
ARTIFICIAL INTELLIGENCE 263

Increasing Tree Search Efficiency for
Constraint Satisfaction Problems

Robert M. Haral ick and Gordon L. Elliott
Depar tmen t o f Electrical Engineering and Depar tmen t o f

Computer Science, Virginia Polytechnic Insti tute and State
University, Blacksburg, V I 2 4 0 6 1 , U .S .A .

Recommended by Nils Nilsson

ABSTRACT

In this paper we explore the number of tree search operations required to solve binary constraint
satisfaction problems. We show analytically and experimentally that the two principles of first trying
the places most likely to fail and remembering what has been done to avoid repeating the same
mistake twice improve the standard backtracking search. We experimentally show that a lookahead
procedure called forward checking (to anticipate the future) which employs the most likely to fail
principle performs better than standard backtracking, Ullman's, Waltz's, Mackworth's, and
Haralick's discrete relaxation in all cases tested, and better than Gaschnig's backmarking in the
larger problems.

1. Introduction

Associated with search procedures are heuristics. In this paper we provide a
theory which explains why two heuristics used in constraint satisfaction sear-
ches work. The heuristics we discuss can be given a variety of one line
descriptions such as:
- -Lookahead and anticipate the future in order to succeed in the present.
- -To succeed, try first where you are most likely to fail.
- -Remember what you have done to avoid repeating the same mistake.
- -Lookahead to the future in order not to worry about the past.

We will attempt to show that for a suitably defined random constraint
satisfaction problem, the average number of tree search operations which
employs these principles will be smaller than that required by the standard
backtracking tree search.

To begin our discussion, we need a precise description of the constraint
satisfaction problem we are attempting to solve by a search procedure. We

Artificial Intelligence 14 (1980) 263-313
Copyright © by North-Holland Publishing Company

264 R.M. HARALICK AND G.L. ELLIOTF

assume that there are N units (some authors call these variables instead of
units). Each unit has a set of M possible values or labels. The constraint
satisfaction problem we consider is to determine all possible assignments f of
labels to units such that for every pair of units, the corresponding label
assignments satisfy the constraints. More formally, if U is the set of units and L
is the set of labels, then the binary constraint R can be represented as a binary
relation on U x L: R C_ (U x L) x (U x L). If a pair of unit-labels (ul, 1~, uz, 12)

R, then labels 11 and 12 are said to be consistent or compatible for units u~ and
u2. A labeling f of all the units satisfies the constraints if for every pair u~, u2 of
units (ul,f(ul), u2,f(u2))E R. Haralick et al. [8] call such a labeling a consistent
labeling.

The problem of determining consistent labelings is a general form of many
problems related to artificial intelligence. For example, scene labeling and
matching [1, 14], line interpretation [16], edge labeling [5], graph homomor-
phisms and isomorphisms [15], graph coloring [9], boolean satisfiability [8], and
proposition theorem proving [10] are all special cases of the general consistent
labeling problem. Ullman [15], Waltz [16], Rosenfeld et al. [14], Gaschnig [2, 3,
4], and McGregor [12] attempt to find efficient methods to solve the consistent
labeling problem. Knuth [17] also analyzes the backtracking tree search,
which is the basis of most methods used to solve the consistent labeling
problem.

For the purpose of illustrating the search required to solve this problem, we
choose the N-queens problem, how to place N-queens on an N x N checker-
board so that no queen can take another. Here, the unit set corresponds to the
row coordinates on a checkerboard and we denote them by positive integers.
The label set corresponds to the column coordinates on a checkerboard and we
denote them by alphabetic characters. Hence, the unit-label pair (1, A, 2, D)
satisfies the constraint R, [(1, A, 2, D) ~ R], since a queen on row 1 column A
cannot take a queen on row 2 column D. But, the unit-label pair (1, A, 3, C)
does not satisfy the constraint R because queens can take each other diagon-
ally (see Fig. !)-

Using the number letter convention for unit-label pairs, Fig. 2 illustrates a
portion of a backtracking tree trace for the 6-queens problem. Notice how the
unit 5 labels A, C, E, and F occur twice in the trace, each time being tested and
failing for the same reason: incompatibility with units 1 or 2. These redundant
tests can be eliminated if the fact they failed can be remembered or if units 1 or
2 could lookahead and prevent 5 from taking the labels A, C, E, or F. The
remembering done by Gaschnig's backmarking [2] and the forward checking
approach described in this paper help eliminate these problems. Notice that
once unit 3 takes label E (Fig. l(a)) the only labels left for units 4 and 6 are
incompatible. The forward checking algorithm will not discover this future
incompatibility. However, the first time label B is associated with unit 4, there

INCREASING TREE SEARCH EFFICIENCY 265

B C D E F A

r

2 i

= I l..'~ \\

2",' " 4 :" ,~,, I ,, ",
, , I \ 1 \

5 i~ i ,v iK ,
f~ I / 1 1 \ , I

I l / IL
I j I \
I / I I ~\ \

IbI

A B C D E F

~ ,
2 '

3 ' / b ' X
I ,. = I

r / \
I I / ~11\

5 I ,4 i ~ \

I . j I i \
i • I L \

Iol
FIG. 1. (a) illustrates how the labeling A, C, E for units 1, 2, 3 implies that the only labels for units
4 and 6 are incompatible in the 6 queens problem. (b) illustrates how the labeling A, C, E, B for
units 1, 2, 3, 4 implies that there is no label for unit 6 in the 6 queens problem.

1 A
2
2

A,B
C
3 A,B,C,D
3 E

4 A
4 B

5
5

A,B,C
D
6 A,B,C,D,E,F
E,F

4 C,D,E,F
3 F

4 A
4 B

5 A,B,C,D,E,F
4 C,D,E,F

FIG. 2. A segment of a tree trace that the standard backtracking algorithm produces for a 6 queens
problem. No solutions are found in this segment. The entry 2 A,B, for example, indicates that labels A
and B were unsuccessful at level 2, but 2 C succeeds when checked with past units, and the tree search
continues with the next level.

266 R.M. HARALICK AND G.L. ELLIO'IW

is absolutely no label possible for unit 6. Hence, the search through the labels
for 5 and 6 are entirely superfluous and forward checking will discover this
(Fig. l(b)). The lookahead procedures (discrete relaxation) of [11, 13, 14, 15,
16] help alleviate the problem illustrated in Fig. l(a) as well as in Fig. l(b).

Section 2 gives a description of the full and partial looking ahead, forward
checking, backchecking, and backmarking procedures. In Section 3 we com-
pare the complexity of these algorithms as they solve the N-queens problem
and problems generated randomly. We measure complexity in terms of number
of table lookups and number of consistency checks. These results show that
standard backtracking is least efficient in most cases and bit parallel forward
checking is most efficient for the cases tried.

In Section 4, we give a statistical analysis of constraint satisfaction searches
and demonstrate the statistical reason why forward checking requires fewer
expected consistency checks than standard backtracking. In Section 5 we
explore other applications of the fail first or prune early tree search strategies
and show that such particular strategies as choosing the next unit to be that
unit having fewest labels left and testing first against units whose labels are
least likely to succeed reduce the expected number of consistency tests
required to do the tree search. Finally, by changing the unit search order
dynamically in every tree branch so that the next unit is always the one with
fewest labels left, we show experimentally that performance improves for each
procedure and that forward checking even increases its computational ad-
vantage over the other algorithms.

2. Some Procedures for Tree Search Reducing

In this section we give brief descriptions of five procedures, and a variation of
data structure in one, which can be used within the standard backtracking
framework to reduce tree search operations. They are called full and partial
looking ahead, forward checking, backchecking, and backmarking. Each of
these procedures invests resources in additional consistency tests or data
structures at each point in the tree search in order to save (hopefully) more
consistency tests at some point later in the tree search.

For ease in explaining these procedures, we call those units already having
labels assigned to them the past units. We call the unit currently being assigned
a label the current unit and we call units not yet assigned labels the future
units. We assume the existence of a unit-label table which at each level in the
tree search indicates which labels are still possible for which units. Past units
will of course have only one label associated with each of them. Future units
will have more than one. The tree search reducing procedures invest early to
gain later. Hence, the result of applying any of them in the tree search will be
to decrease the number of possible labels for any future unit or reduce the
number of tests against past units.

INCREASING TREE SEARCH EFFICIENCY 267

2.1. Looking ahead

Waltz filtering [16], a procedure by Ullman [15], discrete relaxation [14], and
the gr operator of Haralick et al. [8] are all examples of algorithms that look
ahead to make sure that (1) each future unit has at least one label which is
compatible with the labels currently held by the past and present units and (2)
each future unit has at least one label which is compatible with one of the
possible labels for each other future unit. Looking ahead prevents the tree
search from repeatedly going forward and then backtracking between units u
and v, v < u, only to ultimately discover that the labels held by units 1 through
v cause incompatibility of all labels between some unit w, w > u, and some
past, current, or future unit.

Because looking ahead in this manner cannot remember and save most of
the results of tests performed in the lookahead of future units with future units
for use in future lookaheads, the full savings of looking ahead are not realized
for many problems. A partial look ahead that does not do all the checks of full
look ahead will perform better, and one that checks only future with present
units (neglects future with futures) will do much better because all tests it
performs can be usefully remembered.

The procedure L_A_TREE S E A R C H and its associated subroutines
CHECK_.FORWARD and LOOK__FUTURE (Fig. 3(a), (b) and (c)) is a formal
description of the full looking ahead algorithm, which can easily be translated
into any structured recursive language. U is an integer representing the unit,
and will increment at each level of the tree search. It takes on the value 1 at the
initial call. F is a one dimension array indexed by unit, where entry F(u) for
unit u is the label assigned to u. T and N E W _ T are tables, which can be
thought of as an array of lists, T(u) is a list of labels which have not yet
been determined to be not possible for unit u. (We implemented T as a 2
dimension array, with the number of entries in each list (or row) stored in the
first position of the row. This implementation uses approximately
(NUMBER_OF_UNITS) 2 x (NUMBER_OF_LABELS) words of memory for
table storage since there can be NUMBER_OF_UNITS levels of recursion.)
The tree search is initially called with T containing all labels for each unit. All
other variables can be integers. E M P T Y _ T A B L E and NUMBER_OF_UNITS
and N U M B E R _ O F _ L A B E L S have obvious meanings.

The function R E L A T I O N (u b 11, u2, 12) returns TRUE if (ul, !1, U2,/2) E R,
otherwise it returns FALSE. C H E C K _ F O R W A R D checks that each future
unit-label pair is consistent with the present label F(u) for unit u as it copies
the table T into the next level table NEW_T, L O O K _ F U T U R E then checks
that each future unit-label pair in N E W _ T is consistent with at least one label
for every other unit, and deletes those that are not.

In this implementation C H E C K _ F O R W A R D and L O O K _ F U T U R E return
a flag, EMP TY_ROW_FLAG, if a unit is found with n o possible consistent

268 R.M. HARALICK AND G.L. ELLIO'I"F

1. RECURSIVE PROCEDURE L_A_TREE_SEARCH(U, F, T);
2. FOR F(U) = each element of T(U) BEGIN
3. IF U < NUMBER_OF_UNITS THEN BEGIN
4. NEWT = CHECK_FORWARD(U, F(U), T);
5. CALL LOOK_FUTURE(U, NEW_T);
6. IF NEW_T is not EMPTY_ROW_FLAG THEN
7. CALL L_A_TREE_SEARCH(U + 1, F, NEW_T);
8. END;
9 . . ELSE

10. Output the labeling F;
11. END;
12. END L_A_TREE_SEARCH;

(a)

1. PROCEDURE CHECK_FORWARD(U, L, T);
2. NEW_T = empty table;
3. FOR U2 = U + 1 TO NUMBER_OF_UNITS BEGIN
4. FOR L2 = each element of T(U2)
5. IF RELATION(U, L, U2, L2) THEN
6. Enter L2 into the list NEW_T(U2);
7. IF NEW_T(U2) is empty THEN
8. RETURN (EMPTY_ROW_FLAG);/* No consistent labels */
9. END;

10. RETURN (NEW_T);
11. END CHECK_FORWARD;

(b)

1. PROCEDURE LOOK_FUTURE(U, NEW_T);
2. IF U + 1 _-> NUMBER_OF_UNITS THEN RETURN;
3. FOR U1 = U + 1 TO NUMBER_OF_UNITS BEGIN
4. FOR L1 = each element of NEW_T(U1)
5. FOR U2 = U + 1 TO NUMBER_OF_UNITS except skipping U1 BEGIN
6. FOR L2 = each element of NEW_T(U2)
7. IF RELATION(U1, L1, U2, L2) THEN
8. BREAK for L2 loop;/* consistent label found */
9. IF no consistent label was found for U2 THEN BEGIN

10. Delete L1 from list NEW_T(U1);
11. BREAK for U2 loop;/* unit U2 has no label consistent with Ul, L1 */
12. END;
13. END for U2 loop;
14. END for L1 loop;
15. IF NEW_T(U1) is empty THEN BEGIN
16. NEWT = EMPTY_ROW_FLAG;
17. RETURN;
18. END;
19. END for U1 loop;
20. RETURN;
21. END LOOK_FUTURE;

(c)

INCREASING TREE SEARCH EFFICIENCY

Fro. 3 (continued).

269

1. PROCEDURE PARTIAL_LOOK_FUTURE(U, NEW_T);
2. IF U + 1 >_- NUMBER_OF_UNITS THEN RETURN;
3. FOR U1 = U+ 1 TO NUMBER_OF_UNITS- 1 BEGIN
4. FOR L1 = each element of NEW_T(U1)
5. FOR U2 = U1 + 1 TO NUMBER_OF_UNITS BEGIN
6. FOR L2 = each element of NEW_T(U2)
7. IF RELATION(U1, L1, U2, U2) THEN
8. BREAK for L2 loop;/* consistent label found */
9. IF no consistent label was found for U2 THEN BEGIN

10. Delete L1 from list NEW_T(U1);
11. BREAK for U2 loop;/* unit U2 has no label consistent with U1, L1 */
12. END;
13. END for U2 loop;
14. END for L1 loop;
15. IF NEW_T(U1) is empty THEN BEGIN
16. NEW_T = EMPTY_ROW_FLAG;
17. RETURN;
18. END;
19. END for U1 loop;
20. RETURN;
21. END PARTIAL_LOOK_FUTURE;

(d)
FIG. 3. (a), (b), and (c) express the full looking ahead algorithm. Replace the call to
LOOK_FUTURE at line 5 in (a) with an identical call to PARTIAL_LOOK_FUTURE (d) and the
partial looking ahead algorithm is obtained. Forward checking consists of (a) and (b) with line 5 of
(a), the call to LOOK_FUTURE, deleted so that only CHECK_FORWARD is called. Forward
checking does no checks of future units with future units. (c) is the LOOK._FUTURE procedure,
which deletes future labels which are not consistent with at least one label for every unit other than
the label's own unit. (d) is the PARTIAL_LOOK_.FUTURE procedure. It differs from
LOOK_FUTURE (c) only at lines 1, 3, and 5. Each future unit-label pair is checked only with units
in its own future.

labels . Thus the next level of the t ree search will not be cal led, o the rwise each
en t ry in N E W _ T is cons is ten t with u, F(u), and the re fo re , all the pas t
un i t - labe l pairs .

2.2. Partial looking ahead

Par t ia l l ook ing a h e a d is a va r i a t ion of look ing a h e a d which does a p p r o x i m a t e l y
half of the cons is tency checks tha t full l ook ing a h e a d does while check ing
fu ture with fu ture units. Each fu ture un i t - labe l pa i r is checked on ly with units
in its own fu ture , r a the r than all o t h e r fu ture units . Thus par t ia l l ook ing ahead
is less power fu l than full l ook ing a h e a d in the sense tha t it will not de l e t e as
m a n y un i t - l abe l pa i rs f rom the lists of po t en t i a l fu ture labels . W e will, however ,
see tha t par t ia l l ook ing a h e a d does fewer to ta l cons i s tency checks than full
l ook ing a h e a d in all cases tes ted .

270 R.M. HARALICK AND G.L. ELLIOTT

The checks of future with future units do not discover inconsistencies often
enough to justify the large number of tests required, and these results cannot
be usefully remembered. Since partial looking ahead does fewer of these less
useful tests, it is more efficient. A look ahead that checks only future with
current or past units can have better performance since these more powerful
tests can also be usefully remembered.

The formal algorithm for partial looking ahead is L_A_TREE_SEARCH
(Fig. 3(a)), with the call to LOOK_FUTURE on line 5 replaced with an
identical call to PARTIAL_LOOK_FUTURE (Fig. 3(d)).

2.3. Forward checking

Forward checking is a partial lookahead of future units with past and present
units, in which all consistency checks can be remembered for a while. This
method is similar to looking ahead, except that future units are not checked
with future units, and the checks of future units with past units are remem-
bered from checks done at past levels in the tree search. Forward checking
begins with a state of affairs in which there is no future unit having any of its
labels inconsistent with any past unit-label pairs. This is certainly true at the
root of the tree search, since there are no past units with which to be
inconsistent. Because of this state of affairs, to get the next label for the current
unit, forward checking just selects the next label from the unit table for the
current unit. That label is guaranteed to be consistent with all past unit-
label pairs. Forward checking tries to make a failure occur as soon as possible
in the tree search by determining if there is any future unit having no label
which is consistent with the current unit-label pair. If each future unit has
consistent labels, it remembers by copying all consistent future unit-label pairs
to the next level's unit-label table. If every future unit has some label in the
unit label table which is consistent with the current unit-label pair, then the
tree search can move forward to the next unit with a state of affairs similar to
how it started. If there is some future unit having no label in the unit label
table which is consistent with the current unit-label pair, then the tree search
remains at the current level with the current unit and continues by selecting the
next label from the table. If there is no label, then it backtracks to the previous
unit and the previous label table.

The formal algorithm for forward checking is the Procedure
L_A_TREE_SEARCH (Fig. 3(a)) with line 5, the call to LOOK_FUTURE,
removed. Forward checking is just looking ahead, omitting the future with
future checks.

An improvement in efficiency can be gained in the lookahead type of
algorithms by using a data structure for the unit-label tables that is suggested
by McGregor [12]. McGregor simultaneously developed a weaker form of the
forward checking algorithm and compared them on subgraph isomorphism

INCREASING TREE SEARCH EFFICIENCY 271

problems. In L_A_TREESEARCH and CHECK_FORWARD the lists T (u)

or NEW_T(u) can be stored as bit vectors, with one bit in the machine word
for each possible label (this is essentially a set representation). Lines 4, 5 and 6
in CHECK_FORWARD (Fig. 3(b)) can then be replaced with the following
statement:

NEW_T(U2)

= A N D (T(U2), RELATION_BIT_VECTOR(U, L, U2)).

This single statement replaces a loop, taking advantage of the parallel bit
handling capabilities of most computers. RELATION_BIT_VECTOR(u, l, u2)
returns a bit vector with a bit on in each position corresponding to a label 12
for which RELATION(u, l, u2,/2) would have been true. This is essentially the
set {121(u, !, u2,12)~R}. Thus NEW_T(u2) becomes the set {12E
T(u2)l (u, !, u2,/2)ER}, precisely what lines 4, 5, and 6 do. If the number of
labels is less than the word length of the computer used, then the relation can
be directly stored in an array of size (NUMBER_OF_UNITS) 2×
(NUMBER_OF_LABELS), and the tables T and NEW_T will take ap-
proximately (NUMBER_OF_UNITS) 2 words of storage. Reduced forms of the
relation exist for some problems, such as the N-queens problem or the
subgraph isomorphism problem, in which only two dimensional tables need be
stored and a quick calculation will generate the needed list. The same tech-
nique can be applied to the full and partial looking ahead algorithms, but they
will not be compared here since the three algorithms will have approximately
the same relationships of efficiency, to each other, with or without the im-
proved data structure.

2.4. Backchecking

Backchecking is similar to forward checking in the way it remembers unit-label
pairs which are known to be inconsistent with the current or any previous unit
label. However, it keeps track of them by testing the current unit label only
with past unit-label pairs and not future ones. So if, for instance, labels A, B,
and C for unit 5 were tested and found incompatible with label B for unit 2,
then the next time unit 5 must choose a label, it should never have A, B, or C
as label possibilities as long as unit 2 still has the label B.

Each test that backchecking performs while looking back from the current
unit u to some past unit v, forward checking will have performed at the time
unit v was the current unit. Of course, at that time, forward checking will also
have checked all future units beyond unit u. Hence, backchecking performs
fewer consistency tests, an advantage. But baekchecking pays the price of
having more backtracking and at least as large a tree as forward checking.
Backchecking itself is not as good as forward checking.

272 R.M. HARALI CK AND G.L. ELLIOTF

2.5. Backmarking

Backmarking (defined in Gaschnig [2] and also discussed in Gaschnig [3]) is
backchecking with an added feature. Backmarking eliminates performing some
consistency checks that were previously done, had not succeeded, and if done
again would again not succeed. Backmarking also eliminates performing some
consistency checks that were previously done, had succeeded, and if done again
would again succeed. To understand how backmarking works, recall that the
tree search by its very nature goes forward, then backtracks, and goes forward
again. We focus our attention on the current unit u. We let v be the lowest
ordered unit to which we have backtracked (has changed its label) since the last
visit to the current unit u. Backmarking remembers v. If v = u, then back-
marking proceeds as backchecking. If v < u, then since all the labels for unit u
had been tested in the last visit to unit u, any label now needing testing, needs
only to be tested against the labels for units v to u - 1, which are the ones
whose labels have changed since the last visit to unit u. That is, the tests done
previously against the labels for units 1 through v - 1 were successful and if
done again would again be successful because labels for units 1 through v - 1
have not changed and the only labels permitted for the current unit u are those
which have passed the earlier tests (see Fig. 4).

U N I T N U M B E R

-1-
u

I11

t z
bd
m
~ r

Z
i

I
I
I

A B

FIG. 4. A segment of a tree trace. Because backmarking remembers from the first visit to unit u
which labels for u were compatible with the labels for units ! through v - 1 (segment A) do not
have to be performed. Only those for units v through u - l (segment B) have to be performed.

INCREASING TREE SEARCH EFFICIENCY 273

The formal algorithm for Backmarking appears in Fig. 5. It is essentially
Gaschnig's algorithm [2], but modified to find all solutions. The variable U and
array F are the same as in looking ahead. LOWUNIT is a one dimensional
array of NUMBER_OF_UNITS entries, and LOWUNIT(i) will indicate the
lowest level at which a change of label has occurred since the last time the
MARK array is set. MARK is dimensioned NUMBER_OF_UNITS by
NUMBER_OF_LABELS, and MARK(u, l) will indicate the lowest level at
which a consistency test failed when the unit-label pair (u, l) at the current level
was last tested against the previous unit-label pairs on previous levels. At any
point if MARK(u, l) is less than LOWUNIT(u), then the algorithm knows that
(u, l) has already been tested against the unit-label pairs at levels below the
value in LOWUNIT(u) and will fail at level MARK(u, l), so there is no need to
repeat the tests. If MARK(u, l) is greater or equal to LOWUNIT(u), then all
tests will succeed below and level LOWUNIT(u) and only tests against units at
LOWUNIT(u) to the current unit need be tested.

Before the initial call to BACKMARK, all entries in LOWUNIT and
MARK are initialized to 1, and BACKMARK is called with the initial u = 1.
Since the same MARK and LOWUNIT arrays are used at all levels of
recursion of the tree search, approximately (NUMBER_OF_UNITS)×
(NUMBER_OF_LABELS) words of table storage are needed.

1. RECURSIVE PROCEDURE BACKMARK(U, F, MARK, LOWUNIT);
2. FOR F(U) = 1 TO NUMBER_OF_LABELS BEGIN
3. IF MARK(U, F(U)) _-> LOWUNIT(U) THEN BEGIN
4. TESTFLAG = TRUE;
5. I= LOWUNIT(U);
6. WHILE (I < U) BEGIN/* Find lowest failure */
7. TESTFLAG = RELATION(I, F(I), U, F(U));
8. IF NOT TESTFLAG THEN BREAK while loop;
9. I = 1 + 1 ;

10. END while loop;
11. MARK(U, F(U)) = I ; / * Mark label with lowest failure */
12. IF TESTFLAG THEN
13. IF U < NUMBER_OF_UNITS THEN
14. CALL BACKMARK(U + 1, F, MARK, LOWUNIT);
15. ELSE
16. Output the labeling F;
17. END;
18. END for F loop;
19. LOWUNIT(U) = U - 1 ; / * Previous level will now change */
20. FOR I = U + 1 TO NUMBER_OF_UNITS;
21. LOWUNIT(I) = MIN(LOWUNIT(I), U - 1);
22. RETURN;
23. END BACKMARK;

FIG. 5. Gasehnig's backmarking procedure as it was modified to find all solutions to constraint
satisfaction problems (see [2]).

274 R.M. HARALICK AND G.L. ELLIOT]"

3. Experimental Results

In this section we compare the six procedures, partial and full looking ahead,
backtracking, backchecking, forward checking, and backmarking, on the N-
queens problem for 4<~N ~< 10, and on a random constraint problem. We
assume that the unit order is fixed in its natural order from 1 to N and that all
consistency tests of the current unit with past units or future units begin with
the lowest ordered unit. The label sets will consist of all N columns; no
consideration is given to the various symmetries peculiar to the N-queens
problem.

The random constraint problems are generated using a pseudorandom
number generator. A random number is generated for each possible con-
sistency check (ul, 11, u2, 12) for the relation R, so that each entry in the relation
will be made with probability p. A probability of p = 0.65 is chosen so that
problems will be generated that are somewhat similar to the N-queens
problem.

The comparison among the tree search reducing procedures indicates that
backtracking is least efficient in most cases, and that backmarking and forward
checking are more efficient for the cases tested. Bit parallel forward checking,
which takes advantage of machine parallelism, is the most efficient for all cases
tried.

Our comparison of algorithm complexity will be in terms of nine criteria
involving number of consistency tests, number of table lookups, and number of
nodes in the tree search. There are a variety of ways of presenting these results
including

(1) Number of consistency tests performed to obtain all solutions (Figs. 6
and 8).

(2) Number of table lookups used in finding all solutions (Figs. 10 and 11).
(3) Number of nodes in the tree search to obtain all solutions (Fig. 12).
(4) Number of nodes visited at each level in the tree search (Fig. 13).
(5) Number of nodes found to be consistent at each level in the tree search,

or consistent labelings to depth (Figs. 17 and 18).
(6) Number of consistency checks at each level in the tree search (Fig. 19).
(7) Number of table lookups at each level in the tree search (Fig. 20).
(8) Percentage of nodes at each depth that fail because an inconsistency was

found at that depth (Figs. 21 and 22).
(9) Average number of table lookups per consistency check (Figs. 23 and

24).
Fig. 6 indicates that the number of consistency tests performed to obtain all

solutions seems to increase exponentially with N for the N-queens problem.
The number of solutions to the N-queens problem also appears to increase
exponentially (see Fig. 7). The number of bit vector operations is also shown,

INCREASING TREE SEARCH EFFICIENCY 275

I0"

I IAC~KING •

FUIL LOOKING AHEAD o

BACKCFECK l NG •

PARTIAL LOOKING AHEAD D

FORWARD CHECKING •

BACIC',ARKI NG

BIT PARALLEL F ~ CHECKING •
(BIT VECTOR OPERATIONS)

(/)
I.-.
03
h i
t'--

>-
(J
Z
I.IJ
I - -
U~

Z
0
(j '

M.
0

,.=,~
=E
: 3
z

10 2 ,

• I I I | I I
4 5 6 7 8 9 I0

NUMBER OF QUEENS

FIG. 6. This figure compares the efficiency of the standard backtracking procedure with back-
checking, looking ahead, forward checking, and backmarking, for the N-queens problem in the
natural unit order. The number of bit vector operations for bit parallel forward checking is also
shown.

276 R.M. HARALICK AND G.L. ELLIO'VI"

10 3

t/3
z
o

5
oq

Lt.
o 10 2
13E
ILl
130
~E
Z

10

/ '~_ I I I I
6 7 8 9 10

N
FIG. 7. The number of solutions for the N-queens problem.

I l
11 12 13

for forward checking done in the bit vector data structure. Though backmark-
ing appears to do slightly fewer consistency checks than forward checking on
the N-queens problem, the use of machine parallelism gives bit parallel
forward checking a clear advantage over all the other algorithms.

Random constraint problems with fixed probability 0.65 of consistency check
success probability of 0.65 are tested in Figs. 8 and 9. The number of
consistency tests appears to grow exponentially in Fig. 8, until a sufficiently
large problem size is reached. At this point the number of solutions drops, as is
indicated in Fig. 9, and the number of consistency tests appears to grow more
slowly. Fig. 9 explains the uneveness of the curves in Fig. 8. Too few random

I N C R E A S I N G T R E E S E A R C H E F F I C I E N C Y 277

i0 ~

Io 4

t~
bJ

>-
(_>
Z
ILl
~-.

O0
Z
0
C.>

o 10 3
n r
UJ
m

z

Io 2

I I I f I I

FULL LOOKING AHEAD
PARTIAL LOOKING AHEAD

BAClq~IARKI NG
FORWARD CHECKING

PARALLEL FORWARD CHECKING
(bi t vector operations)

I , l I I I , i I I i I I

4 5 6 7 8 9 I0 II
NUMBER OF UNITS=NUMBER OF LABELS=N

I~G. 8. The number of consistency tests in the average of 5 runs of the indicated programs.
Relations are random with consistency check probability p = 0.65 and number of units = number of
labels = N. Each random relation is tested on all 6 methods, using the same 5 different relations
generated for each N. The number of bit-vector operations in bit parallel forward checking is also
shown for the same relations.

278 R . M . H A R A L I C K A N D G . L . E L L I O T F

u~
z
o

. - - I

o

la_
o
tY
laJ
m

z

100

90

80

7C

6C

5C

4C

30

I I I 1 1 l 1 I

!

/ ¢

I I I t I I I I

4 5 6 7 8 9 10
N = NUMBER OF UNITS --NUMBER OF LABELS

FIG. 9. T h e average number of solutions for the probabilistic relations in Fig. 8. Th i s is the average of 5

experiments for each problem size, and relations are random with consistency check success
probability p = 0.65. The dotted curve is the expected number of solutions.

relations were tested for the means to settle closely to the expected values for
this type of problem, and the average number of solutions varies eratically high
and low.

In the random problems, forward checking does slightly fewer consistency
checks than backmarking in the larger problem sizes, and once again machine
parallelism gives bit parallel forward checking a clear advantage.

The number of table lookups for the N-queens and random relation prob-
lems are compared in Figs. 10 and 11. Only the lookups in the MARK array in
backmarking and backchecking, and the T or NEW_T tables in the lookahead

INCREASING TREE SEARCH EFFICIENCY 279

10 6 i i i i

I
FULL LOOKING AHEAD
PARTIAL LOOKIN~ AHEAD

rBACKCHECKING f. C; ' KING
FORWARD CHECKING

BIT PARALLEL FORNARD CH~CKING
(b i t vector lookups)

,o'

i

0 '
o, I
,., ,o 3
_J
o 0

IO I I | I I I I | I I I I

4 5 6 7 8 9 I0 NUMBER OF QUEENS

Fxo. 10. The number of table Iookups used to find all solutions to the N-queens problem for
varying N, with the natural unit order.

280 R.M. HARALI CK AND G.L. ELLIOTT

I O 6 ~ , ~] , [~ ~ i

" 4
o

w
1
O0

I..-

I0

j * BACKCHECKING - BAClq'IARKING ~ ~ FULL LOOKING AHEAD PARTIAL LOOKING AHEAD
FORWARD CHECKING

BIT PARALLEL FORWARD CHECKING-
(bit vector lookups)

I L L I I I

N=NUMBER OF UNITS= NUMBER OF LABELS
FIG. 11. The number of table lookups for the average of 5 random relations at each N, with number of
units = number of labels = N, and probability of consistency check success p = 0.65. These random
problems are the same as shown in Figs. 8 and 9.

INCREASING TREE SEARCH EFFICIENCY 281

type algorithms are considered. These table lookups occur at line 3 in Fig. 5,
backmarking, line 2 in Fig. 3(a), line 4 in Fig. 3(b), and lines 4 and 6 in each of
Figs. 3(c) and 3(d), the lookahead type algorithms. The entering of values into
the tables are not considered, since they always follow at least one consistency
check, and never happen more often than consistency checks.

Backtracking is not shown, since it does no table lookups of the type
considered. Partial and full looking ahead always do more table Iookups than
forward checking in these cases, and forward checking does better than
backmarking in the larger problem sizes. Even full looking ahead does fewer
table lookups than backmarking in the larger random problems. The number of
table lookups into bit vectors is smaller than the number of table lookups in
other algorithms, when the bit parallel data structure is used in forward
checking.

Fig. 12 demonstrates that full looking ahead visits the fewest nodes in the
tree search, since it eliminates the most potential nodes during its examination
of future unit-label pairs. Fig. 13 indicates that the number of nodes visited in
the tree search is largest for the middle levels in the tree search, with the full
looking ahead procedure having the fewest nodes at each level.

Figs. 14, 15, and 16 show segments of the trace of nodes visited by the full
and partial looking ahead, and forward checking algorithms for the 6-queens
problem. Backmarking and backchecking will have the same tree trace as
backtracking (see Fig. 2). More detailed trace of the action of backmarking can
be found in [3, 4].

Fig. 17 shows the number of consistent labelings at each depth of the tree
search for the 8-queens problem, and Fig. 18 shows the average number of
consistent labelings for random problems. This is the number of nodes at each
level which have not yet been found to be inconsistent. Backmarking and
backchecking will have the same search tree as backtracking, and consequently
has the same number of nodes and consistent labelings at each depth (see Figs.
13, 17, and 18). Their efficiencies are gained by reducing the amount of work
spent at each node, checking against past units. However, the lookahead
algorithms perform extra work at each node to reduce the number of nodes,
and as Figs. 19 and 20 show, the relation checks and table lookups for the
iookahead type algorithms are concentrated more at the shallow depths of the
treesearch. As Figs. 6, 8, 10, and 11 show, full and partial looking ahead do too
much work at each node for the problems shown, and forward checking and
backmarking do better.

The percentage of nodes at each depth in the tree search that fail because
some inconsistency is discovered are shown in Figs. 21 and 22. In the cases
shown, in the backtracking, backchecking, and backmarking algorithms, over
95% of the nodes (instantiated labels) fail at the deepest level of the treesearch,
because they are inconsistent with some past unit-label pair.

The lookahead type algorithms reduce the number of nodes in the treesearch

282 R.M. HARALICK A N D G . L ELLIOTT

I 0 6 , , , , , , , ~ , i , t

- r
(..)
e,e
,,¢{

LIJ
t,m
n-"
l..-

Z

8
Z

b_
0

nr"

Z

,o'

,o 3

BACK"tRACK I N(3
BACKCHECKI NG
BAC~KING

FORWARD CHECKING

PARTIAL LOOKING AHEAD

FULL LOOKING AHEAD

I0
4 5 6 7 8 9 I 0 N U M B E R OF Q U E E N S

FIG. 12. The number of nodes in the treesearch to find all solutions to the N-queens problem for
varying N.

INCREASING TREE SEARCH EFFICIENCY 283

10 4

I0 ~

-T-

O
el,"

W

t.--

z 10 2

0
z

11:

z

i i (i i i

IO

BACKTRACKING
BACKCHECKI NG
BACI<I~IARK I NG

CHECKING

LOOKIN(
AHEAD

I I I I I l I

K =DEPTH IN TREE SEARCH

FIG. 13. The number of nodes visited at each depth of the treesearch to find all solutions of the
8-queens problem, for the various algorithms.

in two ways. First by removing entries from the tables of potential unit-label
pairs, and second by noticing that some future units may have no possible
labels associated with them. In Figs. 21 and 22 all nodes that fail in the
Iookahead type algorithms do so for this second reason, since they would not
have occurred as nodes if their labels were deleted from the future unit-label
tables. If lines 7 and 8 are removed from the C H E C K _ F O R W A R D procedure
in Fig. 3(b), then no nodes would fail in forward checking (this is McGregor's
restricted arc consistency algorithm in [12]). This weaker form of forward

284 R.M. HARALICK AND G.L. ELLIOTI"

1 A
2 C
2 D

3 B,F
2 E,F

1 B
2 D

3 A
3 F

4 A
5 C

6 E
2 E

3 A , C
2 F

FIG. 14. A segment of a tree trace made by the full looking ahead procedure in a 6-queens problem.
One consistent labeling, 1B 2D 3F 4A 5C 6E, appears in this portion of the trace. 1A 2C fails to spawn
any further nodes because the LOOK_FUTURE algorithm will, after deleting several potential labels,
discover that one future unit has no possible labels.

1 A
2 C

3 E,F
2 D

3 B,F
2 E

3 B
2 F

1 B
2 D

3 A
4 C

3 F
4 h,

5 C
6 E

2 E
3 A

4 F
3 C

2 F

FIG. 15. A segment of a tree trace showing the nodes of the tree search in the partial looking ahead
procedure in a 6-queens problem. One consistent labeling, 1B 2D 3F 4A 5C 6E, appears in this portion
of the trace. 1A 2C 3A,B,C, and D do not appear because CHECK_FORWARD removes them from
the table at nodes 1A and 2C. However 1A 2C 3E fails to have successors because the only labels left
for future units 4 and 6 are incompatible and are removed by LOOK...FUTURE (see Fig. l(a)).

INCREASING TREE SEARCH EFFICIENCY 285

1 A
2 C

3 E
4 B

3 F
4 B

2 D
3 B

4 E
3 F

4 C
2 E

3 B
4 F

5 C
2 F

3 B,D
1 B

2 D
3 A

4 C
5 E

3 F
4 A

5 C
6 E

5 E
4 C

FIG. 16. A segment of a tree trace made by the forward checking procedure in a 6-queens problem.
One consistent labeling, 1B 2D 3F 4A 5C 6E, is found. Notice that IA 2C 3E 4B fails because the
CHECK_FORWARD procedure discovers that there are no labels remaining for unit 6 at the 4B node
(see Fig. l(b)).

checking algorithm will find all the consistent labelings at each level of the tree
search that backtracking does, but at a higher cost than the original forward
checking algorithm. The replacement of these lines in forward checking will
realize a 15% saving of consistency checks and table Iookups in the 10-queens
problem, and over 40% savings in the 10 units by 10 labels random problem.

Figs. 23 and 24 address the question of what measure best determines the
algorithmic time complexity. A careful check of all the algorithms will show
that no step is executed more often than the maximum of the number of
consistency checks or the number of table lookups. As the problem size
increases in the Iookahead type of algorithms, the ratio of table lookups to
consistency checks seems to decrease from a maximum of about 2 to no more
than 1.5 table lookups per consistency check in both the N-queens and random
problems. This ratio is guaranteed to be greater than or equal to one, by the

286 R.M. HARALICK AND G.L. ELLIOTT

103

T

o
,~,o z

(.9
Z
...1 bd
a n

...]

Z Ud

Z
0

N

z

t t * , I l i I v , , I

FULL LOOKING AHEAD

BACIq '~RK I NG

I I I I I I
2 3 4 5 6 ~ B ; I0 I I 12 13

DEPTH IN TREE SEARCH

FIG. 17. The number of consistent labelings as a function of tree depth, for the 8-queens problem with
the natural unit order.

algorithms structure, thus either may be used as a measure of algorithmic time
complexity for the lookahead type of algorithms.

Because in both the N-queens and random problems backmarking seems to
have a steadily increasing ratio of table lookups to consistency checks as
problem size grows, only table lookups (which equals the number of nodes in
the treesearch in this case) can be used as a true measure of algorithmic time
complexity for backmarking. Only in the case that a computation of a relation

INCREASING TREE SEARCH EFFICIENCY 287

3E
I--
Q.
h i

h-"

U3

z
. J

I,-,-
z
LU
p .
(/3

Z
0

n,,.
I.IJ
an

Z

103

i02

I0

i i i i m |

F U L L

C.ECKI~

P A R T I A L

BACKTRACKING

B A C K £ H E C K I NG
BACK? ' t~K I NG

I I I I I I I I I I
, ~ 3 4 5 6 7 8 ~ io ,J 12 ,3

DEPTH IN TREE SEARCH

FIG. 18. The average number of nodes visited at each depth of the treesearch for solutions to 5
random relations with number of units = number of labels = 10, and probability of consistency
check success of p = 0.65. These are the 5 relations shown at the N = 10 case in Figs. 8, 9, and 11.

check is s ignificantly more expens ive than the cost of a node's loop control and
a table l ookup will relat ion checks be a useful practical measure for the t ime
complex i ty of backmarking. The reason that it is a practical measure in this case is
that the node and table lookups cost will dominate the cost of execut ion on ly in
very large problem sizes, so large that the problems can not be so lved in a
reasonable t ime, and relat ion tests will dominate the cost in the smaller problems
which can be so lved in a practical amount of t ime.

288 R.M. H A R A L I C K AND G.L. ELLIOTF

iO 6 , , , , , , , i , , ~ ,

i t)
I--
(/3

,o 4
>-
U
Z
uJ
I,-

cO
Z
0
(,.)

,o

Z

IO

• FULL LOOKING AHEAD

u PARTIAL LOOKING AHEAD

• FORNARD CHECKING

I

I

I

A I I I I I I i
2 3 4 5 6 7

o BACKTRACKING

• BACKCHECKI NG

ZX BACIq~RKI NG

I

l I I I I
8 D E P T H IN T R E E S E A R C H

FIG. 19. This figure compares the number of consistency tests made at each level in the tree search
for six different procedures, for the 8-queens problem, in the natural unit order.

,o 4

o FULL LOOKING AHEAD

• PARTIAL LOOKING ~ CKING

o BACKCHECK 1 NG
BACI~i~RKI NG

iO ~

x'

v
0
o

LCJ
.-J

l i ! I l I " = I I I ! I I I

INCREASING TREE SEARCH EFFICIENCY 289

I I I I 1 I I I I 1 I I 1
I 2 3 4 5 6 7 8 9 I 0 I I

DEPTH K IN TREE SEARCH

FIG. 20. The number of table Iookups at each possible depth k in the treesearch to find all
solutions to the 8-queens problem, for the various algorithms.

4. Statistical Model for Constraint Satisfaction Searches

Our statistical model for random constraint satisfaction is simple. The prob-
ability that a given consistency check succeeds is independent of the pair of
units or labels involved and is independent of whatever labels may already

290 R.M. H A R A L I C K A N D G.L. E L L I O T T

IO0

90

>-

Z

0o

70

z

60
0 h-

~ 50
...1

..r

~ 30
8
z

~ ao
hi

z 10,i LIJ (,3

BACKTRACKING
BACKCHECKI NG
~CI4~RK I NG

FULL
LOOKING AHEAD

PARTIAL ~
LOOKING CHECKING

L AHEAD

0 ~ I 2 5 4 5 6 7 8 9 I0

DEPTH IN TREE SEARCH

FIG. 2]. This figure shows the percentage of nodes at a given depth in the tree search which fail
because some inconsistency is detected at that node. Results are shown for the various algorithms
in the 8-queens problem. Backchecking and backmarking often discover that there is an in-
consistency by using table Iookups, rather than performing all the checks. Nodes in the lookahead
type algorithms fail because a future unit fails to have any remaining labels after inconsistent future
labels are removed.

I N C R E A S I N G T R E E S E A R C H E F F I C I E N C Y 291

BACKTRACKING
BACKCHECKI NG
BACIq"*ARK I NG

>-
U
Z

8C

70

6O
0
I--

LI.I

r., 50

..i

~ 4o
"1"
I--

W 30
8
Z

~ 2o
W

FULL LOOKING AHEAD

PARTIAL
FORV~ CHECKING

I 2 3 4 5 6 7 8

DEPTH IN TREE SEARCH

FIG. 22. This figure shows the percentage of nodes at a given depth in the tree search which fail

because some inconsistency is detected at that node. Results are shown for the average over 5

random relations, with consistency check probability p = 0.65 and number of units = number of

labels = 10.

have been assigned to past units. Hence,

P((Uk+b lk+b U, l) ~ R I !1 Ik are consistent labels of ul Uk)
= P((Uk+b lk+l, U, !) E R) for every u, l.

The N-queens problem is a more difficult problem, with fewer solutions but
requiring more consistency tests than the corresponding random constraint
problem with the same probability of consistency check success. A comparison

292 R.M. H A R A L I C K AND G,L. ELLIOl 'T

, , I
1-

Ol.6
>-
¢ j

z I.~
i , i
I - co 1.4
o1

~1.3
I:E

~.1.2
03

_~ I.I

°1.0
._1

~.9
tn

I - . 8

n,, .7
uJ
El
=E.6
::D
Z

4 5 d 7 8

BAC KMARK I NG

BIT PARALLEL FORWARD
CHECKING

(bit vector table lookups per
blt vector consistency check
operation)
PARTIAL LOOKING AHEAD
FULL LOOKING AHEAD
FORWARD CHECKING

9 I0 NUMBER OF QUEENS

* e BACKCIIECKING

FIG. 23. This figure shows that in the N-queens problem, all the algorithms that keep tables,
except backmarking, reference those tables no more than 35% more often than they reference the
relation. However, backmarking appears to have a continually growing ratio of table Iookups to
relation tests, as problem size grows.

of the graphs for the two problems in Section 3 will show that while the
numerical values of the quantities vary considerably, the basic character of the
algorithms operation is similar for both problems.

In our analysis, we will assume that a given pair of units with a given pair of
labels is consistent with probability p, p being independent of which units,
which labels, or any past processing. If each unit has the same number, M, of
possible labels, then any k-tuple of labels for any k units has probability
pk(k-1)/2 of being consistent since each labeling must satisfy ½k(k- 1) con-
sistency checks. Since there are M k possible labelings of k units, the expected
number of consistent labelings is

Mkpk(k-lV2.

The expected number of nodes processed at level k in a standard backtrack-
ing search will be M, the number of possible labels, times the number of

INCREASING TREE SEARCH EFFICIENCY 293

22

2.0

1.8

¢O
M.I
-'r
¢o 1.6
>-
r.)
z
u.l
i-
o')

z
0
U

ta 1.2

"4
0 1.0
0
.J

w

,~ 0.a
u_
0

w
m 0 . 6
~E

z

BACKHARK I NG

BIT PARALLEL FORWARD CttECKING
I ~ . . . , . ~ (b i t vector lookups per b i t v e c t o r

enc o ions)

/ ~ ' - - e ~ . ~ F U L L LOOKING AIIEAD
~FORWARD CHECKING

I I I I I I
4 5 6 7 8 9 I0 N=Number of units=

Number of Iobels

~ BACKCtlECKI NG

FIG. 24. Th i s f igure demonstrates that in the average o v e r 5 r a n d o m re l a t i ons fo r each problem size
that was tested, that the ratio of table Iookups to consistency checks seems to approach one, except
in the backmarking algorithm, in which the ratio seems to steadily increase with problem size. T h e

r a n d o m relations are the same as those shown in Figs. 8, 9, a n d 11.

consistent labelings at the previous level, Mk-lp (k-lXk-2)/2. Thus there are

Mkp(k-IXk-2y2

tree search nodes at level k.
We can also count the expected number of consistency checks performed by

backtracking. We expect Mkp (k-IX*-2)12 level k nodes and at each node a label
must he tested for consistency with the labels given the previous k - 1 units.
The first consistency check fails with probability 1 - p . If it fails, we have spent
1 test. If it succeeds we have spent 1 test and are committed to make another
one which might also succeed with probability p. All (k - 1) tests will succeed

294 R.M. HARALICK AND G.L. ELLIOT'I"

with probability ptk-1). Hence the expected number of consistency checks
performed at each node is

k - I

ip'-l(1 - p) + (k - 1)p k-L.

This may be simplified by recognizing the telescopic nature of the sum which is
equal to

k - 2

But this is a geometric sum and is equal to

1 _pk-I
1--p

Therefore the expected number of consistency checks at level k will be
Mkp ~k-l×k-2~, the number of nodes at level k times (1- -pk- l) / (1- -p) , the
expected number of consistency checks at a node, making

Mkptk_lXk_2)/2 1 _ pk-I
1 - - p

consistency checks at level k. Of course the expected total number of con-
sistency checks will be the summation of the expected number of consistency
checks for each level k for k ranging from 1 to N, the number of units.

The computation of the number of labelings for the forward checking
algorithm is somewhat more complicated because the algorithm stops checking
when a future unit has no labels that are consistent with the past and present
unit-label pairs. A consistent labeling to depth k occurs when the tree search
successfully reaches a given label for unit k and forward checking of that
unit-label pair produces no future unit that has no remaining labels. Thus the
consistent labelings to depth k for forward checking meet exactly the following
conditions:

(1) 11111, 11212 11klk are consistent unit-label pairs.
(2) There is no future unit u in levels k + 1 N for which there is no label

! so that 11, l is consistent with 1111~, . . . , Uklk.
The k unit-label pairs are consistent with probability pktk-~}/2, and there are

M k possible labelings to depth k (condition (1)). A future unit-label pair is
consistent with the k past and present unit-label pairs with probability pk and
there are M possible labels for a future unit, so the probability that a future
unit has no label that is consistent with the k past and present units is (1 -pk)M.
Since there are N units, there are N - k future units, and the probability that all
of these has at least one label that is consistent is [1 - (1 __pk)M]N-k (condition
(2)). Thus the expected number of consistent labelings to depth k for forward

I N C R E A S I N G T R E E S E A R C H E F F I C I E N C Y 295

checking is

Mkpktk-')/2[1 -- (1 -- pk)M]~-k.

The expression for the expected number of nodes in the forward checking
tree search at level k is very similar to that for the number of consistent
labelings to depth k, since each node will perform forward checks to determine
if its label will become a consistent labeling. The labels for a node must meet
condition (1) above, but the future units are required to have succeeded with at
least one label only for checks with the unit-label pairs u111 Uk-~lk-1, since each
node was in the table for a consistent labeling to depth k - 1, and if any future unit
as seen from level k - 1 failed to have a label, then it would not have spawned
nodes at the next level. Thus in each node the future units will have at least one
label and the second condition occurs with probability [1 - (1 - p k - l) M]N-k Thus
the expected number of nodes at depth k in forward checking is

Mkpk(k-1)/2[1 -- (1 - pk-1)M]N-k.

A slight overapproximation for the expected number of consistency checks at
depth k in the tree search can be found by multiplying the expected number of
nodes at the depth times the expected number of labels remaining for each
future unit times the number of future units, N - k. Since each future unit will
have at least one label, this expected number of labels will be

Mpk-I
1 - - (1 - -pk-I) u"

Thus the expected number of consistency checks in forward checking will be

Mk+lp (k+2Xk-~v2[1 - (1 - pk-1)M] N - k - I (N _ k).

The exact expected value can be obtained by replacing the number of future
units term, (N - k), with the expected number of future units tested, since
forward checking will stop testing as soon as a future unit is discovered to have
no possible labels. Each of these tests of a future unit will succeed with
probability 1--(1--pk) M, and reasoning similar to that for the number of
consistency checks at each node in backtracking will give

1 - [1 - (1 --pk)UlN-k
(1 _ pk)M

for the expected number of future units tested. Thus the expected number of
consistency checks at level k in forward checking will be

M k + l p (k + 2) ~ k - l) / 2 [1 - - (1 __pR-I)M]IV-k-I. 1 -- [1 -- (1 __pk)MlN-k
(1 __pk)M

The number of table lookups in forward checking is the sum of the number

296 R.M. HARALICK AND G.L. ELLIOTT

of consistency checks and the number of nodes. Thus the expected number of
table Iookups at depth k in the tree search will be

r Mpk- I
Mkp k-' 2[1 - (1 - p k - ' p ' l [1 +

1 (1 i

1 - [1 ~ (! ; f ;)U]N-k].

The expected number of bit vector operations with the bit parallel data
structure in forward checking can easily be found, by removing the term for the
number of labels remaining for each future unit from the expression for the
number of consistency tests, since only one operation will be performed for
each unit, giving

Mkpk(k-l)¢2[1 -- (1 __pk-,)U]N-k 1 -- [1 -- (1 __pk)U]N-k
(1

for the expected number of bit vector operations at level k in bit parallel
forward checking.

The number of table lookups in bit vectors is still the sum of the number of
bit vector operations and the number of nodes, for

Mkp~(k-l)J2[1--(1--pk-')U]N-*[1 + 1 -- [1 ~ (! ;P)~)U]N-k]

table lookups into bit vectors in bit parallel forward checking.
To illustrate the general form of the expressions we computed for the

expected number of consistency checks and expected number of solutions, we
present a few graphs. Fig. 25 illustrates the graph of the expected number of
consistency checks as a function of tree depth for a random constraint satis-
faction problem having N = 17 units and labels and a probability p = 0.70 of a
constraint being satisfied. Notice that the greater number of tests forward
checking does early in the tree search pays off later in the tree search both in
terms of number of consistency tests and in number of successful instantiations
at each tree depth (Fig. 26).

Fig. 27 illustrates the expected number of solutions as a function of N and p
parameters of a random constraint satisfaction problem. Increasing N for a
fixed p eventually causes fewer solutions to exist because the number of
constraints is increasing quadratically.

We, of course, expect the number of consistency tests to increase as N
increases and p remains fixed since the search space is becoming large very
rapidly. This is shown for the forward checking procedure in Fig. 28. Also
expected is for the average number of consistency checks per labeling to
increase as N increases and p remains fixed (Fig. 29). As N increases, the
problem of finding the first solution as well as all solutions is becoming more
and more difficult. Therefore, it is not expected for the number of consistency

I N C R E A S I N G T R E E S E A R C H E F F I C I E N C Y 297

10 7

10 6

10 ~
I

a

v)

~ 10 ~
I,-

) -

w p._
1/3

g 10 3
t j

IJ.
o
tY
[,[J

g
z
a 102
i,i

tlJ
n
x

I ! I I ! |

BACKTRACKING

1 0 i J a I I
2 4 6 8 10 12 16 18

DEPTH IN TREE SEARCH

C

I I I I ,~"~,
lt,

FIG. 25. T h e n u m b e r of cons i s t ency tests as a funct ion of tree depth for an N = 17, p = 0 .70

r a n d o m constra int sat i s fact ion p r o b l e m .

tests per solution to decrease as the number of solutions increases. The reason
for this is that as the number of solutions increases more of the tests required
to verify a solution become shared because the solutions have common
segments. This is illustrated in Fig. 30.

An experimental check of the theoretical equations for the number of

298 R.M. HARALICK AND G.L. ELLIOTI"

10 6_

10 5

Z
E ~o4
t t l

Z

~ 10 3

z

~ 10 2
u

bL
0

I[10
Z

Q
W
u

a

X
w 1

I I I I I I ! ,

BACKT RACKIN5

FORWARD
CHECKING

i i i i i i i i

2 4 6 8 10 12 14 16 1~
DEPTH IN TREE SEARCH

FIG. 26. The number of consistent labelings as a function of tree depth for an N = 17, p = 0.70
random constraint satisfaction problem.

so lu t ions and n u m b e r of so lu t ions at a g iven d e p t h in the t ree search with
r a n d o m re la t ions is g iven in Figs. 31 and 32. A l t h o u g h the ave rage n u m b e r of
so lu t ions is c lose to the t heo re t i ca l resul t , the ind iv idua l re la t ions vary widely.
The I ba rs m a r k a d i s tance of one s t a n d a r d dev i a t i on of the m e a n above and
be low the ave rage of the tr ials .

Fig. 33 d e m o n s t r a t e s the accuracy of the t heo re t i ca l express ion for the

I N C R E A S I N G T R E E S E A R C H E F F I C I E N C Y 2 9 9

50

40

3O

2O

IC

9

7q

~6
<

~ s
W

-----4
m
z
o

~3
n."

w
m

a 2
W

W

X
W

p=.55

p=.57
p=.63

4 5 6 7 8 9 10 11 12

N

FIG. 27. The expected number of solutions as the N and p parameters change for a random
constraint satisfaction problem.

300 R.M. H A R A L I C K AND G.L. ELLIOT]"

106

105

~ I0 4

~ 103

10 ILl O. X IJJ

10

I I , ! I ! ! , l

-

~ --.60

_ _ ~ = . 5 5 FORWARD CHECKING

I 1 I | | I I I | I

4 5 6 7 8 9 10 11 12 13 14 15
N

FIG. 28. This figure shows how the number of consistency tests increases as N increases, and p is
held constant.

expected number of consistency tests with random relations in the forward
checking algorithm. The total expected number of consistency tests shown is
calculated from the sum of the expected number of tests for each level in the
various problem sizes. For this expression to be correct, the expression for the
expected number of nodes at each level in the forward checking algorithm must
also be correct.

I N C R E A S I N G T R E E S E A R C H EFFICIENCY

L i 1 i

10 6 FORWARD CHECKING

| I

P= .66

301

10 =-

P-- , 6 0
P=.63

z
.J
ILl
m

~ 10 4
LtJ
0..

Y ¢j
LLI
T

~z lO 3
LIJ

Z
O (..)

LL
O
,Y102
hi
(¢1
::E :D
Z
a
I.iJ
I--

°I w 10 13_
x
w

P=.55

P=.57

!

4 5 6 7 B 9 10 11 12 13 14 15

N

FIG. 29. This f igure s h o w s h o w the n u m b e r of cons i s t ency tests per so lut ion increases as N
increases and p is he ld constant , in forward check ing .

5. The Fail First Principle

One of the strategies which helps tree searching for constraint satisfaction
problems is the fail first or prune early strategy of the looking ahead and
forward checking procedures. There are other ways that we can apply the
general principle of trying to fail first (and of course remember that fact so that
there are no unnecessarily repeated mistakes). In this section we discuss two

302 R.M. H A R A L I C K AND G.L. E L L I O T T

QzlO ~

.J
~J nn

. J

fit:
uJ
n

(/)

L)
h i
'1"
(J

b
z
h i

~ 2
Z
0

u,.
0

w

z

a
w
I--

0 .
x I0

N=]I

N-9
N=8

N=

I
I0 I 0 0

E X P E C T E D NUMBER OF L A B E L I N G S

FIG. 30. This figure illustrates that as the expected number of solutions increases, the expected
number of consistency checks per solution decreases, for varying probability p and fixed problem
size N = number of units = number of labels, in the forward checking algorithm.

other applications of this strategy. The first is by optimizing the order in which
we do consistency tests. The fail first principle states that we should first try
those tests in the given set of tests that are most likely to fail since if they do
fail we do not have to do the remainder of the tests in the set.

The second application is in dynamically choosing the optimal order in which
to process units in each branch of the tree search. Optimal unit order choosing,
even on a local basis, will not only lower the number of expected consistency
tests per problem as compared with a random ordering, but it also lowers the
variance of this average. For the unit order choice, the fail first principle states

INCREASING TREE SEARCH EFFICIENCY 303

O)
¢,.9
Z

m

._1

i -
z
u.i
I.-
O3

0 3

0

14.
o

Z

IOC
90i

J

80'

70

60

50

40

30

20

I0

I ' ' I I I I

I I I I I 1 1
4 5 6 7 8 9 I0
N=NUMBER OF UNITS=NUMBER OF LABELS

FIG. 31. The expected number of consistent labelings for random relations with number of
units = number of labels = N, and consistency check success probability p = 0.65. Dots represent
the average number of consistent labelings for 25 random relations tested at each problem size, and
the I bars indicate one standard deviation of the mean above and below the experimental mean.

that the next un i t to choose should be that one with the fewest possible labels
left.

5 .1 . O p t i m i z i n g t h e c o n s i s t e n c y c h e c k o r d e r in t ree s e a r c h i n g

Suppose we are solving a cons t ra in t satisfaction p rob lem and suppose uni ts
1 K have a l ready been assigned labels !1 lr and we are t rying to find a
label lr+l for uni t K + 1. The label lr+~ must come from some set Sr+~ of labels
and it mus t be consis tent with each of the previous labels l~ it, that is, we
must have (k, lk, K + 1, / r÷l) ~ R for k = 1 K. To de t e rmine the label / r+x,

304 R.M. H A R A L I C K AND G.L. E L L I O T r

300
°

100

90

80

70

I QI
.~ 30
_ J

U_
o

u.I
m 2c
I£
z

I 1

1 0 ~
1 2 3 4 5 6 7 8 9 10

T = DEPTH IN TREE SEARCH

FIG. 32. The number of consistent labelings to depth k in the tree search for the average of 25
random constraint satisfaction problems with probability of consistency check success of 0.65 and
number of units = number of labels = I0. The dotted curve is the theoretical expected number of
labelings for such a problem.

we s e q u e n t i a l l y go t h r o u g h all t he l abe l s in Sr+l a n d p e r f o r m the K c o n s i s t e n c y

checks : (k, lk, K + 1, i t ÷ l) E R . If o n e c h e c k fails, t h e n we t ry t h e n e x t l abe l in

Sr,+~. If all c h e c k s s u c c e e d , t h e n we can c o n t i n u e t h e d e p t h first s e a r c h w i t h t h e
n e x t uni t .

INCREASING TREE SEARCH EFFICIENCY 305

I

tO 4 I.-
oo
tlJ I---

) -

Z
LU

Z
0
0

,0 3 m

Z

102l I I I I 1 I I I
4 5 6 7 8 9 I0
N = N U M B E R OF UNITS=NUMBER OF L A B E L S

FIG. 33. The expected n u m b e r o f consistency checks for random relations with n u m b e r o f

units = n u m b e r o f l abe l s = N, a n d consistency check success probability p = 0.65. Dots represent
the average n u m b e r of consistency checks for 25 r a n d o m relations tested a t e a c h problem size, a n d

the I b a r s i nd i ca t e o n e s t a n d a r d d e v i a t i o n of t he m e a n a b o v e a n d below the experimental m e a n .

The optimizing problem for consistency checking is to determine an order in
which to perform the tests which minimizes the expected number of tests
performed. To set up the optimizing problem, we must have some knowledge
about the degree to which a previous unit's label constrains unit (K + 1)'s label.
For this purpose we let P(k) be the probability that the label lk for unit k is
consistent with some label for unit K + 1. We assume that the consistency

306 R.M. HARALICK AND G.L. ELLIOTT

checks are independent events so that the probability of the tests succeeding on
units 1 through K is Ilkr=lP(k).

For each order of testing, these probabilities determine the expected number
of tests in the following way. Let k~ kr be a permutation of 1 ,K
designating the order in which the consistency checks will be performed. The
test (kl, lkl, K + 1, ix+l) E R will succeed with probability P(kl) and fail with
probability 1 - P(k~). If it fails, we incur a cost of one consistency check and we
try the next label. If it succeeds, we will have incurred a cost of one consistency
check and we are committed to try the next test (k2, lk2, K + 1, ix+x)E R. This
test succeeds with probability P(k2) and fails with probability 1 -P(k2). At this
point, we have incurred a cost of two tests and may be committed to make
more tests if this one succeeded.

Fig. 34 shows the tree of K + 1 possible outcomes. Since the tests are
assumed independent, the probability for each outcome can be computed by
multiplying probabilities. For example, the probability of failing on consistency
check with unit k3 is P(k~)P(k2)(1 -P(k3)). Also associated with each outcome
is the number of tests performed to get there. For example, failure on the test
with unit k3 incurs a cost of 3 tests.

The expected number of tests C performed is computed by

K i - I K

C = ~ i [1 - P(k,)] j_~ P(kj)+ K i~: P(k,).

Upon rearranging and simplifying this expression we obtain

K - I i

Now by the proposition at the end of Section 5, this is minimized by having
kl kx be any permutation of 1 , . . . , K satisfying P (k l) 6 P (k 2) ~ ' " < -
P(kr). Hence, to minimize expected numbers of tests, we must choose the
order so that the tests with units most likely to fail are done first.

To illustrate the advantage of using optimum consistency test order, we
consider the 10-queens problem when the units are naturally ordered from 1 to
N and the current unit is K, then the fail first principle states that tests with
past units must be done in the order of decreasing constraints. Since the row
previous to row k has the strongest constraint on row k, the test order should
be first unit K - l , then K - 2 , up to unit 1, in the N-queens problem.
Backtracking requires 1,297,488 tests when done in the wrong order (unit
1, 2 K - 1) and 1,091,856 tests when done in the right order. It is interes-
ting to note that Gaschnig's backjumping procedure [3] when done with the
consistency tests in the wrong order (1,131,942 tests) performs worse than
standard backtracking with consistency tests in the right order. Furthermore,
for the N-queens problem, backjumping with consistency tests in the right
order for the N-queens problem is equivalent to standard backtracking with

INCREASING TREE SEARCH EFFICIENCY 307

P(k I)

Succeed

l - P(kl)

Fail

l test

P(k 2)

Succeed

P(k 3)

•iail
2 tests

1 - P(k3)

Succeed "•Fail
3 tests

Succeed

P(k K)

Succeed

FIG. 34. The K + 1 outcomes of K tests.

,) Fai
K tests

consistency tests in the right order because backjumping backtracks to the
highest level at which a failure is detected, and there is always at least one label
at a given level which fails when checked with the immediately preceding level.

5.2. Optimizing tree search order

Every tree search must assume some order for the units to be searched in. The
order may be uniform throughout the tree or may vary from branch to branch.

308 R . M . H A R A L I C K A N D G . L . E L L I O T / "

It is clear from experimental results that changing the search order can
influence the average efficiency of the search. In this section we adopt the
efficiency criterion of branch depth and we show how by always choosing the
next unit having smallest number of label choices we can minimize the
expected branch depth.

Suppose units 1 N are units which are yet to be assigned labels. Let
n (m) be the number of possible or available labels for unit m. We assume that
each of the n (m) labels possible for unit m has the same probability q of
succeeding and that success or failure of one of the labels is an independent
event from success or failure for any of the other labels. Thus, the probability
that a unit m will not have any label that succeeds is (1 - q)~e,). The probability
that some label for unit m succeeds is, therefore, P (m) = 1 - (1 _q)~<r~). Un-
fortunately, this analysis holds only for the first level of the tree.

Let k~, . . . , kn be the order in which the units are searched on the tree. Let
Pn(kn I kt kn-1) be the conditional probability that some label for unit kn
will succeed when unit k, is the nth one in the tree search order given that
units k~ kn_~ are the first n - 1 units searched in the branch. We assume
that the probability of a label for unit kn succeeding depends only on the
number of units preceding it in the tree search and not upon which particular
units they are. That is,

P,(kn [k~ k,,,-1) = P,,(k, l l, l._~)

for all labels Ii ln_~. This conditional independence assumption justifies the
use of the notation P. (k,) to designate the probability that some label succeeds
for unit k, when it is the nth unit in the tree search, and we will call the
probability that an arbitrary label for unit u will succeed when checked against
another arbitrary unit-label pair the success probability for unit u.

Units which are searched later in the tree typically have lower probability for
a label succeeding since the label must be consistent with the labels given all
the earlier units. We want some way to compare the probability of success for
the same unit in different tree searches. Since the success probability depends
only on the unit and its level in the tree and since units later in the tree have
lower success probabilities, we assume that the success probability for a unit u
when it is at level i in one tree search is related to the success probability of
unit u when it is at the first level of another tree search by a constant factor
a i-~ where O < a ~< 1:

P (u) a '-~ = P , (u) .

The best search order is the one which minimizes the expected length or
depth of any branch. When the units are searched in the order kl, . . . , ks, the
expected branch depth is given by

N-1 n

INCREASING TREE SEARCH EFFICIENCY 309

By the proposition at the end of Section 5, this is minimized when the unit
chosen at each level is that unit whose success probability is smallest. Thus at
level j we choose unit kj, where

Pj(kj)<<-Pj(u) for u # kl kj-l.

Now, Pi(kj)= a J - l [1 - (1 - qn(kj))]. Since 0 <~ q ~< 1, this expression is minimized
by choosing k~ to be that unit having the smallest number of possible labels.

To illustrate the advantage of using a locally optimal unit order for each
branch in the tree search, we consider the improvement achieved on the
N-queens problem and random relation problems. The number of consistency
tests required is given in Tables 1 and 2. Some improvement is shown in the
larger N-queens problems, and considerable improvement appears in the
larger random relation problems. Fig. 35 demonstrates that the improvement
increases with problem size in the random relation problems with p = 0.65 and
number of units = number of labels = N.

The reason why optimal unit order usually improves forward checking more
than backmarking is that forward checking has more information about future
units than backmarking. Therefore, forward checking's choice of the next unit
most likely to fail is more likely to produce a unit which fails than backmark-
ing's choice.

PROPOSITION. Let 0 < ct <~ 1 be given. For each unit u let P(u) be its initial success
probability. Let kl kN be any permutation of 1 N satisfying P (k l) <
P(k2)< " " < P(kN). Define Pn(u)= an-lP(u). Then,

N - 1 n N - I n

~ .I'! Pj'(kj)~ 2~.]-'[P~(u,) forany permutation ul UN Of
n = l ~ n = l J = l

= 1 N .

Proof. Let ut UN be any permutation of 1 N minimizing

N - 1 n

If ut UN equals kt , kN we are done. If ul UN does not equal
kt kN, let m be the smallest index such that um# kin. Also let m' be the index
such that Ur,# kin. Also let m' be the index such that urn, = k,,. Define the
permutation it iN by

in = Un, n # m or m',

im = urn,,

ira, = urn.

We will prove a contradiction by showing that

N - I n N - I n

3 1 0 R.M. HARALICK AND G.L. ELLIOTT

I I i ! i I i I i I

~ BACKMARKING
FORWARD CHECKING

BACKMARK ING OPTIMAL
ORDER

FORWARD CHECKING
OPTIMAL ORDER

U}

V~
W
I-,-

>-
U
Z
W

10 3

Z
0
0

LL
0

~J

Z

10 4

I l | I I I I I I I

5 6 7 8 9 10 11 12 13 14

N = NUMBER OF UNITS=NUMBEROF LABELS

FIG. 35. The improvement in efficiency for the average of 5 random relation problems with
probability p = 0.65 and number of units = number of labels = N, when locally optimized unit order
is used. The relations are the same as those shown in Figs. 9 and 10.

/
b y l o o k i n g at the p r o d u c t s . T h e r e are t h r e e c a s e s : n < m, m ~< n ~< m , a n d

C a s e 1: n < m. H e r e s i n c e i s = uj, j = 1 n, w e o b t a i n

n n

C a s e 2: m ~ n < m ' .

o .

,~ P,(i,) = P,. (urn) ~=~ Pj(i~) = Pm (u. ,) ~=l P,(u,).

I N C R E A S I N G T R E E S E A R C H E F F I C I E N C Y 311

o

o
,.~

o

Z

o

o

e~

Z

m
,..I

<
b.

0 ~

0

Z

0

Z

0

Z

Z

Z

~ t '-I I ~

°~,~

O ~

' ~ 0

0

..~
~ o

z ~ z
t..i ,'~ o

~ ~~-~

0

0

Z

0 ~

Z

Z

312 R.M. HARALICK AND G.L. ELLIO'I'T

Now, *am (u~,) = P~ (k,,) <Pm (u) for any u ¢ kl km-l. Since um ~ kl kin-l,
Pm (u~,) < P~ (Urn) and

n n

(ii) = P" (u. ,) f i ej(uj) 11 < /'j(uA.

Case 3: rn' <~ n.

Hence,

" e . O , .) e . , (u . ,) f i
,~= Pi(iJ) = P,.(um)Pm,(um,) ~=~ P~(ij)

= Pm(i,QPm,(im,) h P j (u ,)
I'm (u,.)I'm'(Um') ~=~

P,.(um')P,.'(um) h Pj(u,)
=Pm (u,.)P,..(u,..) M

otm-lp(um,)otr,,'-te(u,) n
=

n

= g (u i) .

N - I n N - 1 n

contradicting the minimality of ul , UN. Therefore, ut UN = kl kN.

6. Conclusion

Using complexity criteria of number of consistency checks and number of table
iookups we have shown analytically and experimentally the efficacy of the
remembering and fail first principles in constraint satisfaction tree search
problems. A new search procedure called forward checking has been described
and it combined with optimal unit order choice leads to a more efficient tree
search than looking ahead or backmarking. A data structure that takes ad-
vantage of a computer 's natural ability to process bit vectors in parallel can
make forward checking even more efficient. This suggests that the entire set of
lookahead operators described by Haralick et al. [3], Haralick and Shapiro [6,
7], the discrete relaxation described by Waltz [16] and Rosenfeld et al. [14]
would be more efficiently implemented by omitting the consistency tests
required by future units against future units. Further analytic and experimental
work needs to be done to determine if this in fact is generally true, whether it is
only true when every unit constrains every unit or in the problem discussed in this
paper. Applicability of the forward checking idea to inference and theorem
proving algorithms needs to be tested and this will be the topic of a future paper.

INCREASING TREE SEARCH EFFICIENCY

REFERENCES

313

1. Barrow, H.G. and Tenenbaum, J.M., MYSIS: A system for reasoning about scenes, Stanford
Research Institute, Menlo Park, CA, SRI AI Techn. Pep. 121 (1976).

2. Gaschnig, J., A general backtrack algorithm that eliminates most redundant tests, Proceedings
of the International Conference on Artificial Intelligence, Cambridge, MA (1977), 457.

3. Gaschnig, J., Experimental case studies of backtrack vs. Waltz-type vs. new algorithms for
satisfieing-assignment problems, Proceedings of the 2nd National Conference of the Canadian
Society for Computational Studies of Intelligence, Toronto, Ont., July 19-21 (1978).

4. Gasehnig, J., Performance measurement and analysis of certain search algorithms, Thesis,
Department of Computer Science, Carnegie-Mellon University (May 1979).

5. Haralick, R.M., Scene analysis: Homomorphisms, and arrangements, in: Hanson and Reisman
(Eds.), Machine Vision (Academic Press, New York, 1978).

6. Haralick, R. and Shapiro, L., The consistent labeling problem: Part I, IEEE Trans. Pattern
Analysis and Machine Intelligence 1 (2) (April 1979).

7. Haralick, R. and Shapiro, L., The consistent labeling problem: Part II, IEEE Trans. Pattern
Analysis and Machine Intelligence 2 (3) (1980).

8. Haralick, R.M., Davis, L.S., Rosenfeld, A. and Milgram, D.L., Reduction operations for
constraint satisfaction, Information Sci. 14 (1978) 199-219.

9. Harary, F., Graph Theory (Addison-Wesley, Reading, MA, 1969).
10. Kowalski, R., A proof procedure using connection graphs, J. Agg. Comput. Mach. 22 (1975)

572-595.
11. Mackworth, A.K., Consistency in networks of relations, Artificial Intelligence g (1) (1977)

99-118.
12. McGregor, J.J., Relational Consistency algorithms and their applications in finding subgraph

and graph isomorphisms, Information Sci. 18 (1979).
13. Montanari, V., Networks of constraints: Fundamental properties and applications to picture

processing, Information Sci. 7 (1976) 95-132. •
14. Rosenfeld, A., Hummel, R. and Zucker, S., Scene labeling by relaxation operations, IEEE

Trans. Systems, Man and Cybernetics SMC-6 (1976) 420-433.
15. Ullman, J.R., Associating parts of patterns, Information and Control 9 (6) (1966) 583--601.
16. Waltz. D.L., Generating semantic descriptions from drawings of scenes with shadows, Rep.

MAC AI-TR-271 MIT, Cambridge, MA (1972).
17. Knuth, D., Estimating the efficiency of backtrack programs, Mathematics of Computation 29

(129) (1975), 121-136.

Rece ived 21 December 1979

