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Abstract

In this paper we discuss several heuristic strategies which allow one
to solve the Whitehead’s minimization problem much faster (on most in-
puts) than the classical Whitehead algorithm. The mere fact that these
strategies work in practice leads to several interesting mathematical con-
jectures. In particular, we conjecture that the length of most non-minimal
elements in a free group can be reduced by a Nielsen automorphism which
can be identified by inspecting the structure of the corresponding White-
head Graph.

1 Introduction to Whitehead method

Let X = {x1, . . . , xm} be a finite alphabet, X−1 = {x−1 | x ∈ X} be the set of
formal inverses of letters from X and X±1 = X ∪X−1. A word w = y1 . . . yn

in the alphabet X±1 is called reduced if yi 6= yi+1 for i = 1, . . . , n − 1 (here
we assume that (x−1)−1 = x). Applying reduction rules xx−1 → ε, x−1x → ε
(where ε is the empty word), one can reduce each word w in the alphabet X±1

to a reduced word w. The word w is uniquely defined and does not depend on
a particular sequence of reductions. Denote by F = F (X) the set of reduced
words over X±1. The set F forms a group with respect to the multiplication
u · v = uv, which is called a free group with basis X. The cardinality |X| is
called the rank of F (X). Sometimes we write Fn instead of F to indicate that
the rank of F is equal to n.

A bijection φ : F → F is called an automorphism of F if φ(uv) = φ(u)φ(v)
for every u, v ∈ F . The set Aut(F ) of all automorphisms of F forms a group with
respect to composition of maps. Every automorphism φ ∈ Aut(F ) is completely
determined by the images φ(x) of elements x ∈ X. The following two subsets
of Aut(F ) play an important part in group theory and topology.

An automorphism t ∈ Aut(F ) is called a Nielsen automorphism if for some
x ∈ X t fixes all elements y ∈ X, y 6= x and maps x to one of the elements x−1,
y±1x, xy±1. By N(X) we denote the set of all Nielsen automorphisms of F .

An automorphism t ∈ Aut(F ) is called a Whitehead automorphism if either
t permutes elements of X±1 or t fixes a given element a ∈ X±1 and maps
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each element x ∈ X±1, x 6= a±1 to one of the elements x, xa, a−1x, or a−1xa.
Obviously, every Nielsen automorphism is also a Whitehead automorphism. By
W (X) we denote the set of non-trivial Whitehead’s automorphisms of the second
type.

Observe that

|N(X)| = 4n(n− 1), |W (X)| = 2n4(n−1) − 2n

where n = |X| is the rank of F .
It is known [4] that every automorphism from Aut(F ) is a product of finitely

many Nielsen (hence Whitehead) automorphisms.
The automorphic orbit Orb(w) of a word w ∈ F is the set of all automorphic

images of w in F :

Orb(w) = {v ∈ F | ∃ϕ ∈ Aut(F ) such that wϕ = v}.

A word w ∈ F is called minimal (or automorphically minimal) if |w| ≤ |wϕ|
for any ϕ ∈ Aut(F ). By wmin we denote a word of minimal length in Orb(w).
Notice that wmin is not unique.

Problem 1.1 (Minimization Problem (MP)) For a word u ∈ F find an
automorphism ϕ ∈ Aut(F ) such that uϕ = umin.

In 1936 J. H. C. Whitehead proved the following result which gives a solution
to the minimization problem [7].

Theorem 1.1 (Whitehead) Let u, v ∈ Fn(X) and v ∈ Orb(u). If |u| > |v|,
then there exists t ∈W (X) such that

|u| > |ut|.

An automorphism φ ∈ Aut(F ) is called a length-reducing automorphism for
a given word u ∈ F if |uφ| < |u|. The theorem above claims that the finite set
W (X) contains a length-reducing automorphism for every non-minimal word
u ∈ F . This allows one to design a simple search algorithm for (MP).

Let u ∈ F . For each t ∈ W (X) compute the length of the tuple ut until
|u| > |ut|, then put t1 = t, u1 = ut1. Otherwise stop and output umin = u. The
procedure above is called the Whitehead Length Reduction routine (WLR). Now
Whitehead Reduction Algorithm (WRA) proceeds as follows. Repeat WLR on
u, and then on u1, and so on, until on some step k WRL gives an output umin.
Then ut1 . . . tk−1 = umin, so φ = t1 . . . tk−1 is a required automorphism.

Notice, that the iteration procedure WRA simulates the classical greedy
descent method (t1 is a successfull direction from u, t2 is a successfull direction
from u1, and etc.). Theorem 1.1 guarantees that the greedy approach will always
converge to the global minimum.

Clearly, there could be at most |u| repetitions of WLR on an input u ∈ F

|u| > |ut1| > ... > |ut1...tl| = umin, l ≤ |u|.
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Hence the worst case complexity of the algorithm WRA is bounded from above
by

cAn|u|2,
where An = 2n4(n−1)−2n is the number of Whitehead automorphisms inW (X).
Therefore, in the worst case scenario, the algorithm seems to be impractical for
free groups with large ranks. One can try to improve on the number of steps
which takes to find a length-reducing automorphism for a given non-minimal
element from F . In this context the main question of interest is the complexity
of the following

Problem 1.2 (Length Reduction Problem) For a given non-minimal ele-
ment u ∈ F find a length-reducing automorphism.

We refer to [5] for a general discussion on this problem.
In the next section we give some empirical evidence that using smart strate-

gies in selecting Whitehead automorphisms t ∈ W (X) one can dramatically
improve the average complexity of WRA in terms of the rank of a group.

2 Heuristics for Length Reduction Problem

2.1 Nielsen first

The first heuristic comes from a very naive approach: replace W (X) by N(X) in
the Whitehead length reduction routine WLR and denote the resulting routine
by NLR. Since the size of N(X) is quadratic and the size of W (X) is exponential
in the rank of F , the algorithm NRA may give a real speedup in computations.
However, it is known (see [4]) that the Whitehead theorem above does not hold
after replacement of W (X) by N(X). Therefore, the algorithm NRA will not
give the correct answer at least on some inputs. But this is not the end of the
story. Now the question is how often the length reduction routine NLR gives the
correct answer?

To get some insights, we perform a simple experiment. For free groups F3, F4

and F5 we generate test sets of non-minimal elements of Whitehead Complexity
1 (see definitions in [5]), described in Table 1. For a detailed description of the
data generation procedures we refer to [3].

Dataset Group Dataset Size Min. length Avg. length Max. length
D3 F3 10143 3 558.2 1306
D4 F4 10176 4 570.9 1366
D5 F5 10165 5 581.3 1388

Table 1: Statistics of sets of non-minimal elements.

For each set Dn we compute the fraction of elements from Dn which have
length-reducing Nielsen automorphisms. The results of the computations to-
gether with the corresponding 95% confidence intervals are given in Table 2.
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We can see that most of the words have been reduced by Nielsen automor-
phisms. We would like to mention here, that it can be shown statistically that
increasing the length of elements in the datasets does not significantly change
the results of experiments.

Dataset D3 D4 D5

Fraction 0.998 0.997 0.998
95% Conf. Interval [0.9970,0.9988] [0.9957,0.9979] [0.9970,0.9988]

Table 2: Fraction of elements in the sets D3, D4 and D5 with length-reducing
Nielsen automorphisms.

Based on these experiments one can speculate that with very high probability
Nielsen automorphisms reduce the length of a given non-minimal element in F .
More precisely, we state the following

Conjecture 2.1 Let Un be the set of all non-minimal elements in F of length
n and NUn ⊂ Un the subset of elements which have Nielsen length-reducing
automorphisms. Then

lim
n→∞

|NUn|
|Un|

= 1.

Our first heuristic is based on this conjecture and simply suggests to try
Nielsen automorphisms first in the routine WLR, i.e., in this case we assume
that in the fixed listing of automorphisms of W (X) the automorphism from
N(X) come first. We refer to this heuristic as to Nielsen First and denote
the corresponding Length Reduction Routine and the Whitehead Reduction
algorithm (with respect to this ordering of W (X)) by WLRNF and WRANF .

The expected value of the number of steps for the routine WLRNF to find
a length-reducing automorphism on an input u ∈ F of length n is equal to

Pn|N(X)|+ (1− Pn)(|W (X)| − |N(X)|),

where Pn = NUn/Un.
Given that Conjecture 2.1 is true, we expect WRANF to perform much bet-

ter on average. In the next section we describe experimental results supporting
this strategy.

2.2 Cluster analysis

According to the heuristic NF one has to apply Nielsen automorphisms to a given
input w in some fixed order, which is independent of the word w. Intuitively,
we expect some automorphisms to be more likely to reduce the length of a given
word than the others. It suggests that the conditional probabilities

Prob(|wt| < |w| | w), t ∈ N(X)
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may not be equal for different non-minimal words w ∈ F , so the order in which
Nielsen automorphisms are applied to an input w should depend on the word
w itself.

The question we would like to address next is whether it is possible to find
a dependence between a non-minimal word w and its length-reducing Nielsen
automorphisms. For this purpose we employ methods from Statistical Pattern
Recognition.

Briefly, Pattern Recognition aims to classify a variety of given objects into
categories based on the existing statistical information. The objects are typically
presented by collections of measurements or observations (called features) which
are real numbers. In this event the tuple of features that corresponds to a given
object is called a feature vector, it can be viewed as a point in the appropriate
multidimensional vector space Rd. Most of the approaches in Statistical pattern
recognition are based on statistical characterizations of features, assuming that
objects are generated by a probabilistic system. The detailed description of
Pattern Recognition methods is out of scope of this report. We refer interested
readers to [1, 2, 6] for general introduction to the subject, and [3] for applications
of pattern recognition methods in groups.

Unsupervised learning or clustering methods of pattern recognition are used
when no a priori information about the objects is available. In this case there
are general algorithms to group the feature vectors of objects into some ”nat-
ural classes” (called clusters) relative to the specified similarity assumptions.
Intuitively, the objects whose feature vectors belong to the same cluster are
more similar to each other than the objects with the feature vectors in different
clusters.

The most simple and widely used clustering scheme is called K-means. It is
an iterative method. LetD = {x1, . . . ,xN} be a set of given objects, represented
by the corresponding feature vectors x ∈ Rd. K-means begins with a set of K
randomly chosen cluster centers µ0

1, . . . , µ
0
K ∈ Rd. At iteration i each feature

vector is assigned to the nearest cluster center (in some metric || || on Rd). This
forms the cluster sets Ci

1, . . . , C
i
K , where

Ci
j = {x | ||x− µi

j || ≤ ||x− µi
m||, x ∈ D, m = 1, . . . ,K}.

Then each cluster center is redefined as the mean of the feature vectors
assigned to the cluster:

µi+1
k =

1
|Ci

k|
∑
x∈Ci

k

x.

Each iteration reduces the criterion function J i defined as

J i =
K∑

k=1

∑
x∈Ci

k

||x− µi
k||.

As this criterion function is bounded below by zero, the iterations must
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converge. This method works well when clusters are mutually exclusive and
compact around their center means.

Here we claim that K-means algorithm allows one to discover some natural
classes of non-minimal words. We show below that analysis of the corresponding
cluster structures sheds some light on the relation between non-minimal words
and their length-reducing automorphisms.

We define features of elements w ∈ F (X) as follows. Recall that the Labelled
Whitehead Graph WG(w) = (V,E) of an element w ∈ F (X) is a weighted non-
oriented graph, where the set of vertices V is equal to the set X±1, and for
xi, xj ∈ X±1 there is an edge (xi, xj) ∈ E if the subword xix

−1
j (or xjx

−1
i )

occurs in the word w viewed as a cyclic word. Every edge (xi, xj) is assigned a
weight lij which is the number of times the subwords xix

−1
j and xjx

−1
i occur in

w.
Let l(w) be a vector of edge weights in the Whitehead Graph WG(w) with

respect to a fixed order. We define a feature vector f(w) by

f(w) =
1
|w|

l(w).

To execute the K-means algorithm one has to define in advance the expected
number of clusters K. Since we would like these clusters to be related to the
set of Nielsen automorphisms N(X) we put K = |N(X)|.

To evaluate usefulness of the clustering we use the goodness measure Rmax

defined below. Let C ⊂ D be a cluster of the data set D ⊂ Fn = F (X). For
t ∈ N(X) define

R(t, C) =
|{w ∈ C | |wt| < |w|}

|C|
.

The number R(t, C) shows how many elements in C are reducible by t. Now put

Rmax(C) = max{R(t, C) | t ∈ N(X)}

and denote by tC a Nielsen automorphism t ∈ N(X) such that R(tC , C) =
Rmax(C). The number Rmax(C) shows how many elements in C can be reduced
by a single automorphism, in this case by tC . We also define the average value
of the goodness measure

avg(Rmax) =
1
K

K∑
i=1

Rmax(Ci),

where K is the number of clusters.
The results of K-mean cluster analysis of sets of randomly generated non-

minimal elements in free groups F3, F4, F5 are given in Table 3. It shows that
more that 70% of elements in every cluster can be reduced by the same Nielsen
automorphism. In the free group F3, where the number of clusters is significantly
smaller, the corresponding percentage is over 98%. Moreover, our experiments
show that tCi

6= tCj
for i 6= j. In other words there are no two distinct clusters
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Free group F3 F4 F5

number of clusters, K 24 48 80
avg(Rmax), K-means 0.985 0.879 0.731

Table 3: Average values of the goodness measure Rmax for K-means clustering.

such that one and the same Nielsen automorphism reduces most of the elements
in both clusters.

The discovered cluster structure gives rise to the following strategy in solving
the Length Reduction Problem for a given word w. Let µ1, . . . , µK be the cen-
ters of clusters C1, . . . , CK computed by the K-means procedure. We compute
the distance ||f(w) − µi|| for each i = 1, . . . ,K. Now we list the Nielsen auto-
morphisms in N(X) in the order ti1 , ti2 , . . . , tiK

with respect to the distances

||f(w)− µi1 || ≤ ||f(w)− µi2 || ≤ . . . ≤ ||f(w)− µiK
||.

To find a length reducing automorphism for a given word w we subse-
quently apply automorphisms from N(X) in the prescribed order until we find
an automorphism ti ∈ N(X) which reduces the length of w. If such an auto-
morphism does not exist we proceed with the remaining automorphisms from
W (X)−N(X) as in the NF heuristic.

From the description of the K-means method we know that clusters are
characterized by the center means of the feature vectors of elements in the
same cluster. The observations above lead us to the following vaguely stated
conjecture, which gives a model to describe behavior of non-minimal elements
from F in terms of their feature vectors.

Conjecture 2.2 The feature vectors of weights of the Whitehead Graphs of el-
ements from F are separated into bounded regions in the corresponding space.
Each such region can be bounded by a hypersurface and corresponds to a par-
ticular Nielsen automorphism in a sense that all elements in the corresponding
class can be reduced by that automorphism.

2.3 Improvement on the clustering

Experiments with K-means clustering algorithm show that clustering is a useful
tool in solving the length reduction problem. Now, the goal is to make clustering
more effective. The further analysis of the clusters suggests that to some extent
they correspond to partitions of elements in F which can be reduced by one
and only one Nielsen automorphism. To verify this conjecture we perform the
following experiment.

Let S ⊂ Fn = F (X) be a set of randomly generated non-minimal elements
and D the set used for cluster analysis in the previous section. Note that S is
generated independently from the set D. For each automorphism t ∈ N(X) put

Ot = {w ∈ S | ∀r ∈ N(X)(|wr| < |w| ⇐⇒ r = t)}
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and define new cluster centers by

λt =
1
|Ot|

∑
w∈Ot

f(w) (1)

as the mean feature vector of the elements from S that can be reduced only by
t and no other automorphisms.

We cluster elements fromD based on the distance between the corresponding
feature vector and centers λt:

Ct = {w ∈ D | ∀r ∈ N(X)(||f(w)− λt|| ≤ ||f(w)− λr||)}.

The results of evaluation of the clusters Ct are given in Table 4. One can see
that the goodness measure is improved and is close to 1 in every case.

Free group F3 F4 F5

number of clusters, K 24 48 80
avg(Rmax), distance to λt 0.998 0.993 0.991

Table 4: Average values of the goodness measure Rmax for the clustering based
on the distance to the estimated centers λt.

Similar to the strategy based on the centers of the K-means clusters, we
define a new search procedure WRAC which employs a heuristic based on the
distances to centers λt. Let w be a word and < λt1 , . . . , λtK

> be the centers
corresponding to each of the Nielsen automorphisms ti ∈ N(X). Put d(i) =
||f(w)− λti || and construct a vector

< d(m1), d(m2), . . . , d(mK) >,

where
d(m1) ≤ d(m2) ≤ . . . ≤ d(mK).

To find a length reducing automorphism for a given word w, the algorithm
WRAC applies Whitehead automorphisms to w in the following order. First,
Nielsen automorphisms tm1 , . . . , tmK

are applied subsequently. If none of the
Nielsen automorphisms reduces the length of w the algorithm WRAC proceed
with the remaining automorphisms W (X)−N(X) in some fixed order.

Based on the results of the cluster analysis from Table 4, we expect the
algorithm WRAC to reduce a non-minimal word w using very few elementary
automorphisms on average.

2.4 Maximal weight edges

Now we would like to take a closer look at the edges’ weight distributions at
the cluster centers. First, observe that every edge in the Whitehead graph WG,
except for the ones which correspond to subwords of type x2, x ∈ X±1, will

8



correspond to subwords reducible by two particular Nielsen transformations.
For example, edge connecting nodes a and b corresponds to subwords (ab−1)±1

both of which are reduced by automorphisms

(a→ ab, b→ b),
(a→ a, b→ ba).

In fact there is no other Nielsen transformation that will reduce the length of
words (ab−1)±1.

To generalize, let WG(w) be a Whitehead graph of a word w with the vertex
set V and the set of edges E. Let e = (x, y−1), x, y−1 ∈ V , be an edge in E. By
construction e corresponds to subwords se = (xy)±1 of the word w. The only
Nielsen automorphisms which reduce length of the subwords se are

ψx
e : x→ xy−1, z → z, ∀z 6= x, z ∈ X

and
ψy

e : y → x−1y, z → z, ∀z 6= y, z ∈ X.

We will call automorphisms ψx
e , ψ

y
e the length reducing Nielsen automorphisms

with respect to the edge e = (x, y−1) and denote ψe = {ψx
e , ψ

y
e}.

The following phenomenon has been observed for all clusters in free groups
F3, F4, and F5. Let Ct be a cluster of a test set Dn, n = 3, 4, 5, then for all
t ∈ N(X),

t ∈ ψemax
,

where emax is the edge having the maximal weight in the cluster center λt.
It suggests that at least in the case of free groups F3, F4, F5 one can try to
estimate a length-reducing automorphism for given word w by taking the length-
reducing Nielsen automorphisms of the highest weight edge in the Whitehead
graph WG(w).

To evaluate the goodness of the heuristic based on the maximal edge weight
in the Whitehead graph we compute the fraction of elements in the sets D3, D4

and D5, reducible by the Nielsen automorphisms corresponding to the maximal
weight edge. The corresponding goodness measure, evaluated on a set D, is
given by

GMAX =
1
|D|

|{w ∈ D | ∃t ∈ ψemax(w), s.t. |wt| < |w|}|.

Dataset D3 D4 D5

GMAX 0.991 0.986 0.986

Table 5: Values of the goodness measure GMAX for sets of non-minimal elements
in free groups F3, F4 and F5.
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Values of the goodness measure GMAX for test sets in free groups F3, F4

and F5 are given in Table 5. It shows, that heuristic is surprisingly effective.
Nevertheless, centroid based method still yields better results. Note that GMAX

measures success of applying two automorphisms corresponding to the maximal
weight edge, where the centroid based method was evaluated by the success rate
of only one automorphism which corresponds to the closest center.

The observation provides a new search procedure which we denote by WRAMAX .
Let w be a word and WG(w) = (V,E) be the corresponding Whitehead graph.
Denote by E′ the set of edges which do not correspond to the subwords of type
x±2, x ∈ X

E′ = {e ∈ E | e 6= (v, v−1), v ∈ V }.

It has been shown above, that for each edge e from E′ there exists two unique
length reducing automorphisms. Note that 2|E′| = |N(X)|, where N(X) is the
set of Nielsen automorphisms for free group F (X).

We can order Nielsen automorphisms ψei
⊂ N(X):

< ψe1 , ψe2 , . . . , ψe|E′| > (2)

such that edges e1, . . . , e|E′| are chosen according to the decreasing order of the
values of the corresponding weights

ωe1 ≥ ωe2 ≥ . . . ≥ ωe|E′| .

Note that ψe is not a single automorphism, but a pair of Nielsen length reducing
automorphisms with respect to the edge e. Here we do not give any preference
in ordering automorphisms in ψe.

To find a length-reducing automorphism for w procedure WRAMAX first
applies Nielsen automorphisms in the order given by (2). If none of the Nielsen
automorphisms reduces the length of w, WRAMAX proceeds with the remaining
automorphisms from W (X)−N(X).

3 Comparison of the strategies

In this section we describe experiments designed to compare the performance of
WRA implemented with different search strategies. We compare four variations
of the algorithm. WRAR is the variation of WRA, where a random order of the
elements from Wn is used when searching for a length reducing automorphisms.
WRANF and WRAC correspond to the implementations with Nielsen First
and Centroid based heuristics respectively. The algorithm WRAMAX employs
strategy which applies automorphisms corresponding to the largest edge weights
of the Whitehead Graph. The algorithms were compared on randomly generated
sets of primitive elements S3, S4, S5 in free groups F3, F4, and F5, respectively.
Some descriptive statistics of the test sets Sn are given in Table 6.

Let A be one of the variations WRAR, WRANF , WRAC , and WRAMAX of
the Whitehead Reduction Algorithm. By an elementary step of the algorithm A
we mean one application of a Whitehead automorphism to a given word. Below
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Dataset Group Dataset Size Min. length Avg. length Max. length
S3 F3 5645 3 1422.1 143020
S4 F4 5241 4 2513.1 168353
S5 F5 3821 5 2430.5 160794

Table 6: Statistics of the test sets of primitive elements.

we evaluate the performance of A with respect to the number of elementary
steps that are required by A to execute a particular routine.

Let Ntotal = Ntotal(A, Sn) be the average of the total number of elementary
steps required by A to reduce a given primitive element w ∈ Sn to a generator.

By Nred = Nred(A, Sn) we denote the average number of elementary length-
reducing steps required by A to reduce a given primitive element w ∈ Sn to a
generator, so Nred is the average number of ”productive” steps performed by
A. It follows that if t1, . . . , tl are all the length reducing automorphisms found
by A when executing its routine on an input w ∈ Sn then |wt1 . . . tl| = 1 and
the average value of l is equal to Nred.

Finally, denote by NLRP = NLRP (A, Sn) the average number of elementary
steps required by A to find a length-reducing automorphism for a given non-
minimal input w.

In Table 7 we present results of our experiments on performance of the algo-
rithms WRAR, WRANF , WRAC and WRAMAX on the test sets Sn, n = 3, 4, 5.
The algorithms compare as expected. The algorithms WRAC and WRAMAX

perform very efficiently with the numbers NLRP and Nred being small. Algo-
rithm WRAC based on the centroid approach shows best over all performance.
The growth of the numbers NLRP with the rank could be explained by occa-
sional occurrence of non-minimal words that cannot be reduced by Nielsen au-
tomorphisms. In this event the algorithm tries Whitehead automorphisms from
W (X)−N(X) the number of which growth exponentially with the rank. Notice
that in every our experiment the number Nred of length reductions performed
by WRAC is less than the corresponding number in the other approaches.

In Table 8 we give the correlation coefficients showing dependence of the
number of elementary steps required by a particular algorithm to find a length-
reducing automorphism with respect to the length of the input words. The
coefficients are negative in all cases which indicates that the values of NLRP do
not increase when the words’ length increases.

4 Conclusions

The experimental results presented in this paper show that using appropriate
heuristics in the algorithm WRA, one can significantly reduce the complexity
of the Whitehead minimization problem on most inputs with respect to the
group rank. Suggested heuristics reduce the average number of Whitehead
automorphisms required to find a length-reducing automorphism for a given
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Strategy Ntotal Nred NLRP

WRAC 19.9 18.4 1.1
WRAMAX 47.1 23.9 1.9
WRANF 207.8 28.2 7.37
WRAR 374.8 29.8 12.6

a) F3;

Strategy Ntotal Nred NLRP

WRAC 58.8 34.1 1.4
WRAMAX 152.8 42.5 3.0
WRANF 1052.6 56.2 18.7
WRAR 2610.4 58.8 44.4

b) F4;

Strategy Ntotal Nred NLRP

WRAC 162.0 50.9 2.4
WRAMAX 342.2 58.8 4.5
WRANF 2307.6 75.4 30.6
WRAR 15939.6 78.8 202.0

c) F5.

Table 7: Results of experiments with sets of primitive elements in free groups
F3,F4 and F5. Counts are averaged over all inputs.

word. The performance of heuristic algorithms tested on the sets of randomly
generated primitive elements shows robust behavior and does not deteriorate
when the length of the input words increases.

One of the interesting contributions of this paper is the empirically discov-
ered properties of non-minimal elements of free groups formulated in Conjec-
tures 2.1 and 2.2. These conjectures suggest that the length of a ”generic”
non-minimal elements in a free group can be reduced by a Nielsen automor-
phism. Moreover, the feature vectors of the weights of the Whitehead’s Graphs
of non-minimal elements are divided into ”compact” regions in the correspond-
ing vector space. Each such region is related to a particular Nielsen automor-
phism, that reduces the length of all elements in the region. We believe this
is one of those few cases when a meaningful rigorous, but not intuitively clear
conjecture, in group theory was obtained by using experimental simulations and
statistical analysis of the problem.

It remains to be seen why the algorithm WRAC is able to find minimal
elements using a smaller number of length reductions on average. We are going
to address this issue in the subsequent paper.
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Strategy F3 F4 F5

WRAC -0.008 -0.001 -0.006
WRAMAX -0.024 -0.023 -0.038
WRANF -0.009 -0.022 -0.022
WRAR -0.038 -0.014 -0.035

Table 8: Correlation coefficients between words length and values ofNLRP . Neg-
ative coefficients indicate that NLRP does not increase when length increases.
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