

horz-profile�j� � horz-profile�j� � 1; x � j < x� w:
And its vertical projection is

vert-profile�j� � vert-profile�j� � 1; y � j < y� h:
We assign the left edge of Ti to be xi, the right edge of Ti to
be xi � wi, and the center of Ti to be xi � wi=2. The vertical
edge projection on the three edges of the text line bounding
boxes of all Ti 2 T is defined as (see Fig. 8)

Cleft�j� � Cleft�j� � 1; j � x
Ccenter�j� � Ccenter�j� � 1; j � x� w=2
Cright�j� � Cright�j� � 1; j � x� w:

�24�

Algorithm 7.1 Text-zone detection.

1. Compute the horizontal projection profile of all text
line boxes.

2. Segment the page into a set of large regions, by
making cut at the gaps of horizontal projection
profile, where the width of gap is larger than a
certain threshold. The threshold is determined by
the median height of detected text lines.

3. For each region
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Fig. 6. Illustrates measurements made for estimating baseline and x-height.



a. Compute the vertical projection count C of the
left edges El, right edges Er, and center edges Ec

of text line boxes.

b. Find a place which has the highest total count
within its neighborhood of width w:

x � argi;j max
X
k

Ci;k; i 2 fl; r; cg;
 

jÿ 1

2
w � k < j� 1

2
w

�
;

�25�

where w is determined by the dominant text line

height within the region.
c. Determine the zone edge as the median of edges

Eik, within the neighborhood

jÿ 1

2
w � k < j� 1

2
w:

d. For each edge Eik, finding its corresponding

edge of the other side of the box Ejk; j 6� i
e. Determine the other edges of this zone by taking

the median of Ejk
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Fig. 8. Illustrates computation of vertical projection count to determine
regions' dominant left and right edges.

Fig. 7. Illustrates the horizontal projection of bounding boxes.

Fig. 9a. Illustrates a real document image overlaid with the extracted bounding boxes of (a) the connected components and (b) the initial text line
segments.



f. Remove the text line boxes enclosed by the

detect zone from T
g. Repeat until T � ;.

If the interzone spacing between two adjacent zones is very
small, it may cause the majority of text lines from those two
zones to merge. On the other hand, a list-item structure
usually has large gaps and this causes splitting errors. In
order to detect these two cases, we compute the vertical
projection profile of glyphs enclosed by each zone. If there is a
zero-height valley in the profile, we compute the probability
that a region Z should be split into two zones:

P �TwoZone�Z�jwgap; n�Z�; xh�Z�; h�Zl�; h�Zr�; w�Zl�; w�Zr��;
�26�

where wgap is the width of the profile gap, n�Z� is the total
number of text lines within the current region Z, and xh�Z�
is the median of text lines' x-height within Z. h�Zl� and
w�Zl�, (h�Zr� and w�Zr�) are the height and width of the
region Zl (Zr) on the left (right) side of gap. If the
probability is larger than a certain threshold, we split the
region at the detected gap.

Given a pair of adjacent zones, Zl and Zr, the probability
that they are part of the list-item structure is:

P �ListItem�Zl; Zr�jwgap;
h�Zl�; h�Zr�; w�Zl�; w�Zr�; n�Zl�; n�Zr��;

�27�

where n�Zl� and n�Zr� are number of text lines within the

left and right zones respectively.

7.4 Text Line Splitting and Merging

Given the detected zones, we can determine if a text line is

horizontally merged or split, or vertically merged or split.
Given the observations on a text line T � �A1; A2; � � � ; Am�

and its neighborsNT within the same zoneZ, we compute the

probability that T is vertically consistent, merged, or split:

P �v-consistent�T;NT �jh�T �; h�NT �; hc�T �; hc�NT ��; �28�
where h�T � is height of the text line T , h�NT � is the median

of text line height in zone NT , hc�T � is the median height of

glyphs in T , and hc�NT � is the median height of glyphs in

NT . Then, we can update the linking probability between a

pair of adjacent glyphs Ai and Aj:

P �g�i; j�� / P �SameLine�i; j�jAi;Aj�P �v-consistent�T;NT ��;
�29�

where Ai 2 T; and Aj 2 Z.
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Fig. 9b. Illustrates a real document image overlaid with the extracted bounding boxes of (c) the texts zones and (d) the corrected text lines.



Given a pair of adjacent text lines Tm and Tn within the
same zone, we can update the linking probability between a
pair of glyphs Ai 2 Tm and Aj 2 Tn:

P �g�i; j�� / P �SameLine�i; j�jAi;Aj; SameZone�i; j��
/ P �Ai;AjjSameLine�i; j��P �SameZone�i; j�jSameLine�i; j��:

�30�
Similarly, if a text line is across two or more zones, we

can update the linking probability for each pair of adjacent
glyphs that belong to different zones

P �g�i; j�� / P �SameLine�i; j�jAi;Aj;DiffZone�i; j��
/ P �Ai;AjjSameLine�i; j��P �DiffZone�i; j�jSameLine�i; j��:

�31�

8 EXPERIMENTAL RESULTS

The text line extraction algorithm described in this paper
is evaluated on a total of 1,600 scanned images from the
UW-III Document Image Database [23], [24], [19]. A three-
fold cross-validation method is used to estimate the
algorithm's performance. We partition the data set into
three parts, use two parts to do the training and use the
third part to test and evaluate the performance. The
training and testing procedure is repeated three times
using a different part for testing each time. Finally, the
performance measures from three parts are combined as
the overall performance of the algorithm on the data set.

In the UW-III database, a page is partitioned into a set of
zones and each zone is assigned a physical content type,
such as, text, math, table, drawing, figure, ruling, etc. For
each text zone, the database provides the text ground-truth,
the bounding boxes of words, text line, and text zone.
However, the database does not provide ground-truth for
any of the text entities within nontext zones.

Thus, we first evaluate the performance of our text line
algorithm only on the text zone areas of the 1,600 pages, and

then, we evaluate the algorithm on the entire pages. These
two experiments are given as follows.

8.1 Experiment 1: Text Areas Only

In this experiment, we assume the text areas on a page are
given. First, the connected components are extracted from
the image. Then, we classify the components into two sets:
One includes all components that are enclosed by the text
areas; another consists of components belong to other
regions, such as table, math, line drawing, etc.

The text line extraction algorithm is applied to the set of

connected components that are within the text areas. The

numbers and percentages of miss, false, correct, splitting,

merging, and spurious detections are shown in Table 4. Of

the 105,020 ground truth text lines, 99.76 percent of them

are correctly detected, and 0.08 percent and 0.07 percent of

lines are split or merged, respectively. Most of the missing

errors are due to the rotated text.
A few cases that the algorithm failed are shown in Fig. 10.

A vertical merging error was shown in Fig. 10a. Fig. 10b and

Fig. 10c illustrate horizontal and vertical splitting errors

due to the large spacing. A spurious error caused by

warping is shown in Fig. 10d.

8.2 Experiment 2: Text and Nontext Areas

In this experiment, we apply the text line extraction

algorithm on the whole page of each image in the test data

set. First, the connected component analysis is applied to

the input binary image. Then, a few simple measurements

are made on each extracted component, i.e., height, width,

aspect ratio, black pixel density within the component, etc.

Based on these observations, we determine if a component

has the attributes of a character. The components with

extreme physical properties are removed from the set. And

we run the text line extraction algorithm on all remained

character-like components (glyphs).
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TABLE 4
Performance of the Text Line Extraction Algorithm

Fig. 10. Illustrates examples that the text detection algorithm failed.



Since no ground-truth are given to those text entities
within the nontext zones in the data set, we are not able to
evaluate the extracted text lines within the nontext zones. For
the extracted text lines fall within the text areas, we compare
their bounding boxes with the bounding boxes of the ground-
truth text lines. The numbers and percentages of miss, false,

correct, splitting, merging, and spurious detections are

shown in Table 5. Fig. 11 illustrates the bounding boxes of

the text lines extracted from areas of text, table and drawing.

Fig. 12 illustrates examples where connected components in

figures are grouped into text lines.
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TABLE 5
Performance of the Text Line Extraction Algorithm on Normal Sized Connected Components

Fig. 11. Illustrates a real document image overlaid with the bounding boxes of the text lines extracted from areas of text, table, and drawing.



9 SUMMARY

In this paper, we formulated the document structures
extraction as an optimal partitioning problem. The goal was
to find an optimal solution partitioning the set of glyphs on
a given document image into a hierarchical tree structure
where entities within the hierarchy are associated with their
physical properties and semantic labels. A Bayesian frame-
work is used to assign and update the probabilities during
the structures extraction process. An iterative, relaxation-
like method is used to find the partitioning solution that
maximizes the probability of the extracted structure given
the document image data.

A text line extraction algorithm has been implemented to
demonstrate the usage of this framework. This algorithm
consists of two major componentsÐoffline statistical train-
ing and online text line extraction. The probabilities used
within this algorithm are estimated from an extensive
training set of various kinds of measurements of distances
between the terminal and nonterminal entities with which
the algorithm works. The offline probabilities estimated in

the training then drive all decisions in the online segmenta-

tion module. The online segmentation module extracted

and filtered the set of connected components of the input

image to obtain a set of glyphs. Each glyph is linked to its

adjacent neighbor to form glyph pairs. Associated with each

link is the pair's linking probability. The entire text line

extraction process became an iterative readjustment of the

pairs' linking probabilities on the glyph set. The segmenta-

tion algorithm terminated when a decision can be made in

favor for each link within the final set of text line segments.
The algorithm was tested on the 1,600 pages of technical

documents within the UW-III database having a total of

105,020 text lines. The algorithm exhibited a 99.76 percent

accuracy rate.
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