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Abstract. A model-based FLIR ATR algorithm is described. It uti-
lizes boundary contrast for target detection and recognition. Bouna-
ary contrast is related to the location uncertainty at target boundary
points. A polygon model is used for deriving target centroid location
uncertainty caused by the boundary point location uncertainty. The
significance of the work lies in the sound mathematical models used
in deriving the relationship between contrast and location uncer-
tainty for the boundary points and the relationship between bound-
ary point location uncertainty and centroid location uncertainty. Ex-
periment results show significantly improved performance in
detection, recognition, and localization. © 2000 SPIE and IS&T.
[S1017-9909(00)01602-0]

1 Introduction

In the ATR application, the sensory images are usually
taken in uncontrolled environment where the conditions of
the image forming process may vary greatly, e.g., in out-
door scenes with unknown numbers and types of targets,
complicated terrain background, significant amount of clut-
ter, all kinds of weather conditions, different season of the
year and different time of the day, occlusion and camou-
flage of the targets, etc. The great complexity in the image
forming process has made ATR a distinctively difficult
problem where the input image is characterized by ex-
tremely high variability in the content and quality. This is
particularly true with the forward-looking infrared (FLIR)
imagery.

Compared with the first generation sensors, the second
generation FLIR sensors give much better image with
higher resolution, higher signal-to-noise ratio, and higher
stability. The better image quality, especially increased
number of pixels on targets, reveals more structure of the
target appearance in the image, and allows the design of
knowledge- and model-based algorithms. The situation is
further improved by dramatically improving computing
power which strongly supports sophisticated algorithms.
There has been significant improvement in the observed
performance of the ATR systems since the late 1980’s.

Since the second generation FLIR sensor has ap-
proached the optical limits of sensor resolution,! improve-
ment in ATR performance should be expected mainly from
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advancement in ATR algorithm instead of from further im-
proved image quality. Model-based approaches to the ATR
problem are the most promising in developing high perfor-
mance systems.

The ability of low-level feature extraction algorithms is
restricted by their limited information input from the local
image neighborhood. High-level information can be very
useful to overcome this restriction. This is typically done in
the model-based approaches. In these approaches, either the
target models are directly utilized in the low-level informa-
tion extraction modules, or hard decisions about the infor-
mation content in the imagery are avoided on low-level
measurements until they are combined, via the use of target
models, into medium- or high-level evidence. In doing this,
weak but consistent evidence in the low quality imagery
can be recovered with significantly improved reliability.

In this article, we describe an algorithm that computes a
target saliency measure by properly utilizing the target
boundary contrast evidence. The two major pieces in devel-
oping the algorithm are the development of the relationship
between boundary contrast and boundary point location un-
certainty and the development of the model for target cen-
troid location uncertainty induced by the boundary point
location uncertainty. In experiments, the developed algo-
rithm shows improved detection performance and more im-
pressive improvement in recognition performance. The lo-
calization performance is also good.

2 Literature Review and Motivations

2.1 Traditional Algorithms

The traditional FLIR ATR algorithms assume that targets in
the scene appears as blob-like regions with roughly homo-
geneous gray scale values significantly bnghter or darker
than the background.”™* For detection, the main effort is
made to segment out these target regions from the rest of
the scene. Shape recognition techniques are applied on the
segmented targets to perform recognition. Bhanu and
Holben® use pixel intensity and edge strength in a relax-
ation procedure for thresholding ship targets from FLIR
images. The joint relaxation penalizes 1ncons1stency and
ambiguity in the segmentation process. Pham et al. use
grayscale morphological operations to enhance the targets
to get better thresholding results. Ernisse ef al” use the
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hit/miss filter for region of interest (ROI) identification and
the difference of Gaussian filter for segmentation and fea-
ture extraction. Thresholds are determined by a genetic al-
gorithm. Recognition is performed by a multilayer percep-
tron (MLP) neural network. Kitrosser® evaluated a region-
growing based algorithm of its detection and recognition
performance. Markham’® gives a comparison of three
classes of segmentation algorithms. Haralick and Shapiro!®
give a survey on classical segmentation techniques.

Due to the poor quality of the input imagery, the earlier
stages of detection and segmentation fail to produce a sat-
isfactory result. This causes misdetections, false alarms,
only parts of the targets getting segmented, and background
clutter getting segmented as part of the targets. ATR per-
formance from the traditional algorithms is unsatisfactory.

2.2 Model-Based Algorithms

In the model-based approach, it is believed that appropriate
models can be of significant help in the information recov-
ery in the early stages of processing. Friedland and
Rosenfeld'! uses simulated annealing to optimize a cost
function that is a linear combination of low and high level
confidence of the shapes of interest. The low level compo-
nent is model-free and tries to improve contour smoothness
and edge sharpness. The high level computes the similarity
of the contour to shapes of interest. The optimization pro-
cedure puts more emphasis on the low level in the earlier
stage and shifts over to the high level when the confidence
in a match increases.

Correlation based algorithms assume that some invariant
features can be reliably extracted from the two-dimensional
(2D) appearance of the targets of interest. Fazlollahi and
Javidi'® derive an optimal receiver based on known target
shape and intensity but unknown contrast. Uenohara and
Kanade'? use the K-L decomPosrtron for invariant feature
extraction. Ben-Arie and Rao'* use nonorthogonal expan-
sion for template matching. Wu and Bhanu'® uses the Ga-
bor grid to represent targets.

There are many favorable reports of correlation based
algorrthms However, when confronted with great variation
in the target appearance, the invariance features required by
these algorithms cannot be extracted robustly or even do
not exist anymore. This causes significant performance
degradation.

In the event of having high quality imagery which al-
lows reliable prediction of the appearances of targets, com-
plex three-dimensional (3D) target models -and the heat
emission and reflection propertres of the material are uti-
lized by Stevens and Beveridge.!® They combined bore-
sight color, range, and IR images in a_target-pose optimi-
zation procedure. Target detection is accomplished using
the color image only. Recognition and pose estimation are
accomplished at the same time by using all three images.
The IR image is used only in regard of the target boundary

At the other end of the image quality spectrum, the 2D
appearance of the target within its boundary is highly un-
predictable. Various research results'’?° suggest that the
most reliable visual cue for the targets in this kind of im-
agery is the existence of relatively high contrast between
the inside and outside of the silhouettes of the targets. This
contrast is in general higher than the contrast to be expected
in the background. This is reliable because of the difference

in the materials, hence physical properties, between the tar-
gets and the natural background Although the actual ap-
pearance of these materials in the FLIR imagery may vary
greatly in different imaging conditions, noticeable differ-
ence should exist between them within each image. To
make use of this, the aspect of and approximate distance to
the targets are assumed to be known. Targets are modeled
by their silhouettes.’”"'® This modeling takes the stand
point that only reliable information obtained by means of
reliable assumptions, although small in amount, should be
used. Other sources of information dre ignored due to their

unreliability.

2.3 Neural Networks in ATR

As in all other fields of signal processing applications, neu-
ral networks receive a significant amount of attention in the
ATR algorithm development. Hamilton and Kipp'® feed
eleven features into an MLP network to perform prelimi-
nary target detection. Ernisse ef al.” and Franques and
Kerr?! use MLP networks for target recognition. Li e al.?
report favorable recognition performance of a six-layer
convolutional neural network in comparison with a number
of other ATR algorrthms on a single large-sized test data
set. Roth?* and Rogers give surveys of the research efforts
in neural nets in ATR. Neural networks in ATR is still a
very active area of research

Popular as it is, the neural networks can mainly be re-
garded as nonlinear classifiers or as tools for nonparametric
modeling of data. For this reason, on the abstract level,
neural networks in ATR can largely be considered as a way
of implementation, rather than an entirely different ap-
proach to the problem.

2.4 Multisensor Data Fusion in ATR

Multisensor data fusion®!%?> combines the sensory inputs
from independent sensors for the same scene and let them
complement each other in the recoverable information they
provide. The commonly used sensory modalities for fusion
in the ATR applications include FLIR, TV, LADAR, SAR,
and MMW radar. Nandhakumar and Aggarwal®® consider
thermal physical properties of materials under direct sun
light. The information in thermal and visual images is com-
bined for target material - identification. Stevens and
Beveridge'® present results on applying a 3D object recog-
nition algorrthrn with pose estimation on the Fort Carson
data set”’ of bore-sight range, thermal, and color imagery.
In addition to the data from imaging sensors, various kinds
of auxiliary- information, such as the time of the day,
weather conditions, geographical location, etc., are also
subject to fusion.

Currently, the theory of multisensor data fusion has not
yet been well developed. Further study into this. area is
needed before a theory is established. The theory needs to

indicate how to optimally perform the fusion, and to predict

the amount of performance improvement due to the use of
fusion.

2.5 Performance Characterization in ATR

Haralick?®% suggests an approach that studies how the im-
perfection and perturbation in the ideal input will affect the
output of the algorithm. Analytical error propagation’
through computer vision algorithm modules is the main
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tool used in this approach. Although a number of standard
algorithm modules have been studied,' the performance
evaluation of a general computer vision algorithm sequence
in general real applications is still not practical.

Currently, most researchers report the performance of
algorithms using the experimental result on some test data
set,6’8’1(”22‘32'34 in terms of some performance measures
such as detection rate, false alarm rate, and correct classi-
fication rate, or some variations of these. Although the no-
tion of these objective and quantitative measures are widely
used, their exact definitions and the ways their values are
computed, have not been standardized. We use the method-
ology proposed in Ref. 35 to setup a maximal constrained
one-to-one correspondence between ground-truth and de-
clared targets. Performance measures based on this corre-
spondence are accurate and consistent.

2.6 Motivations for This Work

We are concerned with the most adverse application sce-
nario, where thermal conditions of targets and the sur-
rounding area change so much from scene to scene that
virtually no assumption can be reliably made on the appear-
ance inside the target boundary. The only reliable visual
cue for the targets is the existence of some contrast between
the inside and outside of the silhouettes of the targets.
Boundary models for the targets are suitable in this situa-
tion.

In this situation, a robust FLIR ATR algorithm should
try to infer target existence by accumulating the evidence
of contrast along the target boundary. This introduces three
immediate problems to be solved. The first problem is that
targets are 3D objects and will have infinite numbers of
different 2D silhouettes due to its relative pose to the im-
aging sensor. Practically, although the silhouettes of inter-
est can be reduced to a finite number, the amount of com-
putation for processing all silhouettes can be very heavy
when the number of targets of interest is large. Some deci-
sion tree type algorithm 7 can be used to reduce the amount
of computation by considering only a subset of silhouettes
at each level. The computational load then seemed to be
acceptable to the US military research labs.

The other two problems in designing boundary contrast
based FLIR ATR algorithms are how the contrast along the
boundary is to be combined into a single evidence measure
for the target’s existence, and how the contrast at each
boundary point should be represented to facilitate the evi-
dence accumulation. This article presents an algorithm
which results from properly addressing these issues. The
issue of optimal estimation of contrast concerns the optimal
gradient operator design problem and is beyond the scope
of this article.

Intuitively, some form of weighted average seems to be
appropriate for the combination of boundary contrast into a
single target saliency measure. The higher the contrast
along the boundary, the more likely the target is present.
The reason for a weighted average instead of a simple av-
erage, such as the arithmetic or geometric average, is that
generally boundary points are not equally informative of
the existence of the target. When only a subset of the
boundary points is used to represent the target, different
subsets of the same number of boundary points carry dif-
ferent amount of evidence for discriminating this target
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from other types of targets and from the background clutter.
For example, a good polygon approximation algorithm can
use a small number of points to fairly well represent the
boundary of a compact 2D shape, while randomly picked
points will not do as well. The shape is even worse repre-
sented if the chosen points are clustered at unimportant
places on the boundary. This is because the contribution of
the boundary points to the detection of the target signifi-
cantly depend on each other. The relative importance of a
particular boundary point should be decided by the entire
target boundary. A mathematically sound way of modeling
the relative importance of the boundary points is needed.
This issue is addressed in Sec. 3.

It is an established principle in signal and image pro-
cessing that prominent features for any detection problem
should both have high signal-to-noise ratio (SNR) and be
well localized in its domain. This is also true for the target
boundary points. The boundary points of high-contrast tar-
gets in the FLIR imagery can be localized with high preci-
sion, while low contrast boundary sections will cause high
uncertainty in the boundary point location along the seg-
ments. This will weaken the evidence for the target’s pres-
ence. Notice that although we make direct use of the local-
ization property of boundary points, boundary point
detection is not carried out. Boundary point detection is
highly prone to error due to the low image quality. The
need and desire to avoid this type of hard decision on the
noisy low level measurements are among the driving forces
toward developing model based ATR algorithms.

When the location of the boundary points has uncer-
tainty, a good measure of the overall uncertainty is the
uncertainty in the target centroid location. When the major-
ity of boundary points have high location uncertainty due to
their low contrast, the centroid uncertainty will be high,
indicating low evidence for the target’s presence. On the
other hand, when many boundary points have high contrast
and therefore low location uncertainty, the centroid can
have a low uncertainty, showing strong evidence for the
target’s presence. Therefore, using the uncertainty in the
centroid is a good way of combining the boundary contrast
information into a single target saliency measure.

We use polygons to model target shapes, where the
polygon vertices are specified by the target boundary
points. The centroid location is a function of the vertex
locations. In Sec. 3, we derive the formulas for computing
the centroid location uncertainty as a function of the vertex
location uncertainty.

The relationship between contrast and location uncer-
tainty at boundary points is established using the edge de-
tection framework, where the edgel location is determined
as the zero-crossing of the second directional derivative in
the direction of the gradient. The random perturbation in
the zero-crossing location estimate and in the gradient ori-
entation estimate contribute to the uncertainty in the edgel
location. In Sec. 4 we derive precisely how this uncertainty
is influenced by the contrast.

3 Target Centroid Location Uncertainty

In using boundary contrast for target detection and recog-
nition in the FLIR imagery, we try to combine the contrast
evidence along the target boundary into a single saliency
measure for the target’s presence. In studying the relation-
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ship between a polygon’s centroid location and those of its
vertices, we discover that the relative contribution of the
vertices to the location uncertainty of the centroid, which
can be considered as a measure of the geometric stability of
the polygon, can be used to model the relative importance
of the vertices. Since the location uncertainty of the target
boundary points is closely related to the contrast across the
target silhouette (see Sec. 4), the relative importance of the
polygon vertices derived from the polygon centroid uncer-
tainty model can be used in combining the contrast at the
boundary points into a single saliency measure for the tar-
get’s presence. The centroid uncertainty is an inverted sa-
liency measure for the target’s presence—the more salient a
target is, the smaller centroid uncertainty it has.

3.1 Relationship Between a Polygon’s Vertices and
its Centroid

Let the sithouette of the target of interest be represented by
a simple polygon (A simple polygon is one whose sides do
not cross each other. Within this work, we are only inter-
ested in simple polygons.) in the 2D plane. It is parameter-
ized by an ordered list of its vertices. The vertices of an
N-side polygon are denoted by Py,...,Py. Either clock-
wise or counter-clockwise ordering can be used. It does not
affect the result in this work.

Let O be the origin of the coordinate system, and let the
coordinates of the N vertices be (x;,y{),...,(xy,yy). Let
x=(x1,...,xy)Tand y=(yy,...,yn) T be the vectors of the x
and y coordinates of the vertices. The superscript 7" denotes
the matrix transposition. x and y are given by the target
silhouette. The centroid of the target polygon is fully deter-
mined and is denoted by Q(x,y)=[Q,(x,y),0,(x,y)1".

In finding the centroid of the polygon, we use triangles.
Consider connecting each vertex with the origin using
straight line segments. These N line segments and the N
sides of the polygon form N triangles {AOP;P;, ,i
=1,...,N} where the notation of Py, ;= P, is used. Regard-
less of whether the polygon is convex or not and whether
the origin is inside the polygon or is on the outside, the
centroid and the signed area of triangle AOP;P;,; are
(CGeitxie)B.(yityiv1)3) and (xXy;41—X41Y)/2, Te-
spectively. The centroid of the polygon is computed as the
weighted sum of the centroids of the triangles, each
weighted by its signed area, divided by the sum of the
signed area of all the triangles. Hence, the centroid of the
polygon is found to be

K

x K,
O.(x,y)= 35" 0,(x,y)= 35 (1)
where
N
K;F; (XY iv1= X1y ) (X Xi41), (2)
N
Ky=Zl (xXYir1=Xi+1Y) (VitYis1)s (3)

N

S=21 (X Yiv1=Xi41Y0)- 4)
=

Here the notation of xy,=x; and yy.;=y; is used.

3.2 Uncertainty in the Vertex Locations

As will become clear in Sec. 4, the contrast at the target
boundary is closely related to the location uncertainty of
the boundary points. This location uncertainty is modeled
here as a zero-mean additive perturbation on the polygon
vertices. When the vertex P; is affected by this perturba-
tion, its perturbed location P,=(%;,9,)7 is given by P,
=P, +AP;,

[50=0 (85 g
Vi) \yi) Ay

Let this perturbation on P; be called the input perturba-
tion. We assume that AP; and AP; are independent for i
#j, but Ax; and Ay, can be correlated for i=1,...,N.

Let Ax=(Axq,...,Axy)T and Ay=(Ay;,...,Ayy)T.
We have E(Ax)=E(Ay)=0 and

Cov(Ax,Ax)=Diag(07,,0%,...,0% x), (6)
Cov(Ay,Ay) =Diag(o-§’1,cr§,2,...,aiN), (7)
Cov(Ax,Ay)=Cov(Ay,Ax),

= Diag( O'J%yyl,a'fy,z,..., fy,N). 3

The diagonal elements of these matrices are specified by
the boundary point location uncertainty model and will be
given by the edgel location characterization in Sec. 4.

3.3 Uncertainty in the Centroid Location

Being a deterministic function of {P;}, the centroid Q is
affected by the perturbation on {P;}. Let the perturbation
be denoted by

AQ=0(x+Ax,y+Ay)—0(x,y) ©)
or, in terms of its elements,
AQ,=Q,(x+Ax,y+Ay)—0,(x,y), (10

AQ,=0y(x+Ax,y+Ay)=0,(x,y). (11)

Within this section, this perturbation is called the output
perturbation. The quantity we are interested in is
Cov(AQ), namely the covariance of the output perturba-
tion. This is a full measure for the target centroid location
uncertainty, the trace of which is to be used as an inverted
saliency measure for the target’s presence.

In order to compute the centroid location uncertainty
just defined, we need to express Cov(AQ) in terms of
known or computable quantities. Specifically, these are the
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locations of the unperturbed vertices and the covariance of
the input perturbation, which are given and computable,
respectively.

Let Q,(x+Ax,y+Ay) be approximated by the first or-
der terms in the Taylor series expansion.

Q.(x+Ax,y+Ay)~0,(x,y)+AT-Ax+B"-Ay,  (12)

where A=0Q,(x,y)/dx and B=9Q (x,y)/dy are NX1
real vectors, which can be computed using Egs. (A1) and
(A2). Then

AQ,~AT-Ax+BT-Ay, (13)

E(AQ,)~0, (14)

Var(AQ,)~ATCov(Ax,Ax)A+2ATCov(Ax,Ay)B
+BTCov(Ay,Ay)B. (15)

Similarly, we obtain

E(AQ,)~0, (16)

Var(AQ,)~CTCov(Ax,Ax)C+2C"Cov(Ax,Ay)D
+DTCov(Ay,Ay)D, (17)

Cov(AQ,,AQ,)~ATCov(Ax,Ax)C+A"Cov(Ax,Ay)D
+BTCov(Ay,Ax)C
+BTCov(Ay,Ay)D, (18)

where C=9Q,(x,y)/dx and D=3Q,(x,y)/dy are NX1

real vector, which can be computed using Egs. (A3) and

(A4). With these values computed, we obtain approxi-
mately

E(AQ)=0, (19)

Var(AQ,)
Cov(AQ,,AQ,)

Cov(AQ,,AQ,)

Var(AQ,) ’
(20)

Cov(AQ,AQ)=

where all terms have been obtained in terms of the loca-
tions of the unperturbed vertices and the covariance of the
input perturbation. The validity of this derivation result has
been verified in a validation experiment. In that experiment,
random perturbations are added to a test polygon and the
sample covariance matrix of the perturbed centroid location
is compared with the one computed from the above equa-
tion. The comparison is done by means of a statistical test
based on the multivariate normal distribution.’**” The de-
tails of the validation experiment are omitted here.

The 2X2 covariance matrix Cov(AQ,AQ) is a full
characterization of the location uncertainty of the centroid.
It describes how the likely position of the centroid is spread
out in the 2D domain. A proper scalar measure of the un-
certainty is the trace of the matrix Var(AQ,)
+Var(AQ,), ie., the sum of the two diagonal elements.

In the ATR algorithm, the locations of the unperturbed
vertices are given by the locations of the target silhouette
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boundary points relative to the target centroid. The covari-
ance of the input perturbation is determined by the results
obtained in Sec. 4. The trace of the output covariance mia-
trix is inversely related to the saliency of the target’s pres-
ence. A strong target appearance will result in a small trace
of the centroid covariance.

4 Uncertainty in Edgel Location Measurement

Localization is an important aspect of edge detector perfor-
mance. Our emphasis is on studying the relationship be-
tween the contrast and the edgel location uncertainty so that
a better way of combining target boundary contrast can be
done by means of location covariance propagation.

Local neighborhood gradient based edge operators, €.g.,
Refs. 38 and 39, search the maximum in the derivative of
the image intensity surface along the direction of the gra-
dient, or, equivalently, the zero-crossing in the second di-
rectional derivative in that direction. Although it has been
argued that the gradient orientation estimate is usually quite
noisy,*>*! the analysis of the localization error of edge de-
tectors has yet remained a one-dimensional formulation.
The image intensity profile along the cutting plane in the
direction of the gradient estimate is studied and the radial
localization error along that direction is examined. The er-
ror in the orientation of the cutting plane has not been in-
corporated in the error analysis of edge localization until
recently. Marimont and Rubner*? are the first to combine
orientation and radial localization distributions to compute
the edge location probability for edge pixel detection.

To discriminate single edge pixels from edge features
which usually consist of multiple edge pixels, we use the
term edgel to denote edge elements which are just single
edge pixels. The orientation of the edgel is the gradient
orientation, and the location of the edgel is the zero-
crossing in the second directional derivative.

In this section, we incorporate the gradient orientation
estimation error into the study of the edgel location estima-
tion. The edgel localization error is then a two-dimensional
vector as opposed to the scalar used in previous analyses.
This results in a more accurate characterization of the rela-
tionship between contrast and location uncertainty.

The derivations in this section closely parallel in the line
of reasoning to that of Marimont and Rubner.* We became
aware of their work only after we finished our derivation
and experiments. Also, our work is different from Ref. 42
in that we do not use the resulting edgel location uncer-
tainty in low level edge pixel detection. As has been stated,
this is highly prone to error due to the noisy nature of local
neighborhood operations. Instead, we explicitly compute
the edgel location uncertainty as indexed by the signal-to-
noise ratio (SNR). The location uncertainty along the target
boundary is combined in the polygon centroid uncertainty
model, hence we avoid making hard decisions at the pixel
level. The edgel location distribution plays more of the role
of the medium for conveying the contrast into another form
which is more appropriate for evidence accumulation.

4.1 Background

Here we restate some facts concerning edgel measurements
in gradient based methods. The underlying assumption is
that the noise can be modeled as zero-mean white additive
Gaussian.
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The orientation estimate & from the full angular range
arc tangent function (atan2) follows the von Mises
distribution.*®

1
— . « cos(6—6p)
fo(6l6,,c) Taly(r)

0<0y<27,,k>0,0<0<2, (21)

where 6, is the true underlying gradient orientation, «
is the squared output SNR, and 7,(-) is the modified
Bessel function of the first kind and order zero.** This
distribution is symmetric about 6,. The concentration
parameter k controls how much the distribution is
concentrated around 6,. The bigger « is, the more
concentrated the distribution is. For large k, the von
Mises distribution can be well approximated by the
normal distribution with mean 6, and variance 1/«.
For any given gradient operator, « is given by
K=K (22)

n >

where (), is the input SNR defined as ratio of the true
step edge contrast over the standard deviation of the
noise. kg is a constant determined by the operator it-
self

do+d,
Ko= ,

0 )\2

(23)

where \? is the sum of squared elements of the gradi-
ent operator kernel; d; and d, are the two elements of
the gradient computed by the operator on the unit-
contrast step edge. In the 5 X5 neighborhood with the
true gradient orientation of 0°, «, is 1.6 for the stan-
dard cubic facet model estimate and 3.8 for the inte-
grated directional derivative gradient operator
(IDDGO).4O’41’45

The edgel location ¥ is determined in each neighbor-
hood for the center pixel in that neighborhood. It is
determined to be the zero-crossing of the second di-
rectional derivative in the direction of the gradient.
The derivatives are computed by the IDDGO which is
based on the cubic facet model.’®*> When the image is
noisy, even along the true gradient orientation, ¥ is in
general different from the true edgel location. The lo-
calization error from reasonable detectors has a distri-
bution that is symmetric about 0.

Using the cubic facet model, # is determined to be the
inflection point of the cubic polynomial along the di-
rection of the gradient orientation.

G (24)
U= — — N N

3é3
where ¢,and ¢; are the estimated coefficients for the
second and third order terms of the cubic polynomial.
Due to the observation noise,

A 2 R 2
é~n(cf Vo, k50%),  E3~n(ciQyo,k507),

where c5 and c¥ are the true value of the cubic poly-

nomial coefficients; k, and 3 are constants from the
cubic facet model; and o is the variance of the ob-
servation noise. For the unit-contrast step edge in the
5X5 neighborhood with the true gradient orientation
of 0°, the involved constant are

F=0, c¥=—-1, Kk,=0.1196, Kk;=0.1179.

12

(25)
We can easily derive that
=27 26
=32 (26)
where Z is distributed as
C*
I’l(—2 ‘Q’inﬁl)
K
27)

c¥ '
n K_39in,1

The term normal quotient is used to denote the family
of distributions for the ratio of two independent nor-
mal random variables with unit variance. The prob-
ability density function (pdf) for this family has the
form™

F )= o exp| — L P2

L) P T T 2

" ( 3 (wﬁm)z)
P72+

_|_
_,_\/; T Mo

\/2(12+1)e V2(Z%+1)

T )J

(28)

For the step edge, u, =0, ;= (c¥/x3)Qy,, and the dis-
tribution is symmetric about 0. Studies have shown that the
IDDGO gives superior estimate for the gradient
orientation.***47#® Hence it is used for gradient estima-

tion.

4.2 Edgel Location Estimation

The edgel location estimation scenario is illustrated in Fig.
1. The polar coordinate system is used. The true and unob-
served underlying gradient orientation is 6,. The step edge
discontinuity occurs at a radial distance of v, from the ori-

e0 A
0
N
v
v 0
/ O
step
discontinuity

Fig. 1 Step edge detection scenario.
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Fig. 2 The pdf of the 2D Cartesian location. Underlying image data is the unit-contrast step edge in
the 55 neighborhood, with 0° gradient orientation, and Q;,=1.

gin along the direction 6. The true input SNR is ). The
chosen gradient operator gives the estimate for these as b,

A

9, and (), respectively. The estimated edgel location is

determined by & and 9. These estimates are random vari-
ables. Their statistical properties characterize the relation-
ship between the edgel location uncertainty and the step
edge SNR. This relationship is to be used along with the
polygon centroid uncertainty model to combine target
boundary contrast into a single target saliency measure.

Using the definition of conditional probability density,
we have

£(0,9]80,v0)=f(2] 09, v0,0) (8] 69, v0). (29)

Using the IDDGO for gradient estimation and the zero-
crossing of the second directional derivative along the di-
rection of the gradient for edgel location, the two terms on
the right-hand side of the equation can be approximated by

the pdfs fz(-) and fg(-), respectively. Q) obtained from
the gradient and local noise estimate is used to substitute
for €);,. The probability density function of the estimate
for the edgel position in the 2D Cartesian space can be
obtained from the above joint density function via standard
random variable transformation.

The pdf for the 2D Cartesian location estimate from the
IDDGO based estimator is shown in Fig. 2. The underlying
image data is a straight unit-contrast step edge in the 5
X5 neighborhood, with 8,=0°, $,=0, and with an input
SNR of 1.

It can be seen from Fig. 2 that the distribution of the
edgel location estimate is symmetric about the origin,
which is the true edgel location. The distribution is not
rotationally symmetric and is more concentrated along the
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true orientation of the gradient. As the SNR increases, the
concentration is increased and the entire distribution
shrinks toward the origin. For low SNR, as is the case
shown in the figures, the variation in the orientation esti-
mate is very large.

We note that the level contour in Fig. 2 has two very
significant concavities at the direction perpendicular to the
gradient orientation. This is due to the fact that the orien-
tation estimate is more concentrated around the true orien-
tation.

Since the 2D Cartesian location distribution is center-
symmetric about the true edge location, the Cartesian coor-

dinates computed from & and © is an unbiased estimate.
Analytical derivation of the covariance matrix of this dis-
tribution is difficult, but the numerical values can be com-
puted easily from the spatial spread of the pdf. The trace of
this covariance matrix is a good measure of the edgel lo-
calization performance. When the SNR increases, the
spread of the pdf shrinks and results in better edge local-
ization performance. When there is no underlying edge
structure, i.e., the SNR reduces to 0, there is no preference
of any orientation for the nonexistent edgel. In this case, the
1D location estimate follows the Cauchy distribution. The
pdf of the 2D Cartesian edgel location estimate is then ro-
tationally symmetric. The pdf for the 2D location estimate
in this case is shown in Fig. 3.

4.3 Tabulating Edgel Location Uncertainty

At a given input SNR, the pdf of the edgel location is used
in the numerical evaluation of the edgel location covariance
matrix. The edgel location uncertainty can be characterized
by the trace or the larger of the two eigenvalues of the
covariance matrix. These as functions of the input SNR are
shown in Fig. 4.
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Fig. 3 The pdf of the 2D Cartesian location. Underlying image data is unit variance white Gaussian

noise (Q;,=0).

It is interesting to notice that, in the very low SNR
range, as the input SNR grows, the larger eigenvalue does
not monotonically decrease as one might have expected.
Rather, it increases first! However, there is an explanation
to this behavior. The radial location estimation quality is
insensitive to the initial small amount of increase in the
SNR. The orientation estimate, however, is more respon-
sive to the increased SNR and starts to concentrate toward
the true orientation, while the radial location estimate es-
sentially remains at the same precision level. The probabil-
ity of the edgel is increased for locations around the true

edgel location covarlance for different SNR
1.4 T T T

— ~ X element
-+-- Y element
trace

o
.
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o
T

location variance
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o 1 1 b
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Fig. 4 Uncertainty of the edgel location estimate. Orientation esti-
mated by the 5X5 IDDGO. Solid-trace, dashed-larger eigenvalue,
dotted-smaller eigenvalue.

gradient orientation but with long radial distance from the
true edgel location. Hence the increase in the uncertainty
along the true gradient orientation is observed.

On the other hand, the decrease in the probability for
locations around the direction perpendicular to the true gra-
dient orientation is faster. The magnitude of the decrease in
the location uncertainty caused by this is more than the
increase in the gradient direction. As a result, the trace of
the covariance matrix monotonically decreases with the in-
crease in SNR.

For the 0° step edge, the correlation between the x and y
elements of the edgel location is zero. For each SNR value
of interest, we numerically compute the covariance matrix
and tabulate the variance in the x and y directions.

Notice that, since the Cauchy distribution has infinite
moments, the covariance matrix for the 2D location does
not exist for (;,=0. Practically, although the distribution is
long tailed, most of the probability mass are concentrated in
a finite neighborhood. The distribution truncated in this fi-
nite neighborhood is used for the covariance matrix evalu-
ation. _

- The tabulated covariance matrices are used for comput-
ing the quantities Cov(Ax,Ax), Cov(Ay,Ay), and
Cov(Ax,Ay) in Egs. (6)—(8). The orientation 6 and SNR at
each boundary point are first estimated by the IDDGO. The
SNR is used to index into the table made here and retrieve
the two diagonal elements of the covariance matrix for that
SNR level. This diagonal matrix is then pre- and postmul-
tiplied by the rotation matrix for the orientation 6. The
resulting matrix is the covariance matrix for the boundary
point in question, and is used subsequently in the compu-
tation of the target centroid uncertainty.
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5 Experiment on FLIR ATR

This section describes the experiment conducted to evalu-
ate the performance of the centroid uncertainty based FLIR
ATR algorithm. We start by giving some implementation
details of the algorithm that are not covered by previous
sections, which mainly deal with the idea and theory behind
the centroid uncertainty based target saliency measure. Spe-
cifically, in addition to an outline of the algorithm se-
quence, we briefly discuss the normalization of the centroid
uncertainty measure, a generic thresholding procedure, and
ROC operating point selection.

A few competing algorithms are then briefly described.
The performance of these algorithms is compared with the
proposed algorithm on the same set of test data. For the test
data, it is unfortunate for us not to be able to gain access to
some large set of real image data suitable for this study®*
because of the military classification on that data. We de-
scribe the generation of synthetic scenes in Sec. 5.3. The
observed performance of the tested algorithms is reported
in Sec. 5.4 along with some discussions.

5.1 Centroid Covariance Based FLIR ATR
Algorithm

5.1.1 Normalized centroid trace as inverted target
saliency measure

Without repeating the details in edgel location covariance
estimation and polygon vertex-to-centroid covariance
propagation, the proposed FLIR ATR algorithm works as
follows. The IDDGO (we used the 5X 5 neighborhood size
in our experiments) is first applied to the input FLIR image.
The gradient orientation and the edgel contrast along that
orientation are computed for all pixels. For each target sil-
houette of interest, we compute its saliency measure at each
pixel location in the image where the centroid of the target
silhouette can be placed.

At each such location, we first compute the contrast
across the target boundary for each point on the target sil-
houette. This is done by projecting the edgel contrast esti-
mate along the local gradient direction onto the direction
perpendicular to the local segment of the target silhouette.
(In deciding the orientation of the local segment of the
target silhouette, we use a least-squares straight line fit for
each overlapping five-point segments of the target bound-
ary.) The contrast across the target boundary is used to
index into the precomputed table of edgel location covari-
ance matrix obtained in Sec. 4.3. The retrieved covariance
matrices are first pre- and postmultiplied by the rotation
matrix determined by the direction perpendicular to the lo-
cal boundary segment. They are then used in the formula
for computing the target centroid covariance matrix. The
trace of this final matrix is normalized by a constant deter-
mined for each target silhouette. The constant is the trace of
the centroid covariance matrix computed for the same tar-
get shape with zero-contrast across the boundary for all
boundary points. It is the centroid uncertainty expected for
a target silhouette placed in a pure noise background. The
normalization is necessary for bringing the centroid uncer-
tainty for different targets into the same range of the scale.
It reduces the improperly biased preference of the unnor-
malized centroid uncertainty toward certain target shapes
over others.
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5.1.2 Sequential thresholding procedure

A target ID-location pair is used to represent a target can-
didate if the normalized uncertainty value computed for the
said target and location is smaller than some specified
threshold. A list of target candidates are obtained by exam-
ining the normalized centroid uncertainty of every target at
every pixel location. Since we do not expect targets to
overlap each other very significantly, some of the candi-
dates are dropped from the list when the amount of overlap
is too much. In doing this, we first sort the list of candidates
in the ascending order of the normalized centroid uncer-
tainty. The first in the sorted list is declared to be the first
detected target and taken away from the list. Any target
candidate whose centroid falls within the bounding box of
the first target is deemed invalid and dropped from the can-
didate list. Any candidate whose bounding box covers the
centroid of any declared target is also invalid and dropped
from the list. After this is done, the first in the remaining
list is declared as the second detected target. The procedure
then repeats until the list becomes empty.

The effect of this thresholding procedure is that all de-
clared targets do not cover each other’s centroid. A fairly
large amount of target overlapping is still allowed, to the
extent that the centroid of any one is not covered by the
bounding box of another. For a target with strong appear-
ance, there will be only one target declared instead of mul-
tiple declarations of the same target at several locations
around the true target location.

5.1.3 Operating point selection

All ATR algorithms have tuning parameters. Varying these
parameters will usually give varied trade-offs between de-
tection and false alarm rates. In characterizing the perfor-
mance of ATR algorithms, it is customary to use the re-
ceiver operating characteristic (ROC) curve which gives
the detection versus false alarm rates over some operation
range of interest. In practical applications, an operating
point on the curve needs to be chosen which reflects a
particular compromise between detection and false alarm
rates.

In this experiment, we use a linear cost function for
operating point selection.

where k is a specified constant to balance the cost of a
misdetection and that of a false alarm. N, and Ny, are
the numbers of misdetections and false alarm, respectively.
It is a common practice in the ATR application to assign
more cost to a misdetection than to a false alarm. One
reason is that a misdetected enemy target can potentially
cause very serious damage. Another reason is that ATR
systems often consist of cascaded subsystems. Subsequent
processing modules incorporating other/fused information
are likely to reduce the number of false alarms, while mis-
detected targets in early stages are very difficult to recover.
Following this practice, in the experiments conducted here,
we arbitrarily regard a misdetection as being twice as harm-
ful as a false alarm. According to this, & is set to 0.5.
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5.2 Competing Algorithms

This section gives a brief description of some FLIR ATR
algorithms whose performance are also observed in the ex-
periments and compared to that of the centroid uncertainty
based algorithm.

Different target saliency measures are computed by
these algorithms. The sequential thresholding procedure de-
scribed in Sec. 5.1.2 is.used to produce the final target
declarations. Multiple thresholds are used for each algo-
rithm to obtain the performance over the entire operating
range. Notice that in the thresholding procedure, the candi-
date list is sorted in the descending order for the algorithms
of Secs. 5.2.1, 5.2.2, and 5.2.3.

5.2.1 The Maryland algorithm

Der and Chellappa'® of the Center for Automation Re-
search at the University of Maryland proposed a model-
based FLIR ATR algorithm for exactly the same applica-
tion scenarios considered in this study. Targets are modeled
by their 2D silhouettes. The image local contrast is mea-
sured by ‘‘probes’’ which are the differences in the inten-
sity values of pairs of pixels at certain orientations and
variable distances. Sample distributions of the probes for
the background hypothesis are estimated locally in the im-
age. The uniform distribution is assumed for the foreground
hypothesis. A generalized likelihood ratio test is setup us-
ing those distribution models.

To increase the robustness of the algorithm, the probe
values need to be thresholded at proper levels and the target
saliency measure is reduced to the number of probes along
the boundary that exceed the threshold. Instead of an arbi-
trarily chosen threshold, an adaptive procedure is used to
identify the threshold yielding the smallest false alarm rate,
which is determined using a binomial model. At each pos-
sible target location, this smallest achievable false alarm
rate is computed for all targets. The target with the smallest
false alarm rate wins the competition. Further, if its sa-
liency measure is above the threshold, it is declared to be a
target candidate.

5.2.2 The likelihood ratio algorithm

A variant of the Maryland algorithm was proposed” where
no threshold on the probe value is applied. The probe val-
ues are used directly in a generalized likelihood ratio test
for target detection and recognition. On the MURI data set,
this algorithm performed slightly better than the Maryland
algorithm.5 !

5.2.3 Matched filter for FLIR ATR

When the appearance of targets can be characterized by
random segments of regions with smoothly varying inten-
sity values, the matched filter idea for ATR is not likely to
work well. This is because there is no single reliable ap-
pearance of the target to match. However, we still apply the
simple matched filter algorithm on the test data set. On one
hand, its performance can be used as a rough standard of
what can be achieved by the class of simplistic general
purpose detection algorithms. On the other hand, from its
performance we can make a general judgment of the varia-

tion in the appearance of the targets in the test images, and
hence have some idea of the difficulty level of the test data
set.

In the simplest form, the matched filter for a particular
target has two values a and f3 for the pixel positions in the
inside and outside of the target boundary, respectively. Let
the total rectangular area for the matched filter be denoted
by S, and the areas inside and outside of the target bound-
ary be denoted by S;, and S, respectively, with §=S;,
+Sou- The matched filter is determined by

S out

a=\g S (31)
_ Sin
B - SSout. (32)

The reason for this particular choice of « and S is for the
matched filter to have zero mean (so that the output is in-
sensitive to the constant bias of the input) and unit energy.

N inS out N insout
Sina+sout3= S S =0,

Sou , Sin

S S

Sina2+Sout32=

The matched filters obtained in this way is most effec-
tive for detecting targets whose inside area and immediate
background are rather homogeneous looking with some dif-
ference between the average gray values of the two.

Target saliency measures are computed by convolving
the matched filters with the image data. The larger output
value is, the stronger evidence there is for the correspond-
ing target. The sequential thresholding procedure with the
descending order for the candidate list is used to determine
the final target declarations.

5.3 Simulated FLIR Scene Generation

To aid the development of algorithms, quite some effort has
been made to provide real FLIR data to the research com-
munity, e.g., Ref. 27 and some others available from the
Center for Imaging Science (http://www.cis.jhu.edu) at the
Johns Hopkins University. However, due to -the practical
difficulties involved in gathering and supplying the data,
the target types, imaging conditions, and scene complexity
are very limited. Only in rare cases is.there precise ground-
truth information about the targets in the scene. The situa-
tion is made worse by the restriction on the accessibility of
the data due to the military classification of the data sets.
For example, we failed to get access to the data set used in
Li et al.?* and Chan and Nasrabadi.>?
Nonetheless, large data sets with ground truth is essen-
tial in assessing the performance of computer vision algo-
rithms. Due to the difficulty in obtaining such data sets,
synthetic images are often used in studies.3*3%53 We also
take this alternative and generate simulated FLIR scenes by
planting random target appearances into real FLIR scenes.
It has the advantage of extremely low cost and readily
available ground-truth information from the scene genera-
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Fig. 5 Images in the Chinalake data set used as background
scenes in the FLIR scene generation.

tion process. In what follows, we describe the procedure by
which simulated FLIR scenes are generated.

5.3.1 Scene background

The FLIR scene generation procedure operates by choosing
a background scene from a number of alternative real FLIR
scenes and planting into that scene a random number of
targets with random appearances at randomly picked loca-
tions. The ‘‘land images’” in the NAWC Chinalake Presen-
tation data set (http://www.cis.jhu.edu) contains seventeen
FLIR scenes. These images contain our door scenes. The
sizes of the images are around 512X400. The twelve im-
ages in this data set that are used in the scene generation are
shown in Fig. 5.

5.3.2 Insertion of targets

From a library of target shapes, the procedure randomly
picks ten to fifteen targets, simulates their intensity values,
and selects locations in the background scene to place them
so that their bounding boxes do not overlap each other.

The silhouettes of the thirty-six targets in the MURI
FLIR data set are shown in Fig. 6. These are the targets to
be planted into the background scenes. The target signature,
or appearance, has to be decided. It is too simplistic and
unacceptable to use a constant value for the entire interior
of the target silhouette.

The best commercial software for target signature simu-
lation is the physically reasonable infrared signature model
(PRISM) running on the SGI workstations. The license for
using this software is issued by the ThermoAnalytics, Inc.
(http://www.thermoanalytics.com) under the authorization
of the US Army Tank-automotive & Armaments Command
(TACOM). We did not have access to this software. In-
stead, we use a procedure that randomly partitions the in-
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Fig. 6 Target silhouettes in the MURI FLIR data set.

terior of the target shapes into unions of regions and assigns
random intensity values for each of the regions.

It has been pointed out that in real FLIR scenes, the
interior of the target usually will be divided into a number
of regions of relatively smoothly varying 1ntens1ty The
partitioning of the target shape into the regions, however, is
highly dependent on the thermal state of the target, and
hence is highly variable. We generate random target ap-
pearance for each target instance by giving it a random
partition of its interior region, and assigning a random in-
tensity value with additive white Gaussian noise for each of
the regions in the partition.

The random partition of the target region makes use of a
segmented image of another FLIR scene. Shown in Fig. 7 is
the boundary map of the regions obtained from an image in
the MURI FLIR data set segmented by the reglon grow
algorithm.*> When a chosen target silhouette is placed at
some location on this boundary map, the inside area of the
silhouette is partitioned by the region boundaries. The
placement of the silhouette on the boundary map is random.
Hence we obtain a random partition of the area inside the
target silhouette.

Fig. 7 Boundary of the segmented regions in the MURI FLIR image
used for the random partition of target regions.
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Fig. 8 Example of simulated FLIR scene.

For each region in the partition of the target shape, we
assign an intensity value for each pixel location in that
region. The intensity value for each region is a white
Gaussian random variable with a selected mean value and
standard deviation. The mean value for each of the regions
in the target shape is chosen independently. It is picked
uniformly from an adaptively specified range [a+b-10,a
+b-50], where a is the average value of the background
scene image within that region, and b is equally likely to
take the values 1 and —1. This roughly gives a contrast on
the order of 10-50 between the target and its immediate
background. The standard deviation in the intensity value is
chosen to be 10. As a result, the simulated target instances
roughly have a signal-to-noise ratio of about 1-5.

Figure 8 shows an example of the simulated scene. In
this scene, 10 targets are planted into the 6th image in Fig.
5. Because of the low contrast in the scene, some targets
are quite hard to see even to the human eyes. To make it
easier for the reader to study the image, another image is
provided with the target silhouettes outlined. Notice that
the inside area of many of the targets are broken into pieces

of irregular shaped regions of homogeneous intensity val-
ues.

There are a total of 625 target instances in the 50 images
generated for this experiment.

5.4 Algorithm Performance and Discussions

Each algorithm described in Sec. 5.2 is applied indepen-
dently to the test data set described in Sec. 5.3. The ATR
performance evaluation procedure described in Ref. 35 is
carried out to compare the output with the ground truth.

In this procedure, a constrained maximal one-to-one cor-
respondence between the ground truth and declared targets
is established. A radial distance of 25 pixels is used in
searching for the correspondence. From this correspon-
dence, we determine the numbers of detected and misde-
tected ground-truth targets, correct declarations, false
alarms, and the targets correctly recognized. The detection
rate is the percentage of detected ground-truth targets
among all 625 ground-truth targets. The false alarm rate is
computed as the total number of false alarms divided by the
number of frames (50). The unconditional recognition rate
is the percentage of correctly recognized targets among all
ground-truth targets. The conditional recognition rate is the
percentage of correctly recognized targets among only the
targets that are correctly detected. The root-mean-square
(rms) error in the target centroid location for the correctly
recognized targets is also computed to characterize the lo-
calization performance.

The ROC curve is used to present the detection perfor-
mance of the tested algorithms. To give a picture of the
detection performance over the whole operating range, as
well as to show the details of the algorithm performance in
the operating range of interest, two versions of the ROC
curve are give in Fig. 9. The unconditional recognition and
localization performance curves are given in Fig. 10.

5.5 Discussions

* From Figs. 9 and 10(a), we see that the proposed al-
gorithm performs uniformly better than all other algo-
rithms in terms of detection and recognition perfor-
mance over the entire operating range. The
recognition performance is especially impressive. For
the low false alarm operating range, the localization
performance of the algorithm is also the best. For
larger false alarm ranges, the localization performance
of the algorithm is also among the best.

* The Maryland algorithm has the second best detection
performance. Its unconditional recognition rate is also
relatively good for low false alarm ranges, but satu-
rates at around a low 60% when the false alarm rate is
larger than 10 per frame.

Following the method outlined in Sec. 5.1.3 for the
operating point selection, the least-costing operating
point for the proposed algorithm is at detection rate of
65% with an average of 2.1 false alarms per frame.
For the Maryland algorithm, the optimal operating
point is at detection rate of 53% with an average of 1.7
false alarms per frame. At the optimal operating point,
the unconditional recognition rates for the proposed
algorithm and the Maryland algorithm are 61% and
48%, respectively. These numbers are relatively low
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Fig. 9 Detection performance (ROC curves) of the ATR algorithms.

since they are restricted by the detection rates of the
selected operating points. Without the restriction from
the detection performance, the conditional recognition
rates are 99% for the proposed algorithm and 91% for
the Maryland algorithm.

* Due to the great variation in the target appearance in
the test images, the matched filter algorithm fails mis-
erably by achieving only a very low recognition rate
of around 20% for low false alarm ranges and less
than 30% for high false alarms ranges. This is an ex-
pected behavior, and it confirms the widely held opin-
ion that matched filter is insufficient for the great vari-
ability in FLIR scenes. The target boundary model is
more appropriate in this situation.

¢ Although in some limited-data occassions the likeli-
hood ratio algorithm described in Sec. 5.2.2 performed
slightly better than the Maryland algorithm, it is defi-
nitely not doing as well in this moderate-sized experi-
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Fig. 10 Unconditional recognition rate (recognized targets divided
by all ground-truth targets) and rms localization error of the ATR
algorithms.

ment. It shows that the robustness considerations in
the Maryland algorithm pay off quite well in the pres-
ence of low target contrast and high noise levels.

6 Summary and On-Going Research

We have described a model-based FLIR ATR algorithm
that makes use of boundary contrast for target detection and
recognition. The relationship between contrast and bound-
ary point location uncertainty is worked out in an edge
detection framework without actually carrying out edge de-
tection, which is highly prone to error due to the low qual-
ity FLIR imagery. The location uncertainty along the
boundary is combined into a single measure of the centroid
location uncertainty which is used as the key saliency mea-
sure for target detection and recognition. The significance
of the proposed algorithm lies in the sound mathematical
models used in combining the boundary contrast by means
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of location uncertainty, as well as in relating the contrast to
location uncertainty for target boundary points within the
edge detection framework. The FLIR ATR algorithm based
on this measure shows improved performance in detection,
recognition, and localization, with the improvement in rec-
ognition performance being the most impressive.

Currently research is being conducted to further improve
the performance of the algorithm. The efforts include de-
veloping optimal gradient operator for better boundary con-
trast and location estimation, using the MDL principle to
improve the quality of facet parameter estimation in the
gradient operator, and combining the proposed algorithm
with region-based FLIR ATR algorithms. Also, the rela-
tionship between edgel contrast and location uncertainty is
being utilized in developing a new edge detection technique
using the Bayesian approach.
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Appendix: Partial Derivatives in Centroid
Covariance Expression

We now give the exact expressions for the partial deriva-

tives involved in Eq. (20).

When the locations of the polygon’s vertices are per-
turbed, K, K, and S in Eq. (1) are all perturbed. Let the
perturbed quantities be K, , Ky, and §, respectively. Let
AK,, AK,, and AS be the difference between the per-
turbed values and the ideal values, respectively.

M =

§= I(fiﬁiﬂ_fiﬂf’i)
1
N
=§:1 [+ Ax)(yir1HAYi41) = (X1 +HAx )
“ ,
X(y;+Ayi)],
AS=§-5§
N
“; [(xAyi1+yi18x) — (x;41Ay;+y:Ax,41)],
N
f(x=2:1 (FFir1=%i019) (X +£541)
N
=21 [+ Ax)(Yir1 Ay 1) = (21 HAX )
X(yi+ Ay) ] G+ Ax+ x4 +Ax; ),
AK,=R,—K,

x Ax_
N
”Zl {(xyiv1= X1y ) (Ax;+Ax )+ (x+x,4)

1

X[ Ay i1+ Yi1Ax) — (X, Ay;+y,:Ax;:1) 1},

™M =

IA{y=,_l (EFiv1= 219D Pi+9i41)
N
= 2 [t Ax) (v +Ayi1) = (xier +Axi)
“=
X(yitAy) - (vi+Ayi+yie 1+ Ay 1),
AK,=K,~K,
N
%21 {101y Ay + Ay ) H(yi+yis1)
“=
X[(xAy;s1+Yi418x) = (x; Ay, +y;Ax; 1)1}
Extending the notation to have xo=xy, yo=yy, for i
=1,2,....N, we obtain
as

E=)’i+1_)’i—1,

as
5=_(xi+1_xi—1)’

l
K,
I =[2xyir1t X1 (Vir1—y0)]

1

—[2xy-1+xio1(yici— )],

K,
3. =t x )X T (rm g x)xg g,
oK

y
W=(yi+yi+l)yi+l_(yi'—l—l_yi)yi—l’
1

K,

3, =—[2xi11yityie1 (X1 —x5)]

F[2x; -1yt yim1(xi—1—x)].

Now the expressions

&KXS . aS
90,(x,y)  dx, “ox, 1 [0K, K. S| Al
ax, 357 35 |ow, S ) @D
K, as
—S—,Kx— ‘
9Q:(x,y) _ 9yn n_ 1 K K. 9§ (A2)
Yn 352 3§ (yn S dya)’
oK, as
—S—-K,— '
90,(x,y) _ dx, Yoxn _ 1 JoKy Ky 9§ A3
ax, 357 38 |ax, S ox,)’ *)
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oK a8

Y

90,(x,y) _ yn Y0y, _ 1
Iy

‘&Ky K, as]

352 3S | ay, S ay,

(A4)

only involve the known locations of the unperturbed verti-
ces, and hence are readily computable.
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Abstract. The optical flow observed by a moving camera satisfies,
in the absence of noise, a special equation analogous to the epipo-
lar constraint arising in stereo vision. Computing the “flow funda-
mental matrix” of this equation is an essential prerequisite to under-
taking three-dimensional analysis of the flow. This article presents
an optimal formulation of the problem of estimating this matrix under
an assumed noise model. This model admits independent Gaussian
noise that is not necessarily isotropic or homogeneous. A theoretical
bound is derived for the accuracy of the estimate. An algorithm is
then devised that employs a technique called renormalization to de-
liver an estimate and then corrects the estimate so as to satisfy a
particular decomposability condition. The algorithm also provides an
evaluation of the reliability of the estimate. Epipoles and their asso-
ciated reliabilities are computed in both simulated and real-image
experiments. Experiments indicate that the algorithm delivers re-
sults in the vicinity of the theoretical accuracy bound. © 2000 SPIE
and IS&T. [S1017-9909(00)01202-2]

1 Introduction

Two distinct approaches are available for extracting three-
dimensional (3D) information from motion images. One
utilizes data in the form of point correspondences,”™ while
the other exploits data in the form of optical flow, which is
theoretically an instantaneous velocity field over the image
frame. Under this latter approach, we can compute the 3D
motion of the camera and the focal length, and hence the

Paper 99-048 received Aug. 31, 1999; revised manuscript received Mar. 10, 2000;
accepted Mar. 14, 2000.
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3D structure of the scene, in an analytically closed form by
regarding the image motion as infinitesimal.>® A similar
analysis can be carried out using the fundamental matrix,”~°
but it requires many stages of complicated analysis and
computation.

Optical flow analysis relies heavily upon the accuracy of
the optical flow estimation. Usually, optical flow is deter-
mined by applying a differential equation called the gradi-
ent constraint to the gray levels of the images.!%~'® This has
the advantage that the flow can be detected over the image
frame via a single operation. However, this process in-
volves many stages of approximation such as replacing dif-
ferentials by finite differences, imposing smoothness con-
straints, and applying regularization methods. As a result,
the accuracy of the detected flow is not high enough for 3D
reconstruction of the scene. In order to obtain accurate
flow, we need to trace individual feature points directly by
the same means as those used for finite motion, such as
template matching and spatio-temporal analysis. In this ar-
ticle, we assume that optical flow has been obtained with
high accuracy for a limited number of salient feature points.

If the images are captured by a camera moving through
a stationary scene, the associated optical flow satisfies, in
the absence of noise, a motion equation of special form.
This equation is analogous to the epipolar equation arising
in stereo vision. The coefficients of the motion equation can
be expressed in terms of a matrix, which plays the same
role as the fundamental matrix in stereo analysis. For this
reason, we call it the flow fundamental matrix. The main



