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ABSTRACT 

In this paper we explore the number of tree search operations required to solve binary constraint 
satisfaction problems. We show analytically and experimentally that the two principles of first trying 
the places most likely to fail and remembering what has been done to avoid repeating the same 
mistake twice improve the standard backtracking search. We experimentally show that a lookahead 
procedure called forward checking (to anticipate the future) which employs the most likely to fail 
principle performs better than standard backtracking, Ullman's, Waltz's, Mackworth's, and 
Haralick's discrete relaxation in all cases tested, and better than Gaschnig's backmarking in the 
larger problems. 

1. Introduction 

Associated with search procedures are heuristics. In this paper we provide a 
theory which explains why two heuristics used in constraint satisfaction sear- 
ches work. The heuristics we discuss can be given a variety of one line 
descriptions such as: 
- -Lookahead and anticipate the future in order to succeed in the present. 
- -To  succeed, try first where you are most likely to fail. 
- -Remember  what you have done to avoid repeating the same mistake. 
- -Lookahead to the future in order not to worry about the past. 

We will attempt to show that for a suitably defined random constraint 
satisfaction problem, the average number of tree search operations which 
employs these principles will be smaller than that required by the standard 
backtracking tree search. 

To begin our discussion, we need a precise description of the constraint 
satisfaction problem we are attempting to solve by a search procedure. We 
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assume that there are N units (some authors call these variables instead of 
units). Each unit has a set of M possible values or labels. The constraint 
satisfaction problem we consider is to determine all possible assignments f of 
labels to units such that for every pair of units, the corresponding label 
assignments satisfy the constraints. More formally, if U is the set of units and L 
is the set of labels, then the binary constraint R can be represented as a binary 
relation on U x L: R C_ (U x L) x (U x L). If a pair of unit-labels (ul, 1~, uz, 12) 

R, then labels 11 and 12 are  said to be consistent or compatible for units u~ and 
u2. A labeling f of all the units satisfies the constraints if for every pair u~, u2 of 
units (ul,f(ul), u2,f(u2))E R. Haralick et al. [8] call such a labeling a consistent 
labeling. 

The problem of determining consistent labelings is a general form of many 
problems related to artificial intelligence. For example, scene labeling and 
matching [1, 14], line interpretation [16], edge labeling [5], graph homomor- 
phisms and isomorphisms [15], graph coloring [9], boolean satisfiability [8], and 
proposition theorem proving [10] are all special cases of the general consistent 
labeling problem. Ullman [15], Waltz [16], Rosenfeld et al. [14], Gaschnig [2, 3, 
4], and McGregor [12] attempt to find efficient methods to solve the consistent 
labeling problem. Knuth [17] also analyzes the backtracking tree search, 
which is the basis of most methods used to solve the consistent labeling 
problem. 

For the purpose of illustrating the search required to solve this problem, we 
choose the N-queens problem, how to place N-queens on an N x N checker- 
board so that no queen can take another. Here, the unit set corresponds to the 
row coordinates on a checkerboard and we denote them by positive integers. 
The label set corresponds to the column coordinates on a checkerboard and we 
denote them by alphabetic characters. Hence, the unit-label pair (1, A, 2, D) 
satisfies the constraint R, [(1, A, 2, D ) ~  R ], since a queen on row 1 column A 
cannot take a queen on row 2 column D. But, the unit-label pair (1, A, 3, C) 
does not satisfy the constraint R because queens can take each other diagon- 
ally (see Fig. !)- 

Using the number letter convention for unit-label pairs, Fig. 2 illustrates a 
portion of a backtracking tree trace for the 6-queens problem. Notice how the 
unit 5 labels A, C, E, and F occur twice in the trace, each time being tested and 
failing for the same reason: incompatibility with units 1 or 2. These redundant 
tests can be eliminated if the fact they failed can be remembered or if units 1 or 
2 could lookahead and prevent 5 from taking the labels A, C, E, or F. The 
remembering done by Gaschnig's backmarking [2] and the forward checking 
approach described in this paper help eliminate these problems. Notice that 
once unit 3 takes label E (Fig. l(a)) the only labels left for units 4 and 6 are 
incompatible. The forward checking algorithm will not discover this future 
incompatibility. However, the first time label B is associated with unit 4, there 
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FIG. 1. (a) illustrates how the labeling A, C, E for units 1, 2, 3 implies that the only labels for units 
4 and 6 are incompatible in the 6 queens problem. (b) illustrates how the labeling A, C, E, B for 
units 1, 2, 3, 4 implies that there is no label for unit 6 in the 6 queens problem. 
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FIG. 2. A segment of a tree trace that the standard backtracking algorithm produces for a 6 queens 
problem. No solutions are found in this segment. The entry 2 A,B, for example, indicates that labels A 
and B were unsuccessful at level 2, but 2 C succeeds when checked with past units, and the tree search 
continues with the next level. 
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is absolutely no label possible for unit 6. Hence, the search through the labels 
for 5 and 6 are entirely superfluous and forward checking will discover this 
(Fig. l(b)). The lookahead procedures (discrete relaxation) of [11, 13, 14, 15, 
16] help alleviate the problem illustrated in Fig. l(a) as well as in Fig. l(b). 

Section 2 gives a description of the full and partial looking ahead, forward 
checking, backchecking, and backmarking procedures. In Section 3 we com- 
pare the complexity of these algorithms as they solve the N-queens problem 
and problems generated randomly. We measure complexity in terms of number 
of table lookups and number of consistency checks. These results show that 
standard backtracking is least efficient in most cases and bit parallel forward 
checking is most efficient for the cases tried. 

In Section 4, we give a statistical analysis of constraint satisfaction searches 
and demonstrate the statistical reason why forward checking requires fewer 
expected consistency checks than standard backtracking. In Section 5 we 
explore other applications of the fail first or prune early tree search strategies 
and show that such particular strategies as choosing the next unit to be that 
unit having fewest labels left and testing first against units whose labels are 
least likely to succeed reduce the expected number of consistency tests 
required to do the tree search. Finally, by changing the unit search order 
dynamically in every tree branch so that the next unit is always the one with 
fewest labels left, we show experimentally that performance improves for each 
procedure and that forward checking even increases its computational ad- 
vantage over the other algorithms. 

2. Some Procedures for Tree Search Reducing 

In this section we give brief descriptions of five procedures, and a variation of 
data structure in one, which can be used within the standard backtracking 
framework to reduce tree search operations. They are called full and partial 
looking ahead, forward checking, backchecking, and backmarking. Each of 
these procedures invests resources in additional consistency tests or data 
structures at each point in the tree search in order to save (hopefully) more 
consistency tests at some point later in the tree search. 

For ease in explaining these procedures, we call those units already having 
labels assigned to them the past units. We call the unit currently being assigned 
a label the current unit and we call units not yet assigned labels the future 
units. We assume the existence of a unit-label table which at each level in the 
tree search indicates which labels are still possible for which units. Past units 
will of course have only one label associated with each of them. Future units 
will have more than one. The tree search reducing procedures invest early to 
gain later. Hence, the result of applying any of them in the tree search will be 
to decrease the number of possible labels for any future unit or reduce the 
number of tests against past units. 
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2.1. Looking ahead 

Waltz filtering [16], a procedure by Ullman [15], discrete relaxation [14], and 
the gr operator  of Haralick et al. [8] are all examples of algorithms that look 
ahead to make sure that (1) each future unit has at least one label which is 
compatible with the labels currently held by the past and present units and (2) 
each future unit has at least one label which is compatible with one of the 
possible labels for each other future unit. Looking ahead prevents the tree 
search from repeatedly going forward and then backtracking between units u 
and v, v < u, only to ultimately discover that the labels held by units 1 through 
v cause incompatibility of all labels between some unit w, w > u, and some 
past, current, or future unit. 

Because looking ahead in this manner cannot remember  and save most of 
the results of tests performed in the lookahead of future units with future units 
for use in future lookaheads, the full savings of looking ahead are not realized 
for many problems. A partial look ahead that does not do all the checks of full 
look ahead will perform better, and one that checks only future with present 
units (neglects future with futures) will do much better  because all tests it 
performs can be usefully remembered.  

The procedure L_A_TREE S E A R C H  and its associated subroutines 
CHECK_.FORWARD and LOOK__FUTURE (Fig. 3(a), (b) and (c)) is a formal 
description of the full looking ahead algorithm, which can easily be translated 
into any structured recursive language. U is an integer representing the unit, 
and will increment at each level of the tree search. It takes on the value 1 at the 
initial call. F is a one dimension array indexed by unit, where entry F(u) for 
unit u is the label assigned to u. T and N E W _ T  are tables, which can be 
thought of as an array of lists, T(u) is a list of labels which have not yet 
been determined to be not possible for unit u. (We implemented T as a 2 
dimension array, with the number of entries in each list (or row) stored in the 
first position of the row. This implementation uses approximately 
(NUMBER_OF_UNITS)  2 x (NUMBER_OF_LABELS)  words of memory for 
table storage since there can be NUMBER_OF_UNITS  levels of recursion.) 
The tree search is initially called with T containing all labels for each unit. All 
other variables can be integers. E M P T Y _ T A B L E  and NUMBER_OF_UNITS  
and N U M B E R _ O F _ L A B E L S  have obvious meanings. 

The function R E L A T I O N ( u b  11, u2, 12) returns TRUE if (ul, !1, U2,/2) E R, 
otherwise it returns FALSE. C H E C K _ F O R W A R D  checks that each future 
unit-label pair is consistent with the present label F(u) for unit u as it copies 
the table T into the next level table NEW_T, L O O K _ F U T U R E  then checks 
that each future unit-label pair in N E W _ T  is consistent with at least one label 
for every other unit, and deletes those that are not. 

In this implementation C H E C K _ F O R W A R D  and L O O K _ F U T U R E  return 
a flag, EMP TY_ROW_FLAG,  if a unit is found with n o  possible consistent 
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1. RECURSIVE PROCEDURE L_A_TREE_SEARCH(U, F, T); 
2. FOR F(U) = each element of T(U) BEGIN 
3. IF U < NUMBER_OF_UNITS THEN BEGIN 
4. NEWT = CHECK_FORWARD(U, F(U), T); 
5. CALL LOOK_FUTURE(U, NEW_T); 
6. IF NEW_T is not EMPTY_ROW_FLAG THEN 
7. CALL L_A_TREE_SEARCH(U + 1, F, NEW_T); 
8. END; 
9 . .  ELSE 

10. Output the labeling F; 
11. END; 
12. END L_A_TREE_SEARCH; 

(a) 

1. PROCEDURE CHECK_FORWARD(U, L, T); 
2. NEW_T = empty table; 
3. FOR U2 = U + 1 TO NUMBER_OF_UNITS BEGIN 
4. FOR L2 = each element of T(U2) 
5. IF RELATION(U, L, U2, L2) THEN 
6. Enter L2 into the list NEW_T(U2); 
7. IF NEW_T(U2) is empty THEN 
8. RETURN (EMPTY_ROW_FLAG);/* No consistent labels */ 
9. END; 

10. RETURN (NEW_T); 
11. END CHECK_FORWARD; 

(b) 

1. PROCEDURE LOOK_FUTURE(U, NEW_T); 
2. IF U + 1 _-> NUMBER_OF_UNITS THEN RETURN; 
3. FOR U1 = U + 1 TO NUMBER_OF_UNITS BEGIN 
4. FOR L1 = each element of NEW_T(U1) 
5. FOR U2 = U + 1 TO NUMBER_OF_UNITS except skipping U1 BEGIN 
6. FOR L2 = each element of NEW_T(U2) 
7. IF RELATION(U1, L1, U2, L2) THEN 
8. BREAK for L2 loop;/*  consistent label found */ 
9. IF no consistent label was found for U2 THEN BEGIN 

10. Delete L1 from list NEW_T(U1); 
11. BREAK for U2 loop;/* unit U2 has no label consistent with Ul, L1 */ 
12. END; 
13. END for U2 loop; 
14. END for L1 loop; 
15. IF NEW_T(U1 ) is empty THEN BEGIN 
16. NEWT = EMPTY_ROW_FLAG; 
17. RETURN; 
18. END; 
19. END for U1 loop; 
20. RETURN; 
21. END LOOK_FUTURE; 

(c) 
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Fro. 3 (continued). 
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1. PROCEDURE PARTIAL_LOOK_FUTURE(U, NEW_T); 
2. IF U + 1 >_- NUMBER_OF_UNITS THEN RETURN; 
3. FOR U1 = U+ 1 TO NUMBER_OF_UNITS- 1 BEGIN 
4. FOR L1 = each element of NEW_T(U1 ) 
5. FOR U2 = U1 + 1 TO NUMBER_OF_UNITS BEGIN 
6. FOR L2 = each element  of NEW_T(U2) 
7. IF RELATION(U1, L1, U2, U2) THEN 
8. BREAK for L2 loop;/* consistent label found */ 
9. IF no consistent label was found for U2 THEN BEGIN 

10. Delete L1 from list NEW_T(U1); 
11. BREAK for U2 loop;/* unit U2 has no label consistent with U1, L1 */ 
12. END; 
13. END for U2 loop; 
14. END for L1 loop; 
15. IF NEW_T(U1 ) is empty THEN BEGIN 
16. NEW_T = EMPTY_ROW_FLAG; 
17. RETURN; 
18. END; 
19. END for U1 loop; 
20. RETURN; 
21. END PARTIAL_LOOK_FUTURE; 

(d) 
FIG. 3. (a), (b), and (c) express the full looking ahead algorithm. Replace the call to 
LOOK_FUTURE at line 5 in (a) with an identical call to PARTIAL_LOOK_FUTURE (d) and the 
partial looking ahead algorithm is obtained. Forward checking consists of (a) and (b) with line 5 of 
(a), the call to LOOK_FUTURE, deleted so that only CHECK_FORWARD is called. Forward 
checking does no checks of future units with future units. (c) is the LOOK._FUTURE procedure, 
which deletes future labels which are not consistent with at least one label for every unit other than 
the label's own unit. (d) is the PARTIAL_LOOK_.FUTURE procedure. It differs from 
LOOK_FUTURE (c) only at lines 1, 3, and 5. Each future unit-label pair is checked only with units 
in its own future. 

labels .  Thus  the  next  level of the t ree  search  will not  be cal led,  o the rwise  each  
en t ry  in N E W _ T  is cons is ten t  with u, F(u), and the re fo re ,  all the  pas t  
un i t - labe l  pairs .  

2.2. Partial looking ahead 

Par t ia l  l ook ing  a h e a d  is a va r i a t ion  of look ing  a h e a d  which does  a p p r o x i m a t e l y  
half  of  the  cons is tency  checks  tha t  full l ook ing  a h e a d  does  while  check ing  
fu ture  with fu ture  units.  Each  fu ture  un i t - labe l  pa i r  is checked  on ly  with  units  
in its own fu ture ,  r a the r  than  all o t h e r  fu ture  units .  Thus  par t ia l  l ook ing  ahead  
is less power fu l  than  full l ook ing  a h e a d  in the  sense  tha t  it  will not  de l e t e  as 
m a n y  un i t - l abe l  pa i rs  f rom the  lists of  po t en t i a l  fu ture  labels .  W e  will, however ,  
see  tha t  par t ia l  l ook ing  a h e a d  does  fewer  to ta l  cons i s tency  checks  than  full 
l ook ing  a h e a d  in all cases  tes ted .  
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The checks of future with future units do not discover inconsistencies often 
enough to justify the large number of tests required, and these results cannot 
be usefully remembered. Since partial looking ahead does fewer of these less 
useful tests, it is more efficient. A look ahead that checks only future with 
current or past units can have better performance since these more powerful 
tests can also be usefully remembered. 

The formal algorithm for partial looking ahead is L_A_TREE_SEARCH 
(Fig. 3(a)), with the call to LOOK_FUTURE on line 5 replaced with an 
identical call to PARTIAL_LOOK_FUTURE (Fig. 3(d)). 

2.3. Forward checking 

Forward checking is a partial lookahead of future units with past and present 
units, in which all consistency checks can be remembered for a while. This 
method is similar to looking ahead, except that future units are not checked 
with future units, and the checks of future units with past units are remem- 
bered from checks done at past levels in the tree search. Forward checking 
begins with a state of affairs in which there is no future unit having any of its 
labels inconsistent with any past unit-label pairs. This is certainly true at the 
root of the tree search, since there are no past units with which to be 
inconsistent. Because of this state of affairs, to get the next label for the current 
unit, forward checking just selects the next label from the unit table for the 
current unit. That label is guaranteed to be consistent with all past unit- 
label pairs. Forward checking tries to make a failure occur as soon as possible 
in the tree search by determining if there is any future unit having no label 
which is consistent with the current unit-label pair. If each future unit has 
consistent labels, it remembers by copying all consistent future unit-label pairs 
to the next level's unit-label table. If every future unit has some label in the 
unit label table which is consistent with the current unit-label pair, then the 
tree search can move forward to the next unit with a state of affairs similar to 
how it started. If there is some future unit having no label in the unit label 
table which is consistent with the current unit-label pair, then the tree search 
remains at the current level with the current unit and continues by selecting the 
next label from the table. If there is no label, then it backtracks to the previous 
unit and the previous label table. 

The formal algorithm for forward checking is the Procedure 
L_A_TREE_SEARCH (Fig. 3(a)) with line 5, the call to LOOK_FUTURE, 
removed. Forward checking is just looking ahead, omitting the future with 
future checks. 

An improvement in efficiency can be gained in the lookahead type of 
algorithms by using a data structure for the unit-label tables that is suggested 
by McGregor [12]. McGregor simultaneously developed a weaker form of the 
forward checking algorithm and compared them on subgraph isomorphism 
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problems. In L_A_TREESEARCH and CHECK_FORWARD the lists T ( u )  

or NEW_T(u) can be stored as bit vectors, with one bit in the machine word 
for each possible label (this is essentially a set representation). Lines 4, 5 and 6 
in CHECK_FORWARD (Fig. 3(b)) can then be replaced with the following 
statement: 

NEW_T(U2)  

= A N D  (T(U2), RELATION_BIT_VECTOR(U, L, U2)). 

This single statement replaces a loop, taking advantage of the parallel bit 
handling capabilities of most computers. RELATION_BIT_VECTOR(u, l, u2) 
returns a bit vector with a bit on in each position corresponding to a label 12 
for which RELATION(u, l, u2,/2) would have been true. This is essentially the 
set {121(u, !, u2,12)~R}. Thus NEW_T(u2) becomes the set {12E 
T(u2)l (u, !, u2,/2)ER}, precisely what lines 4, 5, and 6 do. If the number of 
labels is less than the word length of the computer used, then the relation can 
be directly stored in an array of size (NUMBER_OF_UNITS) 2× 
(NUMBER_OF_LABELS), and the tables T and NEW_T will take ap- 
proximately (NUMBER_OF_UNITS) 2 words of storage. Reduced forms of the 
relation exist for some problems, such as the N-queens problem or the 
subgraph isomorphism problem, in which only two dimensional tables need be 
stored and a quick calculation will generate the needed list. The same tech- 
nique can be applied to the full and partial looking ahead algorithms, but they 
will not be compared here since the three algorithms will have approximately 
the same relationships of efficiency, to each other, with or without the im- 
proved data structure. 

2.4. Backchecking 

Backchecking is similar to forward checking in the way it remembers unit-label 
pairs which are known to be inconsistent with the current or any previous unit 
label. However, it keeps track of them by testing the current unit label only 
with past unit-label pairs and not future ones. So if, for instance, labels A, B, 
and C for unit 5 were tested and found incompatible with label B for unit 2, 
then the next time unit 5 must choose a label, it should never have A, B, or C 
as label possibilities as long as unit 2 still has the label B. 

Each test that backchecking performs while looking back from the current 
unit u to some past unit v, forward checking will have performed at the time 
unit v was the current unit. Of course, at that time, forward checking will also 
have checked all future units beyond unit u. Hence, backchecking performs 
fewer consistency tests, an advantage. But baekchecking pays the price of 
having more backtracking and at least as large a tree as forward checking. 
Backchecking itself is not as good as forward checking. 
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2.5. Backmarking 

Backmarking (defined in Gaschnig [2] and also discussed in Gaschnig [3]) is 
backchecking with an added feature. Backmarking eliminates performing some 
consistency checks that were previously done, had not succeeded, and if done 
again would again not succeed. Backmarking also eliminates performing some 
consistency checks that were previously done, had succeeded, and if done again 
would again succeed. To understand how backmarking works, recall that the 
tree search by its very nature goes forward, then backtracks, and goes forward 
again. We focus our attention on the current unit u. We let v be the lowest 
ordered unit to which we have backtracked (has changed its label) since the last 
visit to the current unit u. Backmarking remembers v. If v = u, then back- 
marking proceeds as backchecking. If v < u, then since all the labels for unit u 
had been tested in the last visit to unit u, any label now needing testing, needs 
only to be tested against the labels for units v to u -  1, which are the ones 
whose labels have changed since the last visit to unit u. That is, the tests done 
previously against the labels for units 1 through v -  1 were successful and if 
done again would again be successful because labels for units 1 through v - 1 
have not changed and the only labels permitted for the current unit u are those 
which have passed the earlier tests (see Fig. 4). 

U N I T  N U M B E R  

-1- 
u 

I11 

t z  
bd 
m 
~ r  

Z 
i 

I 
I 
I 

A B 

FIG. 4. A segment of a tree trace. Because backmarking remembers from the first visit to unit u 
which labels for u were compatible with the labels for units ! through v - 1 (segment A) do not 
have to be performed. Only those for units v through u - l (segment B) have to be performed. 
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The formal algorithm for Backmarking appears in Fig. 5. It is essentially 
Gaschnig's algorithm [2], but modified to find all solutions. The variable U and 
array F are the same as in looking ahead. LOWUNIT is a one dimensional 
array of NUMBER_OF_UNITS entries, and LOWUNIT(i) will indicate the 
lowest level at which a change of label has occurred since the last time the 
MARK array is set. MARK is dimensioned NUMBER_OF_UNITS by 
NUMBER_OF_LABELS, and MARK(u, l) will indicate the lowest level at 
which a consistency test failed when the unit-label pair (u, l) at the current level 
was last tested against the previous unit-label pairs on previous levels. At any 
point if MARK(u, l) is less than LOWUNIT(u), then the algorithm knows that 
(u, l) has already been tested against the unit-label pairs at levels below the 
value in LOWUNIT(u) and will fail at level MARK(u, l), so there is no need to 
repeat the tests. If MARK(u, l) is greater or equal to LOWUNIT(u), then all 
tests will succeed below and level LOWUNIT(u) and only tests against units at 
LOWUNIT(u) to the current unit need be tested. 

Before the initial call to BACKMARK, all entries in LOWUNIT and 
MARK are initialized to 1, and BACKMARK is called with the initial u = 1. 
Since the same MARK and LOWUNIT arrays are used at all levels of 
recursion of the tree search, approximately (NUMBER_OF_UNITS)× 
(NUMBER_OF_LABELS) words of table storage are needed. 

1. RECURSIVE PROCEDURE BACKMARK(U, F, MARK, LOWUNIT); 
2. FOR F(U) = 1 TO NUMBER_OF_LABELS BEGIN 
3. IF MARK(U, F(U)) _-> LOWUNIT(U) THEN BEGIN 
4. TESTFLAG = TRUE; 
5. I=  LOWUNIT(U); 
6. WHILE (I < U) BEGIN/* Find lowest failure */ 
7. TESTFLAG = RELATION(I, F(I), U, F(U)); 
8. IF NOT TESTFLAG THEN BREAK while loop; 
9. I = 1 + 1 ;  

10. END while loop; 
11. MARK(U, F(U)) = I ; / *  Mark label with lowest failure */ 
12. IF TESTFLAG THEN 
13. IF U < NUMBER_OF_UNITS THEN 
14. CALL BACKMARK(U + 1, F, MARK, LOWUNIT); 
15. ELSE 
16. Output the labeling F; 
17. END; 
18. END for F loop; 
19. LOWUNIT(U) = U - 1 ; / *  Previous level will now change */  
20. FOR I = U + 1 TO NUMBER_OF_UNITS; 
21. LOWUNIT(I) = MIN(LOWUNIT(I), U - 1 ); 
22. RETURN; 
23. END BACKMARK; 

FIG. 5. Gasehnig's backmarking procedure as it was modified to find all solutions to constraint 
satisfaction problems (see [2]). 
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3. Experimental Results 

In this section we compare the six procedures, partial and full looking ahead, 
backtracking, backchecking, forward checking, and backmarking, on the N- 
queens problem for 4<~N ~< 10, and on a random constraint problem. We 
assume that the unit order is fixed in its natural order from 1 to N and that all 
consistency tests of the current unit with past units or future units begin with 
the lowest ordered unit. The label sets will consist of all N columns; no 
consideration is given to the various symmetries peculiar to the N-queens 
problem. 

The random constraint problems are generated using a pseudorandom 
number generator. A random number is generated for each possible con- 
sistency check (ul, 11, u2, 12) for the relation R, so that each entry in the relation 
will be made with probability p. A probability of p = 0.65 is chosen so that 
problems will be generated that are somewhat similar to the N-queens 
problem. 

The comparison among the tree search reducing procedures indicates that 
backtracking is least efficient in most cases, and that backmarking and forward 
checking are more efficient for the cases tested. Bit parallel forward checking, 
which takes advantage of machine parallelism, is the most efficient for all cases 
tried. 

Our comparison of algorithm complexity will be in terms of nine criteria 
involving number of consistency tests, number of table lookups, and number of 
nodes in the tree search. There are a variety of ways of presenting these results 
including 

(1) Number of consistency tests performed to obtain all solutions (Figs. 6 
and 8). 

(2) Number of table lookups used in finding all solutions (Figs. 10 and 11). 
(3) Number of nodes in the tree search to obtain all solutions (Fig. 12). 
(4) Number of nodes visited at each level in the tree search (Fig. 13). 
(5) Number of nodes found to be consistent at each level in the tree search, 

or consistent labelings to depth (Figs. 17 and 18). 
(6) Number of consistency checks at each level in the tree search (Fig. 19). 
(7) Number of table lookups at each level in the tree search (Fig. 20). 
(8) Percentage of nodes at each depth that fail because an inconsistency was 

found at that depth (Figs. 21 and 22). 
(9) Average number of table lookups per consistency check (Figs. 23 and 

24). 
Fig. 6 indicates that the number of consistency tests performed to obtain all 

solutions seems to increase exponentially with N for the N-queens problem. 
The number of solutions to the N-queens problem also appears to increase 
exponentially (see Fig. 7). The number of bit vector operations is also shown, 
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checking, looking ahead, forward checking, and backmarking, for the N-queens problem in the 
natural unit order. The number of bit vector operations for bit parallel forward checking is also 
shown. 
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for forward checking done in the bit vector data structure. Though backmark- 
ing appears to do slightly fewer consistency checks than forward checking on 
the N-queens problem, the use of machine parallelism gives bit parallel 
forward checking a clear advantage over all the other algorithms. 

Random constraint problems with fixed probability 0.65 of consistency check 
success probability of 0.65 are tested in Figs. 8 and 9. The number of 
consistency tests appears to grow exponentially in Fig. 8, until a sufficiently 
large problem size is reached. At this point the number of solutions drops, as is 
indicated in Fig. 9, and the number of consistency tests appears to grow more 
slowly. Fig. 9 explains the uneveness of the curves in Fig. 8. Too few random 
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relations were tested for the means to settle closely to the expected values for 
this type of problem, and the average number of solutions varies eratically high 
and low. 

In the random problems, forward checking does slightly fewer consistency 
checks than backmarking in the larger problem sizes, and once again machine 
parallelism gives bit parallel forward checking a clear advantage. 

The number of table lookups for the N-queens and random relation prob- 
lems are compared in Figs. 10 and 11. Only the lookups in the MARK array in 
backmarking and backchecking, and the T or NEW_T tables in the lookahead 
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type algorithms are considered. These table lookups occur at line 3 in Fig. 5, 
backmarking, line 2 in Fig. 3(a), line 4 in Fig. 3(b), and lines 4 and 6 in each of 
Figs. 3(c) and 3(d), the lookahead type algorithms. The entering of values into 
the tables are not considered, since they always follow at least one consistency 
check, and never happen more often than consistency checks. 

Backtracking is not shown, since it does no table lookups of the type 
considered. Partial and full looking ahead always do more table Iookups than 
forward checking in these cases, and forward checking does better than 
backmarking in the larger problem sizes. Even full looking ahead does fewer 
table lookups than backmarking in the larger random problems. The number of 
table lookups into bit vectors is smaller than the number of table lookups in 
other algorithms, when the bit parallel data structure is used in forward 
checking. 

Fig. 12 demonstrates that full looking ahead visits the fewest nodes in the 
tree search, since it eliminates the most potential nodes during its examination 
of future unit-label pairs. Fig. 13 indicates that the number of nodes visited in 
the tree search is largest for the middle levels in the tree search, with the full 
looking ahead procedure having the fewest nodes at each level. 

Figs. 14, 15, and 16 show segments of the trace of nodes visited by the full 
and partial looking ahead, and forward checking algorithms for the 6-queens 
problem. Backmarking and backchecking will have the same tree trace as 
backtracking (see Fig. 2). More detailed trace of the action of backmarking can 
be found in [3, 4]. 

Fig. 17 shows the number of consistent labelings at each depth of the tree 
search for the 8-queens problem, and Fig. 18 shows the average number of 
consistent labelings for random problems. This is the number of nodes at each 
level which have not yet been found to be inconsistent. Backmarking and 
backchecking will have the same search tree as backtracking, and consequently 
has the same number of nodes and consistent labelings at each depth (see Figs. 
13, 17, and 18). Their efficiencies are gained by reducing the amount of work 
spent at each node, checking against past units. However, the lookahead 
algorithms perform extra work at each node to reduce the number of nodes, 
and as Figs. 19 and 20 show, the relation checks and table lookups for the 
iookahead type algorithms are concentrated more at the shallow depths of the 
treesearch. As Figs. 6, 8, 10, and 11 show, full and partial looking ahead do too 
much work at each node for the problems shown, and forward checking and 
backmarking do better. 

The percentage of nodes at each depth in the tree search that fail because 
some inconsistency is discovered are shown in Figs. 21 and 22. In the cases 
shown, in the backtracking, backchecking, and backmarking algorithms, over 
95% of the nodes (instantiated labels) fail at the deepest level of the treesearch, 
because they are inconsistent with some past unit-label pair. 

The lookahead type algorithms reduce the number of nodes in the treesearch 
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in two ways. First by removing entries from the tables of potential unit-label 
pairs, and second by noticing that some future units may have no possible 
labels associated with them. In Figs. 21 and 22 all nodes that fail in the 
Iookahead type algorithms do so for this second reason, since they would not 
have occurred as nodes if their labels were deleted from the future unit-label 
tables. If lines 7 and 8 are removed from the C H E C K _ F O R W A R D  procedure 
in Fig. 3(b), then no nodes would fail in forward checking (this is McGregor's 
restricted arc consistency algorithm in [12]). This weaker form of forward 
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FIG. 14. A segment of a tree trace made by the full looking ahead procedure in a 6-queens problem. 
One consistent labeling, 1B 2D 3F 4A 5C 6E, appears in this portion of the trace. 1A 2C fails to spawn 
any further nodes because the LOOK_FUTURE algorithm will, after deleting several potential labels, 
discover that one future unit has no possible labels. 
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FIG. 15. A segment of a tree trace showing the nodes of the tree search in the partial looking ahead 
procedure in a 6-queens problem. One consistent labeling, 1B 2D 3F 4A 5C 6E, appears in this portion 
of the trace. 1A 2C 3A,B,C, and D do not appear because CHECK_FORWARD removes them from 
the table at nodes 1A and 2C. However 1A 2C 3E fails to have successors because the only labels left 
for future units 4 and 6 are incompatible and are removed by LOOK...FUTURE (see Fig. l(a)). 
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FIG. 16. A segment of a tree trace made by the forward checking procedure in a 6-queens problem. 
One consistent labeling, 1B 2D 3F 4A 5C 6E, is found. Notice that IA 2C 3E 4B fails because the 
CHECK_FORWARD procedure discovers that there are no labels remaining for unit 6 at the 4B node 
(see Fig. l(b)). 

checking algorithm will find all the consistent labelings at each level of the tree 
search that backtracking does, but at a higher cost than the original forward 
checking algorithm. The replacement  of these lines in forward checking will 
realize a 15% saving of consistency checks and table Iookups in the 10-queens 
problem, and over  40% savings in the 10 units by 10 labels random problem. 

Figs. 23 and 24 address the question of what measure best determines the 
algorithmic time complexity. A careful check of all the algorithms will show 
that no step is executed more often than the maximum of the number  of 
consistency checks or the number  of table lookups. As the problem size 
increases in the Iookahead type of algorithms, the ratio of table lookups to 
consistency checks seems to decrease from a maximum of about  2 to no more 
than 1.5 table lookups per consistency check in both the N-queens  and random 
problems. This ratio is guaranteed to be greater  than or equal to one, by the 
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the natural unit order. 

algorithms structure, thus either may be used as a measure of algorithmic time 
complexity for the lookahead type of algorithms. 

Because in both the N-queens  and random problems backmarking seems to 
have a steadily increasing ratio of table lookups to consistency checks as 
problem size grows, only table lookups (which equals the number of nodes in 
the treesearch in this case) can be used as a true measure of algorithmic time 
complexity for backmarking. Only in the case that a computation of a relation 
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check  is s ignificantly more  expens ive  than the cost  of a node's  loop control  and 
a table l ookup  will  relat ion checks  be a useful  practical measure  for the t ime 
complex i ty  of backmarking.  The  reason that it is a practical measure  in this case is 
that the node  and table lookups  cost will dominate  the cost of  execut ion  on ly  in 
very large problem sizes,  so large that the problems can not  be so lved in a 
reasonable  t ime,  and relat ion tests will dominate  the cost  in the smaller  problems 
which can be so lved in a practical amount  of  t ime.  
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FIG. 20. The number of table Iookups at each possible depth k in the treesearch to find all 
solutions to the 8-queens problem, for the various algorithms. 

4. Statistical Model for Constraint Satisfaction Searches 

Our statistical model for random constraint satisfaction is simple. The prob- 
ability that a given consistency check succeeds is independent of the pair of 
units or labels involved and is independent of whatever labels may already 
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consistency by using table Iookups, rather than  performing all the checks. Nodes in the lookahead 
type algorithms fail because a future unit fails to have any remaining labels after inconsistent future 
labels are removed.  
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random relations, with consistency check probability p = 0.65 and number  of units = number of 

labels = 10. 

have been assigned to past units. Hence, 

P((Uk+b lk+b U, l) ~ R I !1 . . . . .  Ik are consistent labels of ul . . . . .  Uk) 
= P((Uk+b lk+l, U, !)  E R )  for every  u, l. 

The  N-queens problem is a more difficult problem, with fewer solutions but 
requiring more consistency tests than the corresponding random constraint 
problem with the same probability of consistency check success. A comparison 
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of the graphs for the two problems in Section 3 will show that while the 
numerical values of the quantities vary considerably, the basic character of the 
algorithms operation is similar for both problems. 

In our analysis, we will assume that a given pair of units with a given pair of 
labels is consistent with probability p, p being independent of which units, 
which labels, or any past processing. If each unit has the same number, M, of 
possible labels, then any k-tuple of labels for any k units has probability 
pk(k-1)/2 of being consistent since each labeling must satisfy ½k(k- 1) con- 
sistency checks. Since there are M k possible labelings of k units, the expected 
number of consistent labelings is 

Mkpk(k-lV2. 

The expected number of nodes processed at level k in a standard backtrack- 
ing search will be M, the number of possible labels, times the number of 
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consistent labelings at the previous level, Mk-lp (k-lXk-2)/2. Thus there are 

Mkp(k-IXk-2y2 

tree search nodes at level k. 
We can also count the expected number of consistency checks performed by 

backtracking. We expect Mkp (k-IX*-2)12 level k nodes and at each node a label 
must he tested for consistency with the labels given the previous k -  1 units. 
The first consistency check fails with probability 1 - p .  If it fails, we have spent 
1 test. If it succeeds we have spent 1 test and are committed to make  another 
one  which might also succeed with probability p. All (k - 1) tests will succeed 
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with probability ptk-1). Hence the expected number of consistency checks 
performed at each node is 

k - I  

ip'-l(1 - p ) +  (k - 1)p k-L. 

This may be simplified by recognizing the telescopic nature of the sum which is 
equal to 

k - 2  

But this is a geometric sum and is equal to 

1 _pk-I 
1--p 

Therefore the expected number of consistency checks at level k will be 
Mkp ~k-l×k-2~, the number of nodes at level k times (1- -pk- l ) / (1- -p) ,  the 
expected number of consistency checks at a node, making 

Mkptk_lXk_2)/2 1 _ pk-I 
1 - - p  

consistency checks at level k. Of course the expected total number of con- 
sistency checks will be the summation of the expected number of consistency 
checks for each level k for k ranging from 1 to N, the number of units. 

The computation of the number of labelings for the forward checking 
algorithm is somewhat more complicated because the algorithm stops checking 
when a future unit has no labels that are consistent with the past and present 
unit-label pairs. A consistent labeling to depth k occurs when the tree search 
successfully reaches a given label for unit k and forward checking of that 
unit-label pair produces no future unit that has no remaining labels. Thus the 
consistent labelings to depth k for forward checking meet exactly the following 
conditions: 

(1) 11111, 11212 . . . . .  11klk are consistent unit-label pairs. 
(2) There is no future unit u in levels k + 1 . . . . .  N for which there is no label 

! so that 11, l is consistent with 1111~, . . . ,  Uklk. 
The k unit-label pairs are consistent with probability pktk-~}/2, and there are 

M k possible labelings to depth k (condition (1)). A future unit-label pair is 
consistent with the k past and present unit-label pairs with probability pk and 
there are M possible labels for a future unit, so the probability that a future 
unit has no label that is consistent with the k past and present units is (1 -pk)M. 
Since there are N units, there are N - k future units, and the probability that all 
of these has at least one label that is consistent is [1 -  (1 __pk)M]N-k (condition 
(2)). Thus the expected number of consistent labelings to depth k for forward 
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checking is 

Mkpktk-')/2[1 -- (1 -- pk)M ]~-k. 

The expression for the expected number of nodes in the forward checking 
tree search at level k is very similar to that for the number of consistent 
labelings to depth k, since each node will perform forward checks to determine 
if its label will become a consistent labeling. The labels for a node must meet 
condition (1) above, but the future units are required to have succeeded with at 
least one label only for checks with the unit-label pairs u111 . . . . .  Uk-~lk-1, since each 
node was in the table for a consistent labeling to depth k - 1, and if any future unit 
as seen from level k - 1 failed to have a label, then it would not have spawned 
nodes at the next level. Thus in each node the future units will have at least one 
label and the second condition occurs with probability [1 - (1 - p k - l ) M  ]N-k Thus 
the expected number of nodes at depth k in forward checking is 

Mkpk(k-1)/2[1 -- (1 - pk-1)M ]N-k.  

A slight overapproximation for the expected number of consistency checks at 
depth k in the tree search can be found by multiplying the expected number of 
nodes at the depth times the expected number of labels remaining for each 
future unit times the number of future units, N - k. Since each future unit will 
have at least one label, this expected number of labels will be 

Mpk-I 
1 - - (1 - -pk-I )  u" 

Thus the expected number of consistency checks in forward checking will be 

Mk+lp (k+2Xk-~v2[1 - (1 - pk-1)M ] N - k - I ( N  _ k). 

The exact expected value can be obtained by replacing the number of future 
units term, ( N -  k), with the expected number of future units tested, since 
forward checking will stop testing as soon as a future unit is discovered to have 
no possible labels. Each of these tests of a future unit will succeed with 
probability 1--(1--pk)  M, and reasoning similar to that for the number of 
consistency checks at each node in backtracking will give 

1 - [1 - (1 --pk)UlN-k 
(1 _ pk )M 

for the expected number of future units tested. Thus the expected number of 
consistency checks at level k in forward checking will be 

M k + l p ( k + 2 ) ~ k - l ) / 2 [ 1  - -  (1 __pR-I)M]IV-k-I. 1 -- [1 -- (1 __pk)MlN-k 
(1 __pk)M 

The number of table lookups in forward checking is the sum of the number 
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of consistency checks and the number of nodes. Thus the expected number of 
table Iookups at depth k in the tree search will be 

r Mpk- I 
Mkp  k-' 2[1 - (1 - p k - ' p ' l  [ 1 + 

1 (1 i 

1 - [1 ~ (! ; f ; )U]N-k  ]. 

The expected number of bit vector operations with the bit parallel data 
structure in forward checking can easily be found, by removing the term for the 
number of labels remaining for each future unit from the expression for the 
number of consistency tests, since only one operation will be performed for 
each unit, giving 

Mkpk(k-l)¢2[1 -- (1 __pk-,)U]N-k 1 -- [1 -- (1 __pk)U]N-k 
(1 

for the expected number of bit vector operations at level k in bit parallel 
forward checking. 

The number of table lookups in bit vectors is still the sum of the number of 
bit vector operations and the number of nodes, for 

Mkp~(k-l)J2[1--(1--pk-')U]N-*[1 + 1 -- [1 ~ ( !  ;P)~)U]N-k ] 

table lookups into bit vectors in bit parallel forward checking. 
To illustrate the general form of the expressions we computed for the 

expected number of consistency checks and expected number of solutions, we 
present a few graphs. Fig. 25 illustrates the graph of the expected number of 
consistency checks as a function of tree depth for a random constraint satis- 
faction problem having N = 17 units and labels and a probability p = 0.70 of a 
constraint being satisfied. Notice that the greater number of tests forward 
checking does early in the tree search pays off later in the tree search both in 
terms of number of consistency tests and in number of successful instantiations 
at each tree depth (Fig. 26). 

Fig. 27 illustrates the expected number of solutions as a function of N and p 
parameters of a random constraint satisfaction problem. Increasing N for a 
fixed p eventually causes fewer solutions to exist because the number of 
constraints is increasing quadratically. 

We, of course, expect the number of consistency tests to increase as N 
increases and p remains fixed since the search space is becoming large very 
rapidly. This is shown for the forward checking procedure in Fig. 28. Also 
expected is for the average number of consistency checks per labeling to 
increase as N increases and p remains fixed (Fig. 29). As N increases, the 
problem of finding the first solution as well as all solutions is becoming more 
and more difficult. Therefore, it is not expected for the number of consistency 
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FIG.  25.  T h e  n u m b e r  of  cons i s t ency  tests as a funct ion  of  tree  depth  for  an  N = 17, p = 0 .70  

r a n d o m  constra int  sat i s fact ion p r o b l e m .  

tests per solution to decrease as the number of solutions increases. The reason 
for this is that as the number of solutions increases more of the tests required 
to verify a solution become shared because the solutions have common 
segments. This is illustrated in Fig. 30. 

An experimental check of the theoretical equations for the number of 
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random constraint satisfaction problem. 

so lu t ions  and  n u m b e r  of so lu t ions  at  a g iven d e p t h  in the  t ree  search  with 
r a n d o m  re la t ions  is g iven  in Figs.  31 and  32. A l t h o u g h  the  ave rage  n u m b e r  of 
so lu t ions  is c lose to  the  t heo re t i ca l  resul t ,  the  ind iv idua l  re la t ions  vary  widely.  
The  I ba rs  m a r k  a d i s tance  of one  s t a n d a r d  dev i a t i on  of the  m e a n  above  and 
be low the  ave rage  of  the  tr ials .  

Fig.  33 d e m o n s t r a t e s  the  accuracy  of  the  t heo re t i ca l  express ion  for the  
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expected number of consistency tests with random relations in the forward 
checking algorithm. The total expected number of consistency tests shown is 
calculated from the sum of the expected number of tests for each level in the 
various problem sizes. For this expression to be correct, the expression for the 
expected number of nodes at each level in the forward checking algorithm must 
also be correct. 
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5. The Fail First Principle 

One of the strategies which helps tree searching for constraint satisfaction 
problems is the fail first or prune early strategy of the looking ahead and 
forward checking procedures. There are other ways that we can apply the 
general principle of trying to fail first (and of course remember that fact so that 
there are no unnecessarily repeated mistakes). In this section we discuss two 
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other applications of this strategy. The first is by optimizing the order in which 
we do consistency tests. The fail first principle states that we should first try 
those tests in the given set of tests that are most likely to fail since if they do 
fail we do not have to do the remainder of the tests in the set. 

The second application is in dynamically choosing the optimal order in which 
to process units in each branch of the tree search. Optimal unit order choosing, 
even on a local basis, will not only lower the number of expected consistency 
tests per problem as compared with a random ordering, but it also lowers the 
variance of this average. For the unit order choice, the fail first principle states 
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that  the next  un i t  to choose should be that  one  with the fewest possible labels 
left. 

5 .1 .  O p t i m i z i n g  t h e  c o n s i s t e n c y  c h e c k  o r d e r  in  t ree  s e a r c h i n g  

Suppose we are solving a cons t ra in t  satisfaction p rob lem and suppose uni ts  
1 . . . . .  K have a l ready been  assigned labels !1 . . . . .  lr and  we are t rying to find a 
label  lr+l for uni t  K + 1. The  label  lr+~ must  come from some set Sr+~ of labels 
and  it mus t  be consis tent  with each of the previous  labels l~ . . . . .  it, that  is, we 
must  have (k, lk, K + 1, / r÷l)  ~ R for k = 1 . . . . .  K. To  de t e rmine  the label / r+x,  
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we  s e q u e n t i a l l y  go  t h r o u g h  all t he  l abe l s  in Sr+l a n d  p e r f o r m  the  K c o n s i s t e n c y  

checks :  (k, lk, K + 1, i t ÷ l ) E  R .  If  o n e  c h e c k  fails,  t h e n  we  t ry  t h e  n e x t  l abe l  in 

Sr,+~. If  all  c h e c k s  s u c c e e d ,  t h e n  we  can  c o n t i n u e  t h e  d e p t h  first s e a r c h  w i t h  t h e  
n e x t  uni t .  
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The optimizing problem for consistency checking is to determine an order in 
which to perform the tests which minimizes the expected number of tests 
performed. To set up the optimizing problem, we must have some knowledge 
about the degree to which a previous unit's label constrains unit (K + 1)'s label. 
For this purpose we let P(k) be the probability that the label lk for unit k is 
consistent with some label for unit K + 1. We assume that the consistency 
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checks are independent events so that the probability of the tests succeeding on 
units 1 through K is Ilkr=lP(k). 

For each order of testing, these probabilities determine the expected number 
of tests in the following way. Let k~ . . . . .  kr be a permutation of 1 . . . .  ,K  
designating the order in which the consistency checks will be performed. The 
test (kl, lkl, K + 1, ix+l) E R will succeed with probability P(kl) and fail with 
probability 1 - P(k~). If it fails, we incur a cost of one consistency check and we 
try the next label. If it succeeds, we will have incurred a cost of one consistency 
check and we are committed to try the next test (k2, lk2, K + 1, ix+x)E R. This 
test succeeds with probability P(k2) and fails with probability 1 -P(k2). At this 
point, we have incurred a cost of two tests and may be committed to make 
more tests if this one succeeded. 

Fig. 34 shows the tree of K + 1 possible outcomes. Since the tests are 
assumed independent, the probability for each outcome can be computed by 
multiplying probabilities. For example, the probability of failing on consistency 
check with unit k3 is P(k~)P(k2)(1 -P(k3)). Also associated with each outcome 
is the number of tests performed to get there. For example, failure on the test 
with unit k3 incurs a cost of 3 tests. 

The expected number of tests C performed is computed by 

K i - I  K 

C =  ~ i [1 -  P(k,)] j_~ P(kj)+ K i~: P(k,). 

Upon rearranging and simplifying this expression we obtain 

K - I  i 

Now by the proposition at the end of Section 5, this is minimized by having 
kl . . . . .  kx be any permutation of 1 , . . . , K  satisfying P ( k l ) 6 P ( k 2 ) ~ ' " < -  
P(kr). Hence, to minimize expected numbers of tests, we must choose the 
order so that the tests with units most likely to fail are done first. 

To illustrate the advantage of using optimum consistency test order, we 
consider the 10-queens problem when the units are naturally ordered from 1 to 
N and the current unit is K, then the fail first principle states that tests with 
past units must be done in the order of decreasing constraints. Since the row 
previous to row k has the strongest constraint on row k, the test order should 
be first unit K - l ,  then K - 2 ,  up to unit 1, in the N-queens problem. 
Backtracking requires 1,297,488 tests when done in the wrong order (unit 
1, 2 . . . . .  K - 1) and 1,091,856 tests when done in the right order. It is interes- 
ting to note that Gaschnig's backjumping procedure [3] when done with the 
consistency tests in the wrong order (1,131,942 tests) performs worse than 
standard backtracking with consistency tests in the right order. Furthermore, 
for the N-queens problem, backjumping with consistency tests in the right 
order for the N-queens problem is equivalent to standard backtracking with 
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consistency tests in the right order because backjumping backtracks to the 
highest level at which a failure is detected, and there is always at least one label 
at a given level which fails when checked with the immediately preceding level. 

5.2. Optimizing tree search order 

Every tree search must assume some order for the units to be searched in. The 
order may be uniform throughout the tree or may vary from branch to branch. 
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It is clear from experimental results that changing the search order can 
influence the average efficiency of the search. In this section we adopt the 
efficiency criterion of branch depth and we show how by always choosing the 
next unit having smallest number of label choices we can minimize the 
expected branch depth. 

Suppose units 1 . . . . .  N are units which are yet to be assigned labels. Let 
n (m) be the number of possible or available labels for unit m. We assume that 
each of the n ( m )  labels possible for unit m has the same probability q of 
succeeding and that success or failure of one of the labels is an independent 
event from success or failure for any of the other labels. Thus, the probability 
that a unit m will not have any label that succeeds is (1 - q)~e,). The probability 
that some label for unit m succeeds is, therefore, P ( m ) =  1 - ( 1  _q)~<r~). Un- 
fortunately, this analysis holds only for the first level of the tree. 

Let  k~, . . . ,  kn be the order in which the units are searched on the tree. Let 
Pn(kn I kt . . . . .  kn-1) be the conditional probability that some label for unit kn 
will succeed when unit k, is the nth one in the tree search order given that 
units k~ . . . . .  kn_~ are the first n -  1 units searched in the branch. We assume 
that the probability of a label for unit kn succeeding depends only on the 
number of units preceding it in the tree search and not upon which particular 
units they are. That  is, 

P,(kn [ k~ . . . . .  k,,,-1) = P,,(k, l l, . . . . .  l._~) 

for all labels Ii . . . . .  ln_~. This conditional independence assumption justifies the 
use of the notation P. (k,) to designate the probability that some label succeeds 
for unit k, when it is the nth unit in the tree search, and we will call the 
probability that an arbitrary label for unit u will succeed when checked against 
another arbitrary unit-label pair the success probability for unit u. 

Units which are searched later in the tree typically have lower probability for 
a label succeeding since the label must be consistent with the labels given all 
the earlier units. We want some way to compare the probability of success for 
the same unit in different tree searches. Since the success probability depends 
only on the unit and its level in the tree and since units later in the tree have 
lower success probabilities, we assume that the success probability for a unit u 
when it is at level i in one tree search is related to the success probability of 
unit u when it is at the first level of another tree search by a constant factor 
a i-~ where O < a  ~< 1: 

P ( u ) a  '-~ = P , ( u ) .  

The best search order is the one which minimizes the expected length or 
depth of any branch. When the units are searched in the order kl, . . . ,  ks, the 
expected branch depth is given by 

N-1 n 
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By the proposition at the end of Section 5, this is minimized when the unit 
chosen at each level is that unit whose success probability is smallest. Thus at 
level j we choose unit kj, where 

Pj(kj)<<-Pj(u) for u #  kl . . . . .  kj-l. 

Now, Pi(kj)= a J - l [1 -  ( 1 -  qn(kj))]. Since 0 <~ q ~< 1, this expression is minimized 
by choosing k~ to be that unit having the smallest number  of possible labels. 

To illustrate the advantage of using a locally optimal unit order for each 
branch in the tree search, we consider the improvement achieved on the 
N-queens  problem and random relation problems. The number of consistency 
tests required is given in Tables 1 and 2. Some improvement is shown in the 
larger N-queens  problems, and considerable improvement appears in the 
larger random relation problems. Fig. 35 demonstrates that the improvement 
increases with problem size in the random relation problems with p = 0.65 and 
number of units = number of labels = N. 

The reason why optimal unit order usually improves forward checking more 
than backmarking is that forward checking has more information about future 
units than backmarking. Therefore,  forward checking's choice of the next unit 
most likely to fail is more likely to produce a unit which fails than backmark- 
ing's choice. 

PROPOSITION. Let 0 < ct <~ 1 be given. For each unit u let P(u)  be its initial success 
probability. Let kl . . . . .  kN be any permutation of 1 . . . . .  N satisfying P ( k l ) <  
P(k2)<  " "  < P(kN). Define Pn(u)= an-lP(u). Then, 

N - 1  n N - I  n 

~ .I'! Pj'(kj)~ 2~. ]-'[ P~(u,) forany permutation ul . . . . .  UN Of 
n = l  ~ n = l  J = l  

= 1 . . . . .  N .  

Proof. Let ut . . . . .  UN be any permutation of 1 . . . . .  N minimizing 

N - 1  n 

If ut . . . . .  UN equals kt . . . .  , kN we are done. If ul . . . . .  UN does not equal 
kt . . . . .  kN, let m be the smallest index such that um# kin. Also let m'  be the index 
such that Ur,# kin. Also let m'  be the index such that urn, = k,,. Define the 
permutation it . . . . .  iN by 

in = Un, n #  m or m', 

im = urn,, 

ira, = urn. 

We will prove a contradiction by showing that 

N - I  n N - I  n 
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/ 
b y  l o o k i n g  at the  p r o d u c t s .  T h e r e  are  t h r e e  c a s e s :  n < m, m ~< n ~< m ,  a n d  

C a s e  1: n < m. H e r e  s i n c e  i s = uj, j = 1 . . . . .  n,  w e  o b t a i n  

n n 

C a s e  2: m ~ n < m ' .  

o . 

,~ P,(i,) = P,. (urn) ~=~ Pj(i~) = Pm (u. , )  ~=l P,(u,). 
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Now, *am (u~,) = P~ (k,,) <Pm (u) for any u ¢ kl . . . . .  km-l. Since um ~ kl . . . . .  kin-l, 
Pm (u~,) < P~ (Urn) and 

n n 

(ii) = P" (u. ,) f i  ej(uj) 11 < /'j(uA. 

Case 3: rn' <~ n. 

Hence, 

" e . O , . ) e . , ( u . , ) f i  
,~= Pi(iJ) = P,.(um)Pm,(um,) ~=~ P~(ij) 

= Pm(i,QPm,(im,) h P j ( u , )  
I'm (u,. )I'm'(Um') ~=~ 

P,.(um')P,.'(um) h Pj(u,) 
=Pm (u,.)P,..(u,..) M 

otm-lp(um,)otr,,'-te(u, ) n 
= 

n 

= g ( u i ) .  

N - I  n N - 1  n 

contradicting the minimality of ul . . . .  , UN. Therefore,  ut . . . . .  UN = kl . . . . .  kN. 

6. Conclusion 

Using complexity criteria of number of consistency checks and number of table 
iookups we have shown analytically and experimentally the efficacy of the 
remembering and fail first principles in constraint satisfaction tree search 
problems. A new search procedure called forward checking has been described 
and it combined with optimal unit order choice leads to a more efficient tree 
search than looking ahead or backmarking. A data structure that takes ad- 
vantage of a computer 's  natural ability to process bit vectors in parallel can 
make forward checking even more efficient. This suggests that the entire set of 
lookahead operators described by Haralick et al. [3], Haralick and Shapiro [6, 
7], the discrete relaxation described by Waltz [16] and Rosenfeld et al. [14] 
would be more efficiently implemented by omitting the consistency tests 
required by future units against future units. Further analytic and experimental 
work needs to be done to determine if this in fact is generally true, whether it is 
only true when every unit constrains every unit or in the problem discussed in this 
paper. Applicability of the forward checking idea to inference and theorem 
proving algorithms needs to be tested and this will be the topic of a future paper. 
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