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Image processing algorithms implicitly or explicitly assume an idealized form for the image
data on which they operate. The degree to which the observed data meets the assumed
idealized form is typically not examined or accounted for. This causes processing errors often
attributed to noise. In this paper we discuss a facet model for image data which has the
potential for fitting the form of the real idealized image, and for describing how the observed
image differs from the idealized form. It is also an appropriate form for a variety of image
processing algorithms. We give a relaxation procedure, and prove its convergence, for
determining an estimate of the ideal image from observed image data,

1. INTRODUCTION

Operations on image data are designed to determine or estimate properties about
the scene being imaged. A typical problem, for example, might be to determine
homogeneous object parts or object edges. Such properties often cannot be de-
termined without error. Sometimes it is because the algorithm works best for image
data meeting certain assumptions actually not met by the observed image data.

The statistical uncertainty due to noise is unavoidable. However, the error due to
using an algorithm on data that does not meet an assumed form is avoidable by
first preprocessing the observed data and generating from it an estimate of its ideal
form. :

This decomposition of the problem into the two parts of getting an estimate of
the ideal image underlying the observed image and then processing the estimate to
determine the image properties is suggestive of the way this kind of problem is
handled in stochastic control: get the best estimate of system state and then use a
deterministic control assuming the best estimate of the actual system state. For the
classical linear system with additive Gaussian noise this approach is the optimal
one. For nonlinear systems it is not the best approach. But even here it gives good
enough answers that it is frequently used nevertheless.

The advantage of the decomposition is its simplicity: it handles the noise when it
estimates the ideal image, a process which we can call noise cleaning. Its disad-
vantage is that errors between the assumed form of the ideal image and the actual
form of the ideal image will be exaggerated and propagated by any processing
algorithm using the restored image.

In this paper we suggest a facet model for image data. The model specifies how
the order and regularity in the world manifests itself in the ideal image and how the
real image differs from the ideal image. The model is our working hypothesis. Our
exploration here will use the facet model in its simplest form.
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The facet model for ideal image data assumes that the image is everywhere
simple. This means that the spatial domain of the image can be partitioned into
connected regions called facets each of which satisfies certain gray tone and shape
constraints. The gray tones in each facet must be a polynomial function of the
row—column coordinates of the pixels in the facet. In this paper we assume that the
polynomial function is of degree zero, one, or two. Hence if we consider the gray
tones as composing a surface above the resolution cells of the facet, then' for the
ideal image having a degree-one polynomial function, the surface is a sloped plane.
Thus, “sloped facet model” would be an appropriate description of this specialized
facet model.

The shape constraint is also simple: Each facet must be sufficiently smooth in
shape. We assume that each region in the image can be exactly represented as the
union of K X K blocks of pixels. The value of K associated with an image means
that the narrowest part of each of its facets is at least as large as a K X K block of
pixels. Hence, images which can have large values of K have very smoothly shaped
regions. In this paper, we will take K less than or equal to 3.

To make these ideas precise, let Z, and Z, be the row and column index set for
the spatial domain of an image. For any (r,c) € Z, X Z,, let I(r,c) be the gray
value of resolution cell (#,c) and let B(r,c) be the K X K block of resolution cells
centered around resolution cell (r,¢). Let # = {m,,..., 7y} be a partition of the
spatial domain of Z, X Z, into its facets.

In the sloped facet model, for every resolution cell (r,c) € m,, there exists a
resolution cell (i,j) € Z, X Z, such that:

(1) Shape region constraint: (r,c) € B(i,j) C 7,;
(2) Region gray tone constraint: I(r,c) = a,r + B,c + ¥,

An observed image J differs from its corresponding ideal image 7 by the addition
of random stationary noise having zero mean and covariance matrix proportional
to a specified one.

J(r,e)=I(R,c) +n(r,c),
where
E[n(r,e)] =0,
E[n(r,c)n(r',¢’)] = ka(r — r',c = ¢).

The flat facet model of Tomita and Tsuji [2] and Nagao and Matsuyama [1]
differs from the sloped facet model only in that the coefficients @, and B, are
assumed to be zero and Nagao uses a more generalized shape constraint which is
also suitable here.

In Section 2 we describe a relaxation procedure which generates images satisfy-
ing the facet form. The relaxation procedure is proved to converge in Section 3 and
has the important properties suggested by Rosenfeld [3]: in a coordinated and
parallel manner, the strong influence the weak in their neighborhoods causing the
weak to become consistent with the strong. In Section 4 we show some results.

[
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2. NOISE CLEANING UNDER THE FACET MODEL

Noise cleaning is a procedure by which a noisy image is operated on in a manner
which produces an image which has less noise and has the form of an ideal image.
The facet model suggests the following simple nonlinear relaxation procedure to
iteratively operate on the image until the image of ideal form is produced. Each
resolution cell is contained in K2 different XK X K blocks. The gray tone distribu-
tion in each of these blocks can be fit by either a flat horizontal plane or a sloped
plane. One of the K2 blocks has smallest error of fit. Set the output gray value to
be that gray value fitted by the block having smallest error. For the flat facet model
this amounts to computing the variance for each K X K block a pixel participates
in. The output gray value is then the mean value of the block having smallest
variance (Tomita and Tsuji [2], Nagao and Matsuyama [1]).

For the sloped facet model, the procedure amounts to fitting a sloped plane to
each of the blocks a given resolution participates in and outputting the fitted gray
value of the given resolution cell from the block having the lowest fitting error.

The relaxation process associated with the facet model is similar in some respects
to Diday’s dynamic clusters method [4]. The main differences are: (1) the dynamic
clusters method is a finite process (since there are only finitely many possible
partitions and samples), while the sloped facet filtering process produces (in
general) an infinite sequence of distinct points; (2) the residuals in each partition
strictly decrease with the dynamic clusters method, whereas the sloped facet filter
residuals (or sum of residuals) are not necessarily monotone; (3) the dynamic
clusters method changes assignments of data points but not the points themselves,
whereas the facet model relaxation repeatedly changes the data themselves.

Since the relaxation procedure for the sloped facet model is more complicated,
we give a derivation here of the required equations. We assume that the block
lengths are odd so that one of the block’s pixels is its center. Let the block be
(2L + 1) X (2L + 1) with the upper left-hand corner pixel having relative row—
column coordinates (—L, —L) and the lower right-hand corner pixel having
relative row—column coordinates (L, L). Let J(r,¢) be the gray value at row r,
column ¢. According to the sloped facet model, for any block entirely contained in
a facet

J(r,c) =ar + Bc+ vy +n(r,c),

where n(r, ¢) is the noise.
A least-squares procedure may be used to determine the estimates for a, 8, and
v. Let

L L
f(a’ﬁ’7)= 2 2 (ar+'ﬁc+~y——J(r,c))2,

r=—Le=—L

The least-squares estimates for a, B8, and vy are those which minimize f. To
determine these values, we take the partial derivatives of f with respect to o, 3, and
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v, set these to zero and solve the resulting equations for a, 3, and .

@ L L
—=22 > (ar+Bc+y—=J(r,o)r,
da r=—Lec¢=-L
af L L
—=2 3 ¥ (ar+ Bc+vy—J(roc)e,
dB r=—Lc=-L

& L
433 (ar + Bc +y — J(r,c)).
d‘)f r=—Lc¢=-L

(ar+ Bc+vy—J(r,c))=0.
~F

Using the facts that X _, i =0and X _, i?=1K(K + 1)2K + 1) we obtain

L L
L+ D)RL+1’a— 3 r 3 J(r,e)=0,

r=—L c=—-L

L
sL(L+ 1L +1)°8 - i e X J(r,e)=0,

c=—L r=-L

L L
RL+1)*y- 3 3 Jr,e)=0.

r=—Le¢=—L

Therefore,
3 L L
.- -3 S sro,
L(L+ DQ2L+ 1Y r=-L c=-L
3 L L
= 2 2 2 J(r!c)a
L(L+ 1DQ2L+ 1) e=-Lr=-L
1 L L
y=—— > 2 J(r,c).

QL+ 1Y r=—Le=-1

The meaning of this result can be readily understood for the case when the block
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size is 3 X 3. Here L = 1 and

a =1L ICT, 3 — (=1, )],

B=gld(-.1) -4, -1},

y=5J7(-,"),
where an argument of J taking the value dot means that J is summed from —L to
L in that argument position. Hence, a is proportional to the slope down the row
dimension, 8 is proportional to the slope across the column dimension, and y is the
simple gray value average over the block. See Beaudet [5] for least-squares

estimates of higher-order derivatives.
The fitted gray tone for any resolution cell (r,¢) in the block is given by

J(r,¢) =ar + Bc +v.

For the case where L = 1, the 3 X 3 block,

J(ric) =3[J(1,-) = J(—1,-)]r
+3[ I3 1) =I(+; =1)]e
+3J(, ).

Writing this expression out in full:

J(roe) =L{J(—=1, —1)(=3r—3c + 2)
+J(—1,0)(=3r +2)
+ J(—=1,1)(=3r + 3c + 2)
+ J(0, —1)(—3¢ + 2)
+ J(0,0)(2)
+ J(0, 1)(3c + 2)
+ J(1, —=1)(3r — 3¢ + 2)
+ J(1,00(3r + 2)
+J(1, D(3r + 3¢ + 2)}.

This leads to the set of linear filter masks shown in Fig. 1 for fitting each pixel

position in the 3 X 3 block.
The sloped facet model relaxation procedure examines each of the K2 K X K
blocks a pixel (r, ¢) belongs to. For each block, a block error can be computed by

L L

=3 3 (Jre) =0

r=—Lc=—L
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J(~.1) J-1,0) H-1,1)
8 5 2 5 5 5 2 5| 8
5 5 | e 2 2 2 5 i 2| s
3 | = | =4 <1 | =l | = —4 1 =T &
J(0, —1) J(0,0) J(0, 1)
5 2 | -1 2 2 2 i1 2| s
5 g | e 2 2 2 el 2| s
5 5| —& 2 2 2 - 2| s
Ja, -1 J(1,0) 1,1
2 | -1 | -4 -1 | -1 =1 ~%| =12
5 # | =1 2 2 5 | 2| s
8 5 2 5 5 5 2 5| 8

F1G. 1. 3 X 3 linear estimators of a pixel’s grey tone for the nine different 3 X 3 neighborhoods the
pixel participates in. If the pixel’s position is (i,/) in the neighborhood, the estimate is J(i, ). Each mask
must be normalized by dividing by 18.

One of the K X K blocks will have lowest error. Let (r*, c*) be the coordinates of
the pixel (7, ¢) in terms of the coordinate system of the block having smallest error.
The output gray value at pixel (r,c) is then given by J(r*, c*), where J is the linear
estimate of gray values for the block having smallest error of fit.

3. CONVERGENCE

We now prove that the sequence of images produced by relaxation using either
the flat facet or sloped facet model converges. Only the one-dimensional simplest
versions of the facet models are considered because these proofs capture the
essence of the more general cases where technical details obscure the proof. The
proofs are readily generalized to two dimensions and larger neighborhoods.

We think of the gray tones at the mth iteration as a finite sequence of numbers

xm, ..., x{m
which becomes the sequence

Xfm+1), . ‘,Xk’m+l)
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after one application of the relaxation procedure for the flat facet or sloped facet
model.

3.1. The Flat Facet Model

We discuss the convergence of the flat facet model using a one-dimensional
sequence of gray tones and a neighborhood size of 2. The flat facet relaxation has
the interesting property that the algebraic order of a pair of gray tones in a block is
unchanged by the relaxation. Hence if X{™ > X{7™), then X{™*D > x{m+V It is
this property which drives the convergence monotonically.

ProrosiTION 1. Let a, b, ¢ be numbers and

b'=“;b if |a—b| < |b—c]
=¥ if |a — b > |b— .

Then (1) b > ¢ implies (b +¢)/2 < b < b+ (b — ¢)/2,
@) b < cimplies b+ (b — ¢)/2 < ¥ < (b + ¢)/2.
Proof. From the definition of &, |b" — b| < |(b — ¢)/2|.

(1) Suppose b > c. Then |b' — b| < (b — ¢)/2. Hence, —(b —c)/2 < b’ — b
<(b—c)/2sothatb—(b—c)/2 <V <b+ (b-c)/2

(2) Suppose b < ¢. Then |6" — b| < (¢ — b)/2. Hence, —(c — b)/2 < b’ — b
S(c—b)/2sothath— (c—b)/2 <V < b+ (c—b)/2

ProOPOSITION 2. Let a, b, ¢, d, and e be numbers. Define

f(xp,x)=(x+y)/2  if|ly—x|<|y—z|
=(+2)/2 ifly—x|>|y—z|
Let b' = f(a,b,c), ¢’ = f(b,c,d), d’ = f(c,d,e), and ¢” = f(¥,c',d"). Suppose b <
¢ < d. Then
(1) ¢ < ¢ implies ¢’ < ¢”,
(2) ¢ = ¢’ implies ¢ > ¢”.

Proof. By Proposition 1,5 < ¢ < dimpliesb + (b —¢)/2 < b < (b+¢)/2 <
¢ <(c+d)/2<d <d+(d—c)/2

(1) Suppose ¢ < ¢’. Then since b < ¢ < d it follows from the definition of f
that ¢’ = (¢ + d)/2 and d — ¢ < ¢ — b. Now note that

d—c <[d+(d-¢c)/2] —(c+d)/2=d—¢
and

¢ =b 2(c+d)/2—(b+c)/2=(d—c)/2+ (c—b)/2
2(d—c)/2+(d—-c)/2.



120 HARALICK AND WATSON

Hence, d' —¢' <d—c < ¢ — b'. Since &' < ¢’ < d’ we must have by definition
of fe"=(c"+d)/2=2(c"+e)/2=c.

(2) Suppose ¢ = ¢’. Then since b < ¢ < 4 it follows from the definition of f
that ¢’ = (b + ¢)/2 and ¢ — b < d — ¢. Now note that

d=c2(c+d)/2—(b+d)/2=(c—b)/2+(d—¢)/2
2(c=b)/24+ (c—b)/2
and
¢ —b<(b+c)/2—[b+(b—c)/2]=c—b.

Hence, ¢’ — 0" < c — b < d’c¢’. Since &’ < ¢’ < d’ we must have by definition of f,
= (b +¢)/2<(c+)/2=c.

THEOREM 1. Let X(?,...,X{? be a given sequence of numbers, and define

sequences X{™, ..., X\, m = 1,2..., by best adjacent least-squares averaging:
X+ xfm
xgr 2 KR ymi ym) < XX or k=N
(m) ()
_ XA X otherwise.
2 3

Then (1) the algebraic order of XO,...,X$ is preserved by each sequence
xm - yom.
s S g

(@) If X9 is a local min(max), then so is X'™;

(3) For all k and m, min, X© < X{™ < max, X%,

(4) For fixed k, X{™ is either monotone increasing or decreasing;

(5) lim,,,, o [ X, ..., X=X, ..., X7 ] exists, and each X is a local non-
strict extremum.

Proof. (1) The proof is by induction on m. Suppose X" < X[, ,. Then by
Proposition 1, part (1), X4 > (X + X[”.,)/2 and by Proposition 1, part (2),
XPtl< (X + X[%1)/2. Hence, X< X35, Similarly, if X® > X% | then by
Proposition 1, part (1), X"*' > (X + X" ,)/2 and by Proposition 1, part (2),
XM < (X + X[ )/2 Hence X' < X+,

(2) Since order relationships between neighboring points are preserved, as
proved in (1), local extrema must remain extrema.

(3) If X2 is a local minimum, then by (2) X;” remains the local minimum for
all m. The averaging process can do nothing but increase X;”. Hence, X" must be
monotonically increasing. It now follows from (1) that min, X;° < X" for all j and
m. Similarly, every local maximum is preserved and if X' is a local maxmlum then
X, is monotonically decreasing. Also, because of (1), max, X° > X" forall j and m.

(4) The proof is by induction on m. If X" is a local extremum, the result
follows from (2) and the observation made in the proof of (3). If X;” is not a local
extremum then we have two cases depending on whether X" ' < X1 < X! or
X'> X' > X[n5'. But these cases are really identical since reordering the
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indices in one case will produce the other. Thus without loss of generality we
suppose X' < X7~ < X" '. Now by Proposition 2, X"~ ' < X" implies X" <
X gl X0V X implies XF & X2

(5) By (3) and (4), for each fixed k, X" is a bounded monotone sequence.
Therefore, by the Bolzano—Weierstrass theorem, the sequence converges

lim X = XP.
m— o0

Taking limits in the definition of X" yields that X;° equals either (X° + X5 ,)/2
or (X + X2 ,)/2, which implies X;° equals either X;° | or X;% ,. Hence X, is a
nonstrict local extremum for every k, | < k < M.

3.2. The Slope Facet Model

We discuss the convergence of the slope facet model using a one-dimensional
sequence and a mneighborhood size of 3. The slope facet relaxation has the
interesting convergence property that those neighborhoods of points most collinear
converge first. Hence, the strongly consistent neighborhoods do not change much
and force the weakly consistent neighborhoods to be consistent with the strongly
consistent neighborhoods which have already converged. What happens is very
similar to the property of relaxation procedures desired by Rosenfeld [3].

LEMMA 1. Let y = ax + b be the best polynomial least-squares approximation of
degree < 1 to the data points (x,,y,), (x5,%2), (x3,y3), where x, < x,< x; are
equally spaced. Then a residual y, — ax;— b = 0 for some i if and only if the three
points are collinear.

Proof. By scaling and translating the points if necessary, it may be assumed
without loss of generality that x, = ~1, x, =0, x; = 1. Solving the normal equa-
tions gives the least-squares fit

—y, + + yy +
_ )’12 J’3x+J’1 };2 )’3|

For each i, ax; + b — y,= 0 implies (y, + y3)/2 = y,, which implies (x,,y,) is the
midpoint of the line segment between (x,,y,) and (x,,y;). Hence the points are
collinear. The converse is trivial.

Lemma 2. Let x, < x4 < x5 be equally spaced points and P(x) the best polynomial
discrete least-squares approximation of degree <1 to the points (x,,y,), (X3.¥3),
(x3,¥3). Then

Syi+2y,—y yi+ys—2p
P(x1)=_£%’ )’1_p(xl)=l+2=s»
nty,+y
P(x2)=_l-32—'_3’ yo— p(x3) = —2s,
_ S5ys+ 2y, — »y

p(x3) 6 = p(x;) =s.
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Proof. As in the proof of Lemma 1 it may be assumed that x, = —1, x, =0,
x3 = 1. The results then follow from the explicit formula for p(x) given in the proof
of Lemma 1.

THEOREM 2. Let y?,...,y5 be a given sequence of numbers, and define sequences
yeoymem=12,..., by

yim+1 = p(i),

where p(x) is the polynomial of degree of < 1 producing the best least-squares
approximation among ail polynomials of degrees < 1 of best discrete least-squares
approximation fo any three consecutive points from

(i - 2:}’122)’(" - 1=yi"—!l)=(i’yim)5(f + l’yi’:—l)’(i *+ 2’yi’-r|1-2)-

Then lim,, y" exists for all i, 1 <i < N.

Proof. The proof is by induction on the number X of consecutive points which
are converging. Let (k — 1,y._,),(k,y2),(k + 1,y2,,) be the three points which
have the best least-squares fit p(x) over all the points (i,y°). Then by definition,
yj1= p(j)j=k—1,k,k+ 1, and these three new points are collinear. By the
definition of the sequences, collinear points remain collinear, and therefore these
three points converge. Hence, K > 3. Applying this same argument to the remain-
ing points produces, after a finite number of iterations, blocks of three or more
consecutive points which remain fixed.

For the inductive step, suppose that y,,y.,....,», are converging and the next
block of converging points starts with y,. (The following argument also applies if
there is no y,.) Take m large enough that y;*,...,y/,»",y™ ..., may be con-
sidered fixed. Consider the minimum least-squares error at the points
YivvVivas Y. There are some three points, say

m m m
Vi1V 5 Visvrs

whose least-squares error is the smallest. If / <¢t—1<¢+1<r, then
yrylym*lymtl are collinear, hence converging, and the induction is complete.
Otherwise the minimum residual occurs at one of the ends. There are two cases:

Case 1. =t (the case r = ¢ is similar). By Lemma 2, y/11'= t(5y/%, + 2y —

YD,y =ym, ymtl=ym |, and a short calculation shows that the residual at

+1 +1 +1 5 : m m
yo Ly Lyt < 2 (residual at y” 700 )-
6

Case 2. l=1¢—1 (the case r=1r+ 1 is similar). Using Lemma 2 again, a

short calculation shows that the residual at y"*',y/mt!,ym32 <1 (residual at

YOV 1Yih2)

As m — o0, either the minimum residual occurs in the middle, in which case the
induction is complete, or at one of the ends, in which case the minimum residual
decreases by a factor of 2 or % at each iteration. Therefore, the minimum residual
converges to zero, and either y/7 | or y,” | converges, completing the induction step,
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3.3. Remarks

Theorems 1 and 2 are true in a number of extensions:

(1) The neighborhood size can be increased to an arbitrary K points.

(2) The domain of the points can be extended from one dimension to two
dimensions, thereby making the results true for image data.

(3) The neighborhood shape does not have to be square or even rectangular in
the case of the two-dimensional data. This takes care of the variety of neighbor-
hood shapes employed by Nagao and Matsuyama [1] in their flat facet iterations.

(4) The theorems are true even if norms other than the L, norm are used to
determine the best approximation. For example, they are true for the L, norm and
L norm.

The theorems were stated and proved in their present form only in order to
provide as much insight as possible. The proofs of the extensions just mentioned
are conceptually the same as the proofs given here, but they present considerably
more technical and notational difficulties.

Although the relaxation has been proved to converge, the meaning of the limit in
relation to the starting point has not been established. In other words, this
relaxation procedure suffers the same fault of many of the probabilistic relaxation
labeling procedures used in image processing: the results are interesting and

Fi1G. 2. Original 256 X 256 test image.
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Fig. 3. Result of processing the original image of Fig. 2 with five iterations of the slope facet
procedure.

perhaps useful, but the problem being solved has not been stated or understood.
We are actively working to try to remedy this weakness.

4. RESULTS

Figure 2 illustrates a 256 X 256 outdoor scene which the VISIONS group at the
University of Massachusetts is working with and has supplied to us. Figure 3
illustrates the image after five iterations using the slope facet relaxation technique
with a 3 X 3 window. Contrast between different regions has improved. Any region
depicting features smaller or thinner than the 3 X 3 window is degraded. Most
noticeable is the light above the garage door, the linear gutter feature, and the
leaves on the trees. In general, textured areas become smoother and coarser
textured. Edge boundaries become sharper and homogeneous areas have less noise.

To help discover what changed between the original image of Fig. 2 and the
slope facet image, the absolute value of the difference between the original and the
first slope facet iteration is shown in Fig. 4. Most of the changes have occurred
along edges and in textured regions. This suggests that the slope facet model is a
good model for the interior of any region in the image. But at the edges of region
or for regions which are smaller than the X X K window size used, the model does
not fit well.



FACET MODEL FOR IMAGE DATA 125

F1G. 4. The absolute value of the difference between the original and the result of the first iteration of
the slope facet procedure.

Just for the sake of comparison, Fig. 5 illustrates the fifth iteration of the flat
facet procedure. Note the blocky, flat appearance the image has. This image clearly
cannot be the ideal underlying image for the original of Fig. 2. Figure 6 shows
the absolute value of the difference between the original and the first iteration of
the flat facet procedure. The changes certainly occur everywhere they did with the
slope facet procedure except that they are larger in magnitude and larger in area.

The quadratic facet model allows a much better fit to occur near the edges.
Figure 7 shows a blow-up of rows 80 to 143 and columns 60 to 123 of the left-hand
corner of the house. Figure 8 shows the corresponding blow-up of the fifth iteration
quadratic facet. Aside from the difference due to the photographic developing
process, the images look the same at the pixel level. Confirming this, Fig. 9
illustrates the absolute value of the differences between the original in Fig. 7 and
the quadratic facet result of Fig. 8. There is relatively little spatial structure in the
difference image.

For the sake of comparison, Fig. 10 shows the same section after processing with
five iterations of the slope facet procedure and Fig. 11 the same for five iterations
of the flat facet procedure. These images confirm our earlier comments about the
flat facet model being really incorrect and the slope facet model being correct in
region interiors but not at edges.



FiG. 5. The result of processing the original image of Fig. 2 with five iterations of the flat facet
procedure.

F1G. 6. The absolute value of the difference between the original and the first iteration of the flat
facet procedure.
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Fi1G. 7. Blow-up of the left corner of the house of the image of Fig. 2.

Fic. 8. The result of processing the image of Fig. 7 with the quadratic facet model procedure.
127



Fi1G. 9. The absolute value of the difference between the original of Fig. 7 and the quadratic facet
image of Fig. 8.

F1g. 10. The result of processing the blow-up of Fig. 7 with five iterations of the slope facet

procedure.
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F1G. 11. The result of processing the blow-up of Fig. 7 with five iterations of the flat facet procedure.

5. CONCLUSION

We have discussed a facet model for image data which represents the underlying
ideal image as a piecewise polynomial function, each piece being called a facet. We
have suggested that those image processing operations that require an image to be
in idealized form first restore the image to that ideal form by the facet iteration
algorithm which we described and proved convergent. There is much work that
remains to be done concerning the choice of the slope facet or quadratic facet
model for any particular image and the size of window that is most appropriate.
Experiments using the resulting facet image as the input image to various edge
operators and region segmentation operators need to be tried and we will report on
them in future papers.
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