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ABSTRACT

We describe a vertex partitioning method and squeeze tree search technique, which can be used to
determine the automorphism partition of a graph in polynomial time for all graphs tested, including
those which are strongly regular. The vertex partitioning procedure is based on first transforming the
graph by the 1- or 2-subdivision transform or the 1- or 2-superline transform and then employing a
distance signature coding technique on the vertices of the transformed graph. The resulting adjacency
refinement partition of the transformed graph is reflected back to the original graph where it can be
used as an initial vertex partition which is equal to or coarser than the desired automorphism partition.

The squeeze tree search technique begins with two partitions, one finer than the automorphism
partition and one coarser than the automorphism partition. In essence, it searches through all
automorphisms refining the coarser partition and coarsening the finer partition until the two are equal.
At this point the result is the automorphism partition. The vertex partitioning method using the
2-superline graph transform preceeding the squeeze tree search is so powerful that for all the graphs in
our catalog (random, regular, strongly regular, and balanced incomplete block designs) it produces
the automorphism partition, thereby making the iree search nothing more than a verification that the
initial partition is indeed the automorphism partition.

1. Introduction

The efficient determination of whether two graphs are isomorphic is of great

interest to the artificial intelligence, scientific, and mathematical communities.
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Graph isomorphism algorithms are currently used in all artificial intelligence
applications requiring a matching between graph and relational structures.
Such matches are required in object identification by structural techniques.
Exact matching corresponds to finding isomorphisms. One technique for in-
exact matching corresponds to finding maximal domains on which monomor-
phisms can be established [3]. Additional examples occur in chemical structure
matching [23], parallel computer network classification [18], and image scene
analysis [10, 31], to name a few.

The dominant feature of all algorithms which either determine whether an
isomorphism exists or construct an isomorphism if one exists is an exponential
tree search, in the worst case. There is currently no known way of avoiding the
tree search.

There have been published algorithms which make the tree search more
efficient than simple backtracking. Among them are Gaschnig’s [6] backmark-
ing, Haralick and Elliott’s [9] forward checking, the Schmidt and Druffel [20]
use of distance matrices, the Bhat [1] use of vertex coding, and the discrete
relaxation technique which was originally discovered by Ullmann [26, 27], used
by Waltz [29], and analyzed as well as generalized by Haralick and Shapiro
[10, 11].

An equivalent problem to the graph isomorphism problem is the graph
automorphism partition problem. The automorphism partition of a graph
consists of cells satisfying that two vertices are in the same cell if and only if
there exists an isomorphism from the graph to itself mapping the first vertex to
the second. Construction of the automorphism partition of a graph is com-
putationally equivalent to the determination of whether there exists an
isomorphism between two graphs [12]. To see this for the case of connected
graphs, first construct a graph which is the disjoint union of the two given
connected graphs which are to be tested for isomorphism. Then construct the
graph automorphism partition for the disjoint union. The original two graphs
are isomorphic if and only if there exists one cell of the automorphism partition
containing a vertex from each of the original graphs. Of course, if one such cell
is found, the connectedness of the original graph forces each cell to have such a
pair.

The graph automorphism partition has other uses. Since it is in essence an
encoding of the symmetries of the graph, having the automorphism partition
available can be of definite aid in the tree search employed in determining
graph monomorphisms, a problem often called the subgraph isomorphism
problem.

Symmetry information contained in the automorphism partition can also be
used to prune backtracking tree searches. The tree search can maintain the
automorphism partition of the data structures searched thus far. Then, when
new structures are generated, the symmetries in the partition can be used to
detect and eliminate redundant branches in the search.
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In this paper we consider the construction of the graph automorphism
partition. We describe a vertex coding technique which appears to be more
powerful than any previously existing one. This vertex coding is used to
determine an initial partition which is guaranteed to be equal to or coarser than
the automorphism partition. In fact, however, we have no regular graphs in our
catalog for which the partition determined by the vertex coding scheme is not
the automorphism partition. In any case, the coarser partition is employed
along with forward checking in a new squeeze tree search technique for
determination of the automorphism partition. The squeeze tree search is one
which, in essence, begins with a partition guaranteed to be equal to or finer
than the automorphism partition and another one which is guaranteed to be
equal to or coarser than the automorphism partition. These two partitions
bound the automorphism partition. In the squeeze tree search technique, as
automorphisms are searched for, the finer partition is coarsened and the
coarser partition is refined. The automorphism partition is produced when the
finer partition and the coarser partition become identical.

Our results are all experimental and prove the efficiency of the forward
checking squeeze tree search technique even when there is no preceeding
vertex coding on either random graphs, where the tree search is typically
trivial, or on large and highly symmetric regular graphs, where the tree search
is more substantial. When the computational complexity criterion is the num-
ber of operations employed in the tree search as a function of graph size the
computational complexity for the vertex coding and squeeze tree search is, on
the average, polynomial time with the average order of the polynomial being
approximately 6.

Section 2 concisely defines all the relevant technical graph theoretic terms we
use in the paper. Section 3 discusses some of the vertex invariants which have
appeared in the literature and which are the basis of vertex coding. Section 4
discusses graph transforms and introduces the k-line graph transform and the
k-superline graph transform which when employed along with the vertex
coding of Section 3 produces the automorphism partition, without any tree
search, for all strongly regular and balanced incomplete block design graphs in
our catalog. Section 5 discusses the squeeze tree search technique. Finally,
Section 6 presents an analysis of experimental results.

2. Definitions

A graph G consists of a nonempty set of vertices V(G), and a (possibly empty)
set of edges E(G) containing unordered pairs of vertices from V(G). Two
vertices u, v € E(G) are said to be neighboring or adjacent. We let p = |V(G))
and g = |E(G)|. The degree d(v) of a vertex v € V(G) is the number of edges
incident with v, i.e., d(v)=|{(n, v): (4, v) € E(G)}|. The degree sequence of a
graph G is the ordered p-tuple (d(v:), d(v2), ..., d(v,)), where v; € V(G) and
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d(v)=d(v) if i=<j. A regular graph is graph in which all vertex degrees are
the same. A graph is simple if there are no multiple edges and if each edge
connects two distinct vertices. A graph is connected if there exists a path of
edges between any pair of vertices. We consider only simple, connected graphs.

Two graphs G1 and G2 are isomorphic (denoted G1= G?2) if there exists a
bijection ¢ mapping the vertices of G1 to the vertices of G2 such that, for any
u, v € V(G1),

(v, v) € B(G1) & (8(w), 8(v)) € E(G2).

In other words, the bijection ¢ preserves adjacency. An automorphism of a
graph is an isomorphism of the graph onto itself. The set of all automorphisms
of a graph G forms the automorphism group AUT(G) of the graph. AUT(G)
induces a partition on the vertices of G, where two vertices u, v € V(G) are in
the same class (or cell) if and only if there is an automorphism in AUT(G) that
maps u to v. This partition is the automorphism partition of G, denoted by
wa(G). Vertices in the same cell of mA(G) are said to be indistinguisable or
similar (denoted v = u); vertices in different cells are distinguishable. A graph
G is said to be transitive if its automorphism partition consists of one cell (that
is, |ma(G)| = 1) and non-transitive if |mo(G)| > 1.

A graph invariant is a function F whose domain is the set of all graphs G*
and whose range is some set X such that for any two graphs G1, G2€ G*

G,=G, > F(G1)= F(G2).

Two graphs G1 and G2 are distinguishable, and therefore not isomorphic, if
there exists some graph invariant F such that

F(G1)# F(G2).

Some simple graph invariants are: number-of-vertices(G), the function that
assigns |V(G)| to G; number-of-edges(G), the function that assigns |E(G)| to
G, degree-sequence(G), the function that assigns to G its degree sequence.

A vertex invariant is a function f whose domain is the cartesian product of
the set of all graphs G* and the set of all vertices, and whose range is some set
X such that for any graph G and any pair of vertices u, v € V(G)

u=v > f(G, u)=f(G,v).

Two vertices u, v € V(G) are distinguishable, and therefore not similar it
there exists some vertex invariant f such that

fIG, u) # f(G, v) .

Example vertex invariants are: degree(G, v), the function that assigns to
v € V(G)its degree d(v); number-of-N-clique(G, v), the function that assigns to
v € V(G) the number of N-cliques in G that contain v.
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A vertex invariant f can be used to induce a partition on the vertices of a
graph G such that for any two vertices u, v € V(G), u, v are in the same cell if
and only if f(G, u)=f(G, v). We denote the vertex partition induced by a
vertex invariant f as w;(G). Note that by definition of vertex invariants, for
u, v € V(G) and any vertex invariant f,

u=vp = u,v are in the same cell of m(G).

In other words, m;(G) is as coarse or coarser than 7,(G), the automorphism
partition of G. We denote this coarsening relationship as

7 G) = walG).

By using vertex invariants to induce vertex partitions, we are guaranteed that
partitions finer than wa(G) will never be generated.

Given any vertex partition mx(G)= wa(G), 7x(G) can be refined using
vertex adjacencies. Assume that the classes of the partition are labeled from 1
through k consecutively and the class label for a vertex u € V(G) is given by
CLASS[u]. Define N(u) to be {v: (4, v) € E(G)}, the neighborhood of u. For
each vertex u € V(G) construct the neighborhood class vector of u

(CLASS[u], CLASS[v1], CLASS[v2], . .., CLASS[V 4]

where the v; consist of all of the vertices in N(u) and are sorted from lowest to
highest class number. New classes are formed by placing all vertices with the
same new neighborhood class vector in one class. The new class numbers may
be assigned arbitrarily or they may be assigned by a lexicographic sort on the
neighborhood class vectors. The refinement process iterates until no more new
classes are added. The process must eventually terminate since the partition
can have no more than p classes. The termination partition is called the
adjacency partition induced by mx. Mathon [16] has shown that the adjacency
partition formed by neighborhood class vectors is unique. For a graph G and a
partition 7 = 7,(G) the adjacency partition o induced by = satisfies the
following rules.

(1) Any vertex in a cell G € o is adjacent to the same number P of vertices
belonging to Ci € o, 1<, k <|a|, where |o| is the number of cells in o.

(2) Of all such partitions satisfying (1) the adjacency partition induced by 7
has the smallest number of cells.

Unless stated otherwise, we let 7(G) denote the adjacency partition induced
by the vertex invariant f on graph G. By definition of vertex invariants and
theorems presented by Mathon [16],

m(G)= ma(G).

Thus, the adjacency partition induced by any vertex invariant f is as coarse
or coarser than the automorphism partition.
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3. Vertex Invariants

One of the simplest vertex invariants is degree(G, v), the function that assigns
to each vertex v € V(G) its degree d(v). The adjacency partition 7 gegree(G)
does not distinguish vertices in non-transitive regular graphs. Fig. 1 illustrates
one such graph.

A stronger invariant utilizes a logical extension of vertex degrees. Define the
distance D(u, v) between two vertices u, v € V(G) to be the length of the
shortest path connecting u and v, where D(u, v)= p when u and v are not
connected, and D(u, v) =0 when u = v. Define the diameter A of a graph G to
be MAX{D(u, v): u, v € V(G)}. We define the vertex distance-k-degree di(v)
of a vertex v to be the number of vertices at distance k from v. Some
relationships satisfied by distance degrees are

(1) do(v) =1,

(2) di(v) = d(v), the degree of v,

(3) di(v)=0, for j > A,

a
(4) 2i=0 di(U) =D
We define the distance signature DSIG(G, v) of a vertex v € V(G) to be the
tuple whose kth component is the distance-k-degree of v

DSIG(G, v) = (di(v)dy(v) -+ - da(v))

DSIG(G, v) is a vertex invariant, and the adjacency partition induced by
vertex distance signatures is called the distance partition mp(G) of G. Note that
T gegree{ G) = p(G) since the first component of DSIG(G, v) is exactly the vertex
degree invariant. Fig. 1 illustrates a graph in which mgege.(G) # mp(G). Dis-
tance functions form the basis of a number of vertex partitioning algorithms
[1, 20].

FIG. 1. Graph showing different distance partitions. 7gegree(G1)={(123 4567 8)}, mp(G1)={(12
34)(5678)}, (S (mp(SHG))={(12) 34) (567 8)}, ma(G1)={(12) (34) (567 8)}
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We refer to the set of graphs examined during the course of our research as
our catalog. There are many graphs in our catalog for which 7p(G)> 7a(G)
(see Fig. 1). Such graphs are most often members of a special class: strongly
regular graphs (note that the graph in Fig. 1 is not strongly regular). A graph is
strongly regular (SR) if each vertex has the same degree and any two adjacent
vertices have the same number of common neighboring vertices and any two
non-adjacent vertices have the same number of common neighboring vertices.

A property of a graph G € SR is, for any u, v € V(G),

dk(u)=dk(?)), k=0,1,...,p,

For this reason algorithms employing 7p(G), as well as many other distance
partitioning algorithms, cannot distinguish between distinct vertices in strongly
regular graphs. To avoid total tree searches in analyzing such graphs, stronger
invariant functions are required. The next section discusses two approaches to
obtaining stronger invariants by first transforming the original graph to a new
graph and then employing the distance signature invariants discussed in this
section.

4. Graph Transforms

We define a graph transform (graph-valued function) to be a function with
domain and range consisting of the set of all graphs G*. A graph transform
projects sets of vertices in the domain graph to sets of vertices in the transform
(range) graph. Note that some vertex sets may not have an image in the
transform graph. Each graph transform may be divided into two parts: a vertex
transform and an edge transform. The vertex transform determines how vertices
are formed in the transform graph, and the edge transform determines how
edges are formed. For example, in the complement graph transform C(G), the
vertex transform is

V(C(G) = V(G)
and the edge transform is
E(C(G))={(u, v): u# v, (u, v) # E(G)}.
The line graph L(G) transforms are
V(L(G)) ={(w, v): (u, v) € E(G)},
E(L(G)) = {((«x, v), (v, w)): u# w, (1, v) € E(G), (v, w) € E(G)}.

The edge-deleted-subgraph e\(G) is obtained by deleting edge e from E(G).
The corresponding vertex and edge transforms are

V(e\(G)) = V(G),
E(e\(G)) = {(u, v): (u, v) # e, (u, v) € E(G)}.
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Figs. 3, 4, and 5 illustrate these graph transforms on the graph in Fig. 2. We
observe that vertices and edges in the transform graph are somehow related to
vertices and edges in the original graph. In the complement graph transform
for example, the relationship between V(C(G)) and V(G) is simply the
bijection of the vertices of C(G) to the vertices of G.

Our main interest lies in determining the relationship between vertices and
edges in the transform graph to vertices in the original graph. In particular,
given a vertex or edge partition in the transform graph H(G), we wish to
induce a vertex partition in the original graph G using the vertex-edge to
vertex relationship defined by the graph transform H. We denote this induced
vertex partition by H™ ! (w(H(G)).

6
G3=CI(G2)

FIG. 2. Example graph for transformations.  FIG. 3. Complement graph transform example.

G4 = L(G2) Gb =e\(G2)

F1G. 4. Line graph transform example. Fic. 5. Edge-deleted graph transform example.
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In order to simplify the process of inducing a partition on the vertices of the
original graph, the original vertices can be directly represented in the transform
graph. Thus the class label of a vertex in the original graph is exactly the class
label of its direct counterpart in the transform graph.

Of course, since our goal is to compute the automorphism partition, we are
not interested in transforms that induce partitions finer than the automorphism
partition in the original graph. For this reason we define an invariant graph
transform to be a graph transform H that, for any graph G and any vertex
invariant f,

H(m(H(G)) = ma(G)

That is, a partition on the vertices of G, induced by a partition on the
components of H(G) (induced by the vertex invariant f) must be as coarse or
coarser than the automorphism partition of G in order for H to be an invariant
graph transform. The complement and line graph transforms are invariant,
whereas the edge-deleted-subgraph transform is not.

4.1. The k-subdivision transform

The k-subdivision graph $*(G), k=0, is another example of an invariant
graph transform. S$*(G) is obtained by placing k new vertices on each edge of
G. We note that S%G) is G itself. The vertex and edge transforms of S$'(G) are

V(S(G)) = V(G) U{(u, v): (u,v)E E(G)},
E(SY(G) = {(u (w, v)): (u,v)EE(G)}.

Fig. 6 illustrates the 1-subdivision graph of the graph in Fig. 2. It follows
that

[V(S* (G =p+kq, |ESHG) =(k+1)yq.

G6=51(G2)

FIG. 6. 1-subdivision graph example.
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Computation of the induced partition (S$*)(w(S*(G))) is straightforward:
the partition cell label for vertex u € V(G) is just the partition cell label for
u € V(§%(G)), where u corresponds to an element of the first set in the vertex
transformation above. It is an advantage to let V(G) be a subset of the vertices
in the transform graph since the class of a vertex in V(G) is directly derivable
from the class of the corresponding vertex in the transform graph. This is the
case for the complement and k-subdivision transforms but it is not the case for
the line graph transform discussed in Section 4.2,

Initial experiments using vertex distance signatures in the 1-subdivision
graph to induce partitions in strongly regular graphs indicate that the induced
vertex partition is exactly the automorphism partition for all 13 strongly regular
graphs in our catalog. Refer to Weisfeiler [30] for a list of these graphs. This
seems to be a significant result since published algorithms (not employing tree
searches) have not been successful in distinguishing between vertices in stron-
gly regular graphs, and in most cases these algorithms produce partitions
consisting of one cell when |7a| > 1 [1, 20]. It should be noted that the Bhat
algorithm is capable of distinguishing between the four non-isomorphic stron-
gly regular graphs on 28 vertices, even though it fails to produce the automor-
phism partitions of these graphs.

One explanation for the increased strength of (§)! (wp(SY(G))) is that the
subdivision vertices in S'(G) (vertices in the second set of the vertex transform)
effectively label the edges of G, allowing both edges and vertices to be
accounted for. Define the edge distance degree e, (x) to be the number of edges
at distance k from x, where x is either a vertex or an edge. The induced
partition (S)™' (7(SY(G))) transforms the distance signature of each vertex
v € V(G) into

(ei(v)di(v) - - - es(v)da(v)esa(v)
where A is the diameter of G. In addition, the edges of G are also partitioned
{di(x)ei(x) - - da(x)ea(x)d ar1(x))

where x € E(G). The combination of edge and vertex distance degree sig-
natures induces partitions on the original vertices of G that are at least as fine
as wp(G), and produces wA(G) in most graphs in our catalog, including
strongly regular graphs. For example, in Fig. 1 (S)) Y(mp(SY(G 1)) = wa(G1).

We know of only one graph for which (') '(mp(SY(G))) = (S (7 (SHG)))
(see Fig. 7). However, for this graph the 2-subdivision transform induces the
automorphism partition.

The graph in Fig. 7 can be visualized as follows: the solid edges form a
symmetric torus in which all vertices are similar, and the dashed edges remove
some of the symmetries by distinguishing groups of vertices. As Fig. 7 shows,
S$*(G) potentially provides more information than $'(G). Intuitively, by placing
two vertics on each edge, we can assign directed labels to edges, whereas the
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FiG. 7. Adjacency list for 2-subdivision example. (S'Y ' (mp(SHG 7)) == walG7), (S (7p(SHGT)))
= 7a(G7). Identify the labelled vertices to form a torus.

1-subdivision graph only assigns undirected labels to each edge. In other words,
two labels per edge orients the edge in relation to the labels of its endpoints. It
is not known if there exists a graph G such that

(S Hap(SHGY) > (S*) (mp(SH(G)), k>2
but we conjecture that no further distance information is gained for k > 2.

4.2. k-line and k-superline graph transforms

Observing that the k-subdivision transform somehow enhances edge distance
information, we now determine the effects of the line (edge) graph transform
on vertex partitioning.

First note that the line graph L(G) of some graph G may be empty, that is,
|V(G)| =0, |E(G)| =0. Traditional graph theory requires V(G) to be non-
empty, but if needed, we assume the empty graph to be acceptable. We take
this approach in defining the k-line graph L*(G):

(1) LYG) = G,

(2) LY(G)= L(G), the line graph of G,

3) LKG)=LY(L*"(G)), K=1.

It follows by definition that

(8°) ! (mp(SUG))) = (L) (mp(SU(G))) -
Experiments also indicate
(SH(mp(SH(GY) = (L) (7 (LY(G))

that is, the distance adjacency partition induced by L'(G) is the same as the
distance adjacency partition induced by S'(G) for all graphs G in our catalog.
The reason for this similarity is related to the assignment of undirected labels
to the edges of the original graph by both transforms. In the case of the
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1-subdivision graph, the edge labels in the original graph correspond to the
subdivision vertices in the transform graph, whereas in the 1-line graph each
edge label corresponds to a vertex in the transform graph. There is a direct
correspondence between vertices in the 1-line graph and subdivision vertices in
the I-subdivision graph. Fig. 8 illustrates this correspondence by superimposing
a graph and its 1-line graph.

The vertices labelled X and the dashed edges form the 1-line graph of the
original graph. We note that the 1-subdivision graph is obtained by simply
deleting the dashed edges from the superimposed 1-line graph.

The k-line graph transform does not preserve the original vertices in the
transform graph. This makes the computation of the induced vertex partition in
the graph difficult. As noted earlier, computing the induced partition in the
original graph is trivial when the original vertices are represented in the
transform graph. The line graph transform can be modified to preserve the
original vertices by superimposing the line graph on the original graph,
producing the k-superline invariant graph transform. The k-superline graph
SL*(G) of a graph G is defined as follows:

V(SLY(G)) = U V(L/(G)),

E(SLH(G) = EUXG) U UES'TI©GN).

The k-superline transform preserves the original vertices, and the class label of
a vertex in the original graph is just the class label of the corresponding vertex
in the k-superline graph. Experiments show that

(SL}) (mp(SLX(G))) = (L*) ! (mp(L¥(G))) »

so we assume the k-line and k-superline partitions to be equivalent.

F1G. 8. 1-Line graph superimposed on original graph.
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@ @

Go sL1(GO) SL2(G9)

FIG. 9. A graph with l-superline and 2-superline transforms.

Even though the partitions may be equivalent, computation and space
requirements for each transform are drastically different. The k-line transform
requires k vertex to edge to vertex class label transformations to induce a
partition in the original graph, but uses considerably less vertices than the
k-superline graph. In contrast, the induced vertex partition of the original graph
can be computed directly from the k-superline graph, but requires more vertices
than the k-line graph. Fig. 9 illustrates a graph and its 1-superline and 2-superline
transforms with only the original vertices labelled.

A balanced incomplete block design BIBD(p, k, A) is a collection of k-
subsets, called blocks, of a p-element set V such that every 2-subset of V' is
contained in exactly A blocks. Relating to a graph G, the set V corresponds to
V(G) and the 2-subsets correspond to E(G). For the class of non-transitive
graphs BIBD derived from balanced incomplete block designs, the partition
induced by the 2-subdivision graph partition is coarser than the automorphism
partition ((S?) ' (mp(S*G)))= ma(G), G € BIBD). However, experiments on
BIBD’s in our catalog indicate that

(SL2) ! (m1p(SLXG))) = ma(G), G € BIBD

In fact, no graphs have been found wherein the distance adjacency partition
induced by the 2-superline graph is not exactly the automorphism partition, and
it seems that such graphs may be very large. We conjecture that for the class of
3-level regular graphs [16] (strongly regular graphs are 1-level regular),

(SL?) (mp(SLAG)) = ma(G) -

The only known non-transitive 3-level regular graph has 139300 vertices
[16], which is too large to be studied on our current graph analysis system. The
increased strength of the 2-superline transform over the 2-subdivision trans-
form indicates that the 2-superline transform does more than directed edge
label assignment in the original graph.

To conclude this section, we summarize the experimental results on distance
adjacency partitions induced by several invariant graph transforms.

F Y (mp(F(G)) = ma(G),
(SLY) ! (mp(SLYG))) = (8°) H(mp(S*(G))),
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(SLY) ! (mp(SLYG))) = (§') (mp(S(G))),
(SL?) ! (mp(SLAG))) = (S?) (mp(S*(G))),
(S*) W (ap(SHG)) < (S ) W m(SFN(G)), k=1,
(SL*) !(mp(SLX(G))) = (SL* 'Y '(mp(SL* H(G))), k=1,
(SLY) (mp(SLA(G))) = ma(G)
for graphs in our catalog, including SR and BIBD graphs

where

F(G): any invariant graph transform,
Sk¥(G): k-subdivision graph transform,
SL*(G): k-superline graph transform.

5. The Squeeze Tree Search

A few basic definitions are required in order to describe the squeeze tree
search for the automorphism partition. We assume that the vertices in V(G)
are numbered consecutively from 1 to p. Given a permutation X of V(G), we
denote the ith vertex element of X as X[i]. The identity permutation I is
defined to be the permutation whose ith element is the vertex { (I[i]=1i). A
permutation X of V(G) is an automorphism of G, denoted X € AUT(G), if

(X[il, XUDE EG) & (,))EE(G), 1<ij<p. (1)

We refer to (1) as a consistency check.

First we describe the basic search for the automorphism partition of a graph.
The basic search is inherently exponential since all p! permutations are
generated, making this method impractical even for small values of p. It
proceeds as follows. A vertex relation

R : V(G)x V(G)—{SAME, DIFF, UNKNOWN}

is initialized to R(u, u)=SAME, u € V(G), else R(u, v) = UNKNOWN. Dur-
ing the basic tree search R is updated and has the following meaning:

R(u, v)=SAME = u=vy,
R(u, v) = DIFF = u#v,
R(u, v) = UNKNOWN = u=voruzv.

The tree search successively generates all permutations of V(G) and each
permutation X is checked for membership in AUT(G) using (1) above. If
X € AUT(G), then R is updated as follows.

If R(X[i], i) = UNKNOWN,
then R(X[i], i)=SAME, 1<i<p.

After all permutations have been generated, R represents the automorphism
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partition of G, i.e,,
R(u,v)=SAME & u=v.

So far the R relation is only updated at level p by adding the SAME relation
between vertices when there exists an automorphism mapping one vertex to
the other. R may also be updated at level 1 by noting that if the tree search
discovers no automorphism mapping level 1 vertex u to v, then u# v. Hence R
may be updated by making R(u, v)=DIFF. This information constrains all
subsequent vertex selections at each level of the tree search by eliminating all
partial permutations in which R(X[{], i) = DIFF for some i less than or equal
to the current level. In this modified tree search the consistency check (1)
becomes

R(X[i], i) # DIFF and (X[i], X[j]) € E(G)& (i, k) € E(G),
1<ij=<p. 2

This consistency check potentially eliminates more and more branches as the
tree search progresses.

Tree searches involving R can be viewed as two separate but cooperating
searches. The first search starts with a vertex partition oc(G) which is coarser
than wa(G), refining oc(G) when new DIFF information is added to R. The
second search starts with a partition 77£(G) consisting of p cells, coarsening
op(G) when new SAME information is added to R. The tree search terminates
when o(G) = 0<(G), which is exactly the automorphism partition.

The first improvement to the basic tree search is to convert it into a
backtracking tree search [2]. In the backtracking search the permutations are
generated by adding one vertex at a time, performing a consistency check on
the partial permutation before any new vertices are added. The first vertex is
added at level 1, the second at level 2, and so on, so that at level k in order for
the assignment k to X[k] to remain it must satisfy the consistency checks

R(X[k), k)# DIFF and (X[i], X[k]) € E(G) & (i k)€ E(G),
1=i<k. 3

At each level k one new vertex is added at X[k]. If (3) is not satisfied then
there is no automorphism in which the first k elements exactly match the first k
elements of X, so it is not necessary to search any deeper. If (3) is satisfied at a
level less than p then the search continues on the next level. When all choices
at the current level have been exhausted the tree search backtracks to the
previous level where the selection process resumes. If (3) is satisfied at level p,
then X € AUT(G) and R is updated as follows.

If R(X[i], i) = UNKNOWN,
then R(X[i],i)=SAME, 1=i=<p.
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The tree search terminates when an attempt is made to backtrack prior to
level 1. Upon termination R represents the automorphism partition as in the
basic search. The backtracking tree search in general eliminates many non-
automorphic permutations that would have otherwise been generated by the
basic search,

By modifying the consistency check (3) R can be used to decrease the
number of automorphisms needed to determine 74(G). Consider the complete
graph Ks on 5 vertices. ma(K5) = {(12345)} and there are 5! = 120 possible
permutations of the 5 vertices, all of which are automorphisms. However, note
that only two automorphisms are required to exactly determine the automor-
phism partition! For example, for the mapping

original vertex: 12345
assigned vertex: 23451

we have by transitivity,
1=2=3=4=5

from which we conclude that wA(K5)={(1234 5)}. Thus by taking a transitive
closure on R, permutations that would provide no further updates to R can be
eliminated from the tree search. A vertex u which is similar to a vertex v which
is similar to w must imply that vertex u is similar to w. Likewise a vertex u
which is similar to vertex v which is different than vertex w must imply that
vertex u is different than vertex w.

The transitive closure of R is computed by repeating until no change occurs
for each vertex pair (i, v):

(1) R(w, v)=SAME and R(v, w)=SAME = R(u, w)<—SAME;

(2) R(u, v)=SAME and R(v, w) = DIFF = R(u, w)<« DIFF.

The transitive closure of R efficiently combines the information gained at
level 1 with level p. Experiments show that on graphs with |ma(G) > 1,
backtracking tree searches employing the transitive closure of R require less
consistency checks and generate less nodes than' basic backtracking, When
|mA(G) = 1, R provides no additional information since DIFF can never be
added.

Now consider the example in Fig. 10 of permutations generated by a
backtracking tree search on K.

Using a natural vertex selection order for generating automorphisms, only 4
out of 120 automorphisms actually modify R. Before the tree search starts
or(G)={(1) (2) (3) (4) (5)}. The first permutation, P1, is the identity and does
not modify ox(G). P2 verifies that 4=5 and ox(G) is changed to {(1) (2) (3)
(4 5)}. P3 verifies that 3 is similar to 4 and 5 and o(G) becomes {(1) (2) (34 5)}.
P4, however, adds no new information since it has already been verified that 5
is similar to 4 and 3 is similar to 5. The same holds true for P5 and P6. P7
changes o(G) to {(1) (2345)} and P9 finally produces the automorphism
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permutation ae(A)

P1 12345 ()

P2 12354 (45)

P3 12435 (345)

P4 12453 *no change*
P5 12534 *no change™
P6 12543 *no change*
P7 13245 (2345)

Pg* 13 % % *no change*
P9 21345 (12345)
P10* R T *no change*

Fi1G. 10. Permutation trace for K.

partition {(12345)}. P8* and P10*, representing the remainder of the per-
mutations, add no new information. Observe that no new information is added
when the current and all previous vertex mappings in the partial permutation X
are between vertices that have already been determined similar by some
previous permutation. For example, in P5 1 and 1 are similar, 2 and 2 are
similar, and 5 and 3 are similar. The current permutation must be fully
explored when a vertex is initially mapped to itself. P2 illustrates this point;
even though 1 is similar to 1 the partial permutation must still be fully
explored. In addition, if there is any vertex mapping on a previous level
between vertices that have not been determined similar, then the search must
fully explore the current partial permutation.

The consistency check (3) can be modified to reflect the selections of the
previous example by adding a Boolean cut vector C. C is initialized to C[i] =1,
1<=i=p and the consistency check becomes:

(R(X[k], k) # DIFF) and (C[k] or R(X[k], k) # SAME)
and (X[i], X[j]) € E(G)
& (L ))€EE(G), 1<ij<p, (4a)
Clk+1]=C[k] and (R(X[k], k)=SAME). (4b)

In addition, whenever a new automorphism is generated the cut vector can
be reinitialized to C[i] = 1, 1=<i < p. The consistency checks (4a) and (4b) force
the tree search to fully explore any permutations in which R(X[i], )=
UNKNOWN, where i is less than or equal to the current level. At level k,
C[k] =1 indicates that the current branch will produce no changes in R if
R(X[k], k)=SAME. This is a direct consequence of the transitive closure
performed on R. The addition of the cut vector makes the backtracking tree
search extremely efficient for graphs containing many automorphisms.

The tree search can be further improved by employing the forward checking
algorithm [9]. The forward checking tree search performs a partial lookahead
consistency check of future vertex mappings against past and present vertex
mappings. A possible mapping table is maintained at each level of the tree
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search. This table contains, for each unmapped vertex, all vertex mappings that
are consistent with past mappings contained in the partial permutation X,
Additions to X are selected from the possible mapping table entry for the
current vertex. Consistency checks are only done when a new possible mapping
table is constructed for the next level. All vertices not yet added to X must
have at least one entry in the possible mapping table. Otherwise the current
partial permutation X fails and the tree search backtracks to the previous level,
where a new selection is made from the possible mapping table of that level.
The forward checking tries to make a failure occur early in the tree search by
determining that there is no possible mapping for some vertex on a deeper
level of the tree search. The number of early failures can be increased by
selecting vertices with the smallest number of entries in the possible mapping
table first, increasing the probability of failure because of the reduced number
of possible future mappings. We refer to this type of selection as optimal
ordering. The forward checking tree search does incur the computational cost
of passing and manipulating the possible mapping table by level. This cost is
only noticeable for small graphs (p < 8), and for larger graphs the computations
saved by early failures of partial permutations far outweighs the computations
required for table maintenance. Experiments indicate that forward checking
combined with the transitive closure of R can be more efficient than either
method.

Experimental data suggests the following order (from best to worst) of tree
search efficiency based on the number of operations required to find the
solution for graphs with p =8:

forward check + R + closure 40

forward check + R 9
backtrack + R + closure 2
backtrack + R 1

The last column indicates a rough estimate of the average factor of improve-
ment over the basic backtracking tree search with no transitive closure on R.
The results were averaged over a wide range of graph sizes and symmetries,
with results on the smaller graphs sometimes deviating greatly from the mean.
For example, the backtrack tree search with closure on R performed better
than the forward checking tree search without closure on R for p <8, at which
point the number of branches required by the backtracking tree search began
to outweigh the table manipulations of the forward checking tree search.

5.1. Squeeze tree search preceded by vertex partitioning

Instead of initializing R(w, v)=UNKNOWN for u# v, one of the vertex
partitioning schemes of the previous section can be used to construct R.
Assume that the vertex partitioning produces a class label vector CLASS,
where CLASS[i] is the class label for vertex i. R can then be initialized as
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follows:

(1) R(u, u)=SAME,

(2) CLASS[u] # CLASS[v] = R(u, v)= DIFF,

(3) R(u, v)= UNKNOWN, otherwise.

When |oc(G)| = p the automorphism partition is trivial and no tree search is
necessary. This is the case for most random graphs when the 0-subdivision
vertex partition is used to compute o¢(G). In graphs where oo(G) = 7wa(G) the
tree search is reduced to a verification of the automorphism partition, and most
of the operations occur during the initial vertex partitioning. This is the case for
most graphs when the 1-subdivision vertex partition is used to generate oc(G),
and it is always the case for graphs in our catalog when the 2-superline vertex
partition is used.

6. Discussion of Results

In this section we outline the average complexity of the squeeze tree search
when combined with some of the graph transform partitions of Section 4.
Before discussing the complexity of the vertex partitioning algorithms and tree
searches we define the basic units of computation. We consider each data
reference to be one operation. Data references fall into two major categories:
reading the value of a data item and writing the value of a data item. A data
item may be an element of a vector, matrix, or some form of linked list. For
example, a check to see if two vertices are adjacent requires one operation, and
a request for the current class label of a vertex requires one operation. All
operations are weighted equally, so our analysis of complexity does not take
into account any speedups attainable through special data structures that may
take advantage of particular computer hardware configurations.

In cases where the initial vertex partitioning produces the automorphism
partition the squeeze tree search is trivial and most of the operations are
incurred by the initial vertex partitioning. When a weak vertex partitioning
technique is used, the initial partition is usually coarser than the automorphism
partition and the squeeze tree search typically exhibits exponential behaviour.
This suggests that the choice of the initial partitioning algorithm should be
based on the expected structure of the input graphs so as not to waste
operations on a powerful partitioning when a simpler one would do just as
well, being aware that if the initial partitioning is too weak the tree search will
most likely require exponential operations.

On the average, computation of wp(G) requires O( V(G)f) operations.
Therefore, when the initial vertex partitioning involves an invariant graph
transform H, the computation of 7p(H (G)) requires O(| V(H (G))[%) operations
on the average.

For transitive graphs the squeeze tree search functions the same regardless of
the initial partitioning is used. With no initial vertex partitioning the squeeze
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tree search requires O(p*) operations on the average to verify the transitivity of
these graphs.

On random graphs the sequeeze tree search using wp(G) as an initial
partition requires O(p?) operations on the average to determine the automoi-
phism partition. This is because 7p(G) is almost always the automorphism
partition for random graphs, reducing the tree search to a verification that
7p(G) is the automorphism partition. In addition, the automorphism partition
is almost always trivial (each vertex in its own class) for random graphs, so in
most cases the verification tree search is trivial. However, for non-transitive
strongly regular and balanced incomplete block design graphs this tree search
requires exponential operations on the average. This is because p(G) fails to
fully partition the vertices of these graphs, leaving most of the work for the tree
search.

When (S8') (mp(S'(G))) is used as the initial vertex partition, the squeeze
tree search requires O((p + g)?) operations on the average for strongly regular
and random graphs in our catalog. This tree search requires exponential
operations for non-transitive balanced incomplete block designs and any other
non-transitive graphs for which the 1-subdivision partition is strictly coarser
than the automorphism partition. Since g is bounded above by 3p(p — 1), this
tree search has an average upper bound of O(p*) operations for graphs in which
the 1-subdivision partition is the automorphism partition.

(SL*) Y(mp(SL*(G))) is the most powerful vertex partitioning method and is
also the most costly. The number of vertices in the 2-superline graph is

r=p+%(§ d(v)z) .

The squeeze tree search using the 2-superline vertex partition then requires
O(r?) operations on the average. The upper bound on r is O(p®) (using a
complete graph), so this search has an average upper bound of O(p®) opera-
tions for all graphs in our catalog. Of course, if there are any non-transitive
graphs for which the 2-superline graph transform does not produce the
automorphism partition, the squeeze tree search will exhibit exponential
behaviour, but, as mentioned earlier, no graphs of this type have been found.

The average complexity of O(p?) for random graphs required by the forward
checking squeeze tree search with 7p(G) as the initial partition compares
favorably with the results of Corneil and Gotlieb (O(p?)) and Ullmann (O(p*)).
On transitive graphs the squeeze tree search average complexity of O(p%)
(assuming no initial vertex partitioning) also agrees with the O(p?) reported by
Corneil and Gotlieb. For strongly regular graphs the average complexity of the
squeeze tree search with (S%) '(wp(S*(G))) as the initial partition is O((p + g)?),
with an average upper bound of O(p*), whereas Corneil and Gotlieb report an
absolute upper bound of O(p7). Ullmann did not report any bounds on the
complexity of his algorithm in the case of strongly regular graphs. Corneil and



EFFICIENT GRAPH AUTOMORPHISM BY VERTEX PARTITIONING 265

Gotlieb were not aware of the balanced incomplete block design graphs at the
time of their publication [5]. These graphs turned out to be a counterexample
to a main conjecture of their vertex partitioning algorithm, so their tree search
would most certainly exhibit exponential behaviour for these graphs. On the
other hand, we report an average upper bound of O(p®) for balanced in-
complete block designs in our catalog when the 2Z-superline graph is used to
generate an initial partition for the squeeze tree search.

Tables 1 and 2 list the number of operations required for various com-
binations of tree search techniques, vertex partitionings, and graphs. An
asterisk marks graphs in which the initial partition is strictly coarser than the
automorphism partition for tree searches with some initial vertex partitioning.

As can be seen, the method chosen for determining the automorphism
partition primarily depends on the nature of the input graphs. The forward

TasLE 1. Sample operation counts for backtracking tree searches

P pt+q r e A B C D
6 14 29 4 1522 1364 4612 15497
8 24 72 1 86081 1923 13920 88743
8 24 72 1 7137 2644 14018 90385
8 24 72 3 5187 2749 13611 92268
12 24 108 1 296689 43689 63622 232483
12 24 108 5 89271 49850 28485 208023
12 24 108 12 60481 60744 24723 204009
16 48 144 I} 3646081 550841 855978 1153687
16 48 144 5 1797351 537001 49290 362318
16 48 144 12 1697195 1398582 43151 359994
16 48 171 16 — 1240331 35795 487295
22 66 198 5 13672267 5020188 155731 722149
22 66 198 9 12386153 6034289 79136 651237
22 66 198 10 — 10527923 73428 658618
25 85 325 4 — - - 645924* 1744759
25 85 325 5 — — 828495* 1736071
32 96 288 12 — 106270886 175245 1377505
32 96 288 14 — 165683189 161882 1381731
32 96 351 32 — — 121039 1972706
dd 132 396 17 — — 333938 2597635
34 132 396 18 — _ 309978 2555029
44 132 396 21 — — 277021 2543451

r: number of vertices in 2-superline graph,

¢: number of cells in automorphism partition,

A: backtrack + R,

B: backtrack + R + closure,

C: backtrack + R + closure + 1-subdivision partition,
D: backtrack + R + closure + 2-superline partition,
*: initial partition > automorphism partition.
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TaBLE 2. Sample operation counts for forward checking tree
searches

P pt+gq r c E F G H

6 14 29 4 1555 1639 4724 15609

8 24 72 1 68015 3983 15980 50803

8 24 72 1 8383 3148 14399 90766

8 24 72 3 6603 4959 14143 92800
12 36 108 1 138527 12083 37374 206235
12 36 108 5 37748 29338 28876 208414
12 36 108 12 16759 17022 24723 204009
16 48 144 1 816639 32851 77355 375064
16 48 144 5 55666 41085 52398 365426
16 48 144 12 33274 33199 43958 360801
16 48 171 16 74074 74553 35795 487295
22 66 198 ] 505395 211246 103732 670150
22 66 198 9 132722 107820 81957 654058
22 66 198 10 435543 253263 76160 661318
25 85 325 4 1433602 356857 254561 1756848
25 85 325 5 1443789 395286 348013* 1736071
32 96 288 12 1307110 894106 183313 1385573
32 96 288 14 1449795 1100293 163734 1380419

32 96 351 32 1486136 1488119 121039 1972706
44 132 396 18 3989174 2886972 320756 2565807
44 132 396 21 5940968 4178936 288168 2554638
44 132 396 17 5464674 3531624 346505 2610202

r: number of vertices in 2-superline graph,

¢: number of cells in automorphism partition,

E: forward check + R,

F: forward check + R + closure,

G: forward check + R + closure + 1-subdivision partition,
H: forward check + R + closure + 2-superline partition,
*: initial partition > automorphism partition.

checking tree search with closure on R and no vertex partitioning is the most
efficient for small graphs (p <8), but as the graph size increases the benefits of
vertex partitioning present themselves. In fact, when the graph size is large
enough (p = 40), even the most complex vertex partitioning is worth the effort
because of the exponential nature of the tree search when the initial partition is
strictly coarser than the automorphism partition.

Fig. 11 is a log-log plot of the number of operations versus the number of
vertices in the 2-superline graph for the forward checking squeeze tree search
with an initial partition generated by the 2-superline graph transform.

We note that the operation counts predominantly represent the computation
of the 2-superline graph distance partition. This plot indicates polynomial
complexity for all graphs tested.
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F1G. 11. log-log plot for the 2-superline squeeze tree search.

It is important to note that the order of the initial vertex labeling has little
effect on the characteristics of the forward checking tree search because of
continuous optimal vertex ordering. However, the initial vertex order does
have an effect on the backtracking tree search. For example, consider the
automorphism partitions of two isomorphic copies of the same graph

(12)(3) (4) (5) (6) (1) ®),
(18) B @) G)(©) (7).

Using natural selection order, a backtracking tree search would immediately
find the permutation mapping 1 to 2 in the first graph, whereas the mappings 1
to {2, 3, 4, 5, 6, 7} would be tried in the second graph before the mapping 1 to 8
would succeed.

We draw the following conclusions based on experimental data.

(1) Use the backtracking squeeze tree search if the graphs to be tested are
small (p < 10).

(2) Use the forward checking squeeze tree search if the graphs are large
(p =10).

(3) If the graphs are very small (p<8), then no initial partitioning is
necessary.

(4) If the graphs are random with few vertices having the same degree, then
the O-subdivision distance partition will produce the finest partition most of
the time.

(5) If some or all of the graphs are regular, then the 1-subdivision distance
partition will produce the finest partition most of the time.

(6) If some of the graphs are derived from BIBD’s and the number of
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vertices is greater than 40, then the 2-superline distance partition should be
used; in all known cases the tree search should merely be a verification of the
automorphism partition.

Finally, we briefly comment on a few variations of the tree search that did
not perform as well as the ones mentioned above. When R is passed and
modified by level, the O(p?) operations required to manipulate R on each
level far outnumber the operations that are saved over searches that maintain
R at the top level only. The same is true for tree searches which refine the
initial vertex partition mc(G) level by level, even when the refinements are
restricted to the top few levels of the tree search. The data indicates that a
majority of the vertex partitioning computations should take place before the
tree search commences.

7. Conclusion

A method employing invariant graph transforms has been developed to induce
vertex partitions in graphs. The method is stronger than any other deterministic
(non-tree search) vertex partitioning algorithm presented in the literature, and
is in fact capable of producing the automorphism partition in a large collection
of graphs. No graph has been found in which the method failed to produce the
automorphism partition. The squeeze tree search technique has been intro-
duced. This technique greatly reduces the number of automorphisms needed to
determine the automorphism partition of a graph. The combination of the
vertex partitioning method and the squeeze tree search technique provides a
means of efficiently generating and verifying graph automorphism partitions in
polynomial time, even when the graphs are strongly regular or balanced
incomplete block designs.
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