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Abstract. Text structures in document images are usually laid out
in a structured manner—having preferred spatial relations. These
spatial relations are rarely deterministic; however, they can be mod-
eled by probabilities. Therefore, any realistic document layout analy-
sis algorithm should utilize this type of probabilistic knowledge to
optimize its performance. We first describe a method for automati-
cally generating a large amount of nearly perfect layout ground truth
data from the LaTeX device-independent (DVI) files, where the
bounding boxes for the characters, words, fext lines, and text biocks
are represented in hierarchies. These ground truth data enable us to
- constiuct statistical models that characterize the various layout
structures in document images. We demonstrate this concept
through the development of a word segmentation algorithm, which
employs the recursive morphological closing transform to model
word shapes in document images. We also conducted systematic
experiments to evaluate the performance of our algorithm using the
synthetic images generated from the LaTeX DV/ files and the real
images from the UW-1 and UW-Il English document image data-
bases. The results indicate that the correct word detection rate is
about 95% on the synthetic images and more than 90% on most of
the tested real images. © 1996 SPIE and IS&T.

1 Introduction

Document layout analysis identifies various objects of in-
terest on a document image and describes their spatial re-
lations. An object is defined as a homogeneous rectangular
region corresponding to one type: character, word, text line,
text block, text column, or nontextual region.

Earlier work on document layout analysis can be cat-
egorically divided into two groups. One proup employs the
top-down or model-driven approach.* Top-down tech-
niques start at the global image level and successively de-
compose the image into smaller regions. Each region has
one type: character, word, text line, text block, text column,
or nontextual region. Krishnamoorthy et al.' and Wang and
Srihari® employ an X-Y tree as the representation of a
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document layout structure. The X-Y tree is a nested decom-
position of rectangular blocks into smaller rectangular
blocks. Each node in the X-Y tree corresponds to a rectan-
gular block. The root node is the largest rectangular block,
i.e., the input document image. At each level, the decom-
position is induced by partitions in only one direction (hori-
zontal or vertical), but a block may have an arbitrary num-
ber of children. In the process of partitioning, a block is
segmented into subblocks by making cuts in the horizontal
profile corresponding to troughs of depth and width greater
than some threshold. Each resulting subblock has a vertical
projection profile that can be similarly partitioned for ver-
tical segmentation. The segmentation process may be car-
ried out recursively to any desired depth with alternating
horizontal and vertical subdivisions.

The main problems associated with this approach are:
(1) At each step of the successive decompositions, the sys-
tem has to select the correct decomposition model since the
models for the text column, text block, text line, word, or
character decomposition are inherently different. On the
other hand, there are occasions when such model selections
do not correspond to the levels in the decomposition tree.
(2) Some popular top-down decomposition schemes, such
as the above mentioned recursive X-Y cut technique, do not
work for certain types of document layout topology. This is
especially true when there is noise present on the document
image.

The other group utilizes the bottom-up or data-driven
::q:»proachﬁ_5 which starts by synthesizing evidence at the
black-and-white pixel level and then merges pixels into
characters, characters into words, words into lines, lines
into blocks, and blocks into columns, etc., until the whole
document is completely labeled. These techniques are usu-
ally based on the connected component analysis. A con-
nected component is a set of binary one pixels in a binary
image that are maximally 4-connected or 8-connected.
Fletcher and Kasturi’s algorithm3 assumes that each con-
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nected compoenent in the image corresponds to a character
or a nontextual object. It starts by extracting all the con-
nected components in the input image. A Hough transform
is applied to the centroid of the enclosing rectangles of the
connected components to find collinear components. Posi-
tional relationships between collinear components, an inter-
character gap threshold, and an interword gap threshold are
then used to group the components into text strings. One
drawback of the method is that it is often sensitive to touch-
ing characters and fragmented characters because the un-
derlying connectivity assumptions are violated. For some
types of document images where text is printed in the dot
matrix form, the algorithm breaks down significantly.

The main shortcomings of these earlier techniques are
that they were developed on a trial-and-error basis and that
although they provide illustrative results, hardly any have
been tested on data sets of significant size. The reason is the
lack of accurate document layout ground truth data of sub-
stantial size. It is clear that if we want to advance the docu-
ment recognition research, any techniques that we develop
must be proven on data sets of substantial size.

In addition, most papers do not give any explicit quan-
titative performance measure of their system. Although the
appropriate performance measures for the document layout
analysis are not obvious and are hard to derive, it is clear
that suitable performance measures not only enable us to
construct a system that optimizes its performance measures
given the training data set, but also enable us to predict the
system performance on the testing data set.

Section 2 describes a technique to automatically create a
large amount of nearly perfect ground truth data suitable for
the development of document layout analysis algorithms.
Section 3 reviews the recursive morphological closing
transform (RCT). Section 4 formulates the word segmenta-
tion problem as a pixel classification problem. In Sec. 5, we
describe a word segmentation algorithm using RCT and a
MAP classifier. Section 6 discusses an experimental proto-
col to train and evaluate the word segmentation algorithm.
Finally, Sec. 7 summarizes our experimental results.

2 Document Layout Ground Truth Generation

The “UW English Document Image Database (1" is a
data set for OCR and document image understanding algo-
rithm development and evaluation. The database contains
software to convert a DVI file from the LaTeX document
processing system into bitmap images’ and generate a so-
called character ground truth file for each page. The file
contains the bounding box, the type and size of font, and
the ASCII code for each character on the page. The data-
base provides a population of 168 such synthetically gen-
erated bitmap images. These images are manually seg-
mented into rectangular zones. The row and column
coordinates of the zone box corners are recorded.

In the following sections, we will describe a system that
takes the character ground truth file and the zone box de-
lineations of a synthetic document image and creates a tree
representation of the layout structure of the document im-
age. The root node represents the whole document image.
The nodes in succeeding levels represent zones, text lines,
words, and characters, respectively. Each node in the tree is
specified by its bounding box.
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Fig. 1 lllustration of the horizontal and vertical distances between
two character bounding boxes.

2.1 Notation and Assumption

Let a document image be denoted as &. Let &
={z,,22,...,7;} denote the set of zones in the document
image .7, where k is the total number of zones. Let the
character ground truth file be modeled as a sequence of
character bounding boxes £ ={c,cs,...,c,}, where n is
the total number of characters. )

Our assumption on the character bounding box sequence
# is that it follows the same order as the logical reading
order of the characters on the document image. We assume
that spacings between two adjacent characters follow dif-
ferent probability distributions for the character breaks, the
word breaks, and the text line breaks. The character break
spacings are smaller than the word break spacings, and the
word spacings are smaller than the text line break spacings.

2.2 Algorithm

The following procedure describes the algorithm for ex-
tracting ground truth layout information from the character
ground truth files.

1. Compute spacings between any two adjacent charac-
ters in the bounding box sequence &’ The distance
measure is defined as follows:

pler.cic)=pylcucir) Fwpycicivt)s

where i=1,2,....,n—1. The p,c;c;+1) and
py(CincCivy) are the minimum horizontal and vertical
distance between the edges of the two bounding
boxes, respectively. The p,(c;c;+;) 1S zero when
¢;,¢;+1 overlap horizontally. Likewise, the
py(ciciv1) 1s zero when c¢;,c;.q overlap vertically
(see Fig. 1). Here w is a weight with a typical value
of w=2.0.

2. Compute the histogram of the p(c;,¢;+;). Normally,
it contains three peaks: one for character breaks, one
for word breaks, and one for text line breaks. The
first two peaks are relatively stronger (see Fig. 2).

3. Text line segmentation: If p(¢;,¢;4() > T, then the
break between c; and ¢, is a text line break. Here
T,= @S, where § is the dominant character font size
and « is a constant with a typical value of a=10.0.
the bounding box of a text line is calculated by find-
ing the minimum bounding box that includes all the
character bounding boxes within the two adjacent
text line breaks.

4. Word segmentation: If p(c;c;4;)= T,, then the
break between c¢; and c;, is a character break. If



Extraction of text words in document images

1000.0 . . ‘ . =
800.0 - 1
i
600.0 T 1
Iy |
=
o
=
=2
=
uw
400.0 + 1
:
' T
L
t
2000 + : 4
)
:
:
;
i
;/\/\.“
:
0.0 -

. . L
.0 20.0 30.0 40.0 50.0 60.0
Distance

Fig. 2 lllustration of the histogram of the distance p(c;,¢;+;) and the
within-word character spacing threshold T;.

T \<p(c;,cis1)=< T,, then the break between c; and
ci+1 18 a word break. The bounding box of a word 1s
calculated by finding the minimum bounding box that
encloses all the character bounding boxes within the
two adjacent word breaks. All the enclosing character
bounding boxes constitute the descendents of the
word bounding box. To estimate the threshold 7', on
the fly, we employ a modified Kittler automatic
threshold algorithm.® Furthermore, the word to text
line correspondence is established by finding all the
word bounding boxes that are enclosed between two
succeeding text line breaks.

5. Find zone comrespondence: Each text line and all its
descending word and character boxes are assigned to
a unique zone z; that has the maximum overlap with
the text line bounding boxes. Since in the “UW En-
glish Document Image Database (I),” a zone bound-
ing box is not necessarily the minimum zone bound-
ing box that encloses the content of the zone, we
modify the zone bounding box so that it is the mini-
mum bounding box that encloses all the text lines
assigned to the zone.

2.3 Performance Evaluation and Examples

For performance evaluation, we ran the algorithm on the
168 synthetic images from the “UW English Document
Image Database (1).”% In these images, there are a total of
1366 text zones and 2423 displayed math zones. There are
a total of approximately 10,000 text lines and 60,000
words.

Then we output the zone, text line, and word bounding
boxes overlaid on top of the corresponding document im-
age onto the computer screen to check for any errors. We
found only four or five locations where two adjacent text

Table 1 Word performance with respect to the golden ground truth.

Total golden
ground truth
words Correct Split Merged Missed Spurious
60875 60108 378 388 1 0
(98.74%) (0.62%) (0.64%) (0.00%) (0.00%)

lines were incorrectly merged together. The scenarios were
that the second line started immediately below the end of
the first line. After giving a higher weight to the vertical
distance, the algorithm generated all the text line bounding
boxes correctly and automatically.

We also observed that the algorithm generated incorrect
results on some of the displayed math formula zones. The
reason is that the placement of subsequent symbols violates
our underlying assumptions (Sec. 2.1) and the usual defini-
tions of text lines and words are no longer valid. But since
it is not our purpose to provide layout ground truth data for
the displayed math zones, we ignore these cases.

To quantify the accuracy of the word ground truth ex-
traction results, we compared the word bounding boxes
generated using the current approach (hereafter denoted as
GT-1) with the so-called golden ground truth word bound-
ing boxes, which are created in the following way: (1) com-
pute a second set of ground truth word bounding boxes
(hereafter denoted as GT-2) using the algorithm described
in Ref. 9; (2) compare the word bounding boxes of GT-1
and GT-2 and mark the differences (see Sec. 6.2); and (3)
check the differences and manually edit the word bounding
boxes in GT-1 and GT-2 to generate the final golden ground
truth word bounding boxes. We assumed that the probabil-
ity that the two algorithms make the same errors is mini-
mal.

We calculated statistics such as the rates of missed,
false, correct, split, merged, and spurious detections (see
definitions in Sec. 6.2). Table 1 indicates that the 60,875
golden ground truth words, 98.74% of them are extracted
correctly using the current method. A total of 0.62% and
0.64% of the words are either split or merged, respectively.
On the other hand, Table 2 illustrates that of the 61,289
ground truth words generated by the current algorithm,
98.07% of them correspond correctly to words in the
golden ground truth. A total of 1.36% and 0.31% of the
words are either split or merged, respectively. The remain-
ing 0.26% of the words are falsely detected.

As an example, Fig. 3 illustrates one of the synthetic
document images. Figure 4 gives the generated zone, text
line, word, and character layout ground truth data.

Table 2 Word extraction performance with respect to the algorithm
output.

Total ground

truth words  Correct Split Merged False  Spurious
61289 60108 836 187 158 0
(98.07%) (1.36%) (0.31%) (0.26%) {0.00%)
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Abstract

The opening transformation on N-dimenrional dis-
erele apace ¥ is discrsed. The tramsform it effi
ciend 10 compute the Muary opening (eloring) with esy
rised structuring elemest. H also provides & guich way
to calculate the potlers apecirum of en image. Tho
policrn spectrum is found do be moibing more lhen &
bistogram of the openimg bransform. An cfficient fwo-
poss recursive opeming fransform slgorithm is devel
oped snd implemonted, The correctmers of the aljo-
rithm is proven and some experimental resslis are giv-
en, The resulls have shown et fhe eaeculion time of
the sigorithm is ¢ lincar function of n, where n is the
product of the number of binsry one pivels in the input
binary imege and the number of points in the siructur
iy alement. When the input binary image sise is 250
X 258 ond 0% of the image is covered by the bime-
1y one piscls, il takes approsimately 250 milkiseconds
to do an arbitrary sised ine opening and it tebes op-
prosimately 500 millizsconds lo do e arbitrary rised
Sor opening on the Sun/Spare I workstation (with C
compiler optimization fag on).

1 Introduction

‘The mathematical morphology has drawn much at-
tealicn in the computer vision community since the
initial work by Serra [1]. The technique i proven bo
be a very powerful tool in shape analysis. There is
4 large body of Hlerature eddressing the theoretical
aspects of the morphokgical operators 2] as well as
their vorious applications [3].

However, one of Lhe challnging problems remain-
ing in this srea ls to develop efficient algorithms Lo
perform the morphological operations. This kind of
development will bave & great impact on many real-
time vision mystems where the motphological opera-
tions are compulationally inteasive, especially wheo
the xise of the structuring elements becames Large.

Oae way out of this dilemma is to develop recursive
motphalogical Alters. The recunsive morphological op-
erator is one iype of morphological operator whose
output depends ot ooly an the input pixehs which
are cavered by ibe domain of the strucluriog clement,
bul abo on one or more previously eomputed output
values, The recurrive fliers are generally computa-
lionally more eficient than thelr non-recursive coun-
terpacts. Boralick [5) and Bertrand [8] described one
such Lype of & Filer, the generalived distance Lrans-
form (GDT) which is a generalization of the distance
trantform first developed by Rosenfeld and Plalts [4].
The GDT ir very cHcicot in perfarming the binary
erocion with an arbitrary rived structuring element.
For a N-point structuring clement, the required max.
imum oumber of operations per pixel is ¥ 4 2.

1n this paper, we will st review some of Lhe mor.
phological operations and the GD'TF. Then we will in-
tzoduce tbe concept of the npening trandorm (OT)
and show how it can be used to calculale the binary
opening with an arbitrary sised strucluriog elemen-
4. The opening transform also provides & quick way
to tompute the pattern spectrum of an image. It is
found that the peliern speckrum i nothing more than
& histogram of the opening transform [3]. An effi-
ient two-pass recursive opening tramform algorithm
requiring about 14N operations per pixel for an N-
point strocturing element is described in detail. The
thearetical proof of the alogrithm it not given due to
the lack of space. Pinally, some experimental results
are provided,

2 Definitions and Notations

Io this section, some of the morphological opera-
licos aod the groeralised dislance transform arc re-
viewed, Let A, K are seta in Z¥,

Definition 1: The dilation of A by a structuring ele-
ment X iz denoled by AG X and is defined by ADK =

Fig. 3 lllustration of an example document page.

In conclusion, the technique described in this section
provides an efficient and automatic way of creating a large
amount of nearly perfect ground truth data for document
layout analysis. We can use these data to develop, train, and
evaluate our document layout analysis algorithms. In the
following, we demonstrate a procedure to build a statistical
model to characterize text words on document images, and
then we describe a word segmentation algorithm using the
recursive morphological closing transform.' to detect all
text words on document images simultaneously.

3 Recursive Closing Transform: A Review

The closing transform of a set / with respect to a structur-
ing element K generates a gray-scale image where the gray
level of each pixel x € Z? is defined as the smallest positive
integer n so thatx € I+( ® ,_K), where * denote the mor-
phological closing operation and @,_,K denotes the (n
—1)-fold dilation of the base structuring element K by
itself.® If no such n exists, where x ¢ /+(®,_,K) for all n,
then the closing transform at x € Z? is defined to be zero.

Definition 1. The closing transform of a set ICZ* by a
structuring element KCZ?* is denoted by CT[LK] and is
defined as:

CT[LK](x)
min{n|xel+(&,_ K)} if In,xel(d, 1K)
o if Ya,xe¢lo (@, ,K).

The morphological closing transform captures the
shape-size content of the image background. In Ref. 10, we
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described an efficient recursive closing transform (RCT) to
compute in constant time per pixel the morphological clos-
ing transform of a binary image.

4 Word Segmentation as a Statistical
Classification Problem

Let I denote a bilevel document image. Let 2 denote the set
of word bounding boxes on /. It provides a delineation of
two types of regions in the image [/, namely the word and
nonword regions. We define a pixel as a word pixel if and
only if it is on or inside the bounding box of a word. Then,
a word region consists solely of word pixels, whereas a
nonword region is composed of only nonword pixels.

Associated with each pixel x e/, there is a random ob-
servation vector %7 (x)=y that characterizes the image
shapes around x. There is also a label % {(x)=/ that indi-
cates whether x is a word pixel [denoted by Z{(x)=1] ora
nonword pixel [denoted by #(x)=0]. Let 24J) and #(I)
represent images of observation vectors and labels, respec-
tively. Hence, we can formulate the word segmentation
problem as finding (/) to maximize the posterior prob-
ability P[£(1)|#(I)], and then computing the bounding
boxes for the connected word regions in .%(]).

Our observation vector %(x)=y is based on the recur-
sive closing transform (Sec. 3). Let K ,K5,...,K,, denote n
different structuring elements. Let ¥ = (¥1,¥2,...,¥5),
where y,= CT[I,K\](x), y,= CT[I,K;](x),..., and y,
= CT[I,K,](x), denote the values of the recursive closing
transform at pixel x e / with respect to the structuring ele-
ments K,K,,...,K,. The vector :ZJ(x) =y provides a scale-
free description of image shapes in the neighborhood of x.

In Sec. 5, we will describe a simple algorithm to solve
the above problem. It has the following prominent charac-
teristics: (1) Unlike most of the top-down or bottom-up
approaches where the objects of interest are derived in a
recursive fashion, our method is a one-step and simulta-
neous process. (2) The method utilizes the recursive mor-
phological closing transform (RCT) to extract image
shapes. The RCT provides a powerful tool to extract shape
information in the image background (white space), such as
the pattern spectrum. (3) The method is not sensitive to text
skew because only local shape information is used. Texts
can be laid out in both the horizontal and the vertical direc-
tions at the same time. (4) The method is robust under
subtractive noise. Therefore, character fragmentation will
not affect the performance of the algorithm. The algorithm
is also tolerant to some forms of additive noise. (5) The
method is trainable to any given document image popula-
tion. (6) The same methodology is directly applicable to
both the text line and the character segmentations,

5 Algorithm Description

The various components of the word segmentation algo-
rithm are described next:

Step 1: Subsampling

Our input document images are scanned at a spatial resolu-
tion of 300 dots per inch (dpi). To process such an image, it
takes a considerable amount of memory and processing
time. Therefore, we subsample the original image to 150
dpi.
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Fig. 4 lllustration of the hierarchical layout representation of the example document page: (a) zone bounding boxes, (b) line bounding boxes,
(c) word bounding boxes, and (d) character bounding boxes.
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Fig. 5 lllustration of the word segmentation process: (a) sub-
sampled 150-dpi image, (b) correlated posterior probability map im-
age, (c) word label image, and (d) word bounding boxes.

The subsampling algorithm that we have implemented is
as follows: let the horizontal and vertical subsampling ratio
be H and V, respectively. Given an input RX C bilevel
image, the algorithm generates an output bilevel image
with a dimension of | R/V|X|C/H|, where the operation | x|
returns the greatest integral value less than or equal to
*‘x’’. Each pixel in the output image corresponds to a
nonoverlapping VX H window in the input image. If the
number of binary one pixels in the input VX H window is
greater than or equal to a prespecified threshold 7, its cor-
responding output pixel is set to binary one; otherwise, it is
set to binary zero. To obtain a 150-dpi subsampled image,
we select H=2, V=2, an T=2, Figure 5(a) illustrates one
segment of the subsampled 150-dpi image.

Step 2: Word region detection

‘We assume that the observation vectors from different pixel
locations are statistically independent, i.e.,

P[z(nlz’/(m:g P[(x)| #(x)].

To perform the probability optimization, we assign a pos-
terior probability P[.%{(x)=1|(x)=y] to each pixel for
being a word pixel. Then the posterior probability for each
pixel to be a nonword pixel is equal to P[.%(x)=0|#(x)
=yl=1-P[H(x)=1|%(x)=y]. The process generates a
posterior probability map image. Since all pixels are treated
identically, we will leave out the index x in the following
discussions for the sake of simplicity. Let P(Z=1|#=y)
denote the posterior probability for each pixel being a word
pixel. It is estimated during the initial experimental stage.
To introduce the correlation among the neighboring pix-
els in the probability map image, we morphologically close
and then open the probability map image by a flat structur-
ing element S. We select S to be a 2X2-sized structuring
element. Figure 5(b) illustrates the correlated posterior
probability map image. If we threshold the probability map
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image at a threshold value of T,=0.5, i.e., pixels that have
values grater than or equal to T, have binary one output
values, we obtain the maximum a posteriori (MAP) classi-
fication. But in general, we could choose Tp between 0.5
and 1.0. A low threshold T, value tends to merge several
words into one block, and a high threshold T, value tends
to split a word into many blocks. Figure 5(c) illustrates the
detected word label image, where 7,=0.96.

Step 3: Word bounding box extraction

We model each work in / as an 8-connected region in the
word label image. The connected component labeling pro-
cedure described in Ref. 8 is used to extract the bounding
box of each connected region. Figure 5(d) illustrates the
extracted word bounding boxes overlaid on top of the sub-
sampled image.

Step 4: Hypothesis test on word height

The presence of the character ascenders and descenders
sometimes causes the merging of word blocks from two or
more adjacent text lines into a single block. To automati-
cally detect such cases and consequently split the merged
word blocks into their corresponding correct words, we de-
veloped a simple postprocessing procedure to perform hy-
pothesis testing on the height of the word blocks and test if
further divisions are needed.

Let W, denote the dominant word height of a given
document image population. Then the procedure hypoth-
esizes that all the detected word blocks whose heights ex-
ceed SW;, could be split further, where B is a real constant
and has a default value of 2.0. For each word block that is
hypothesized to be divided further, the algorithm will verify
it by computing all possible cut points in the projection
profile of the posterior probability map image along the
height direction and within the bounding box of the dubi-
ous word block.

Let H and W denote the height and width of the word
block. Let P[h,w] represent the posterior probability map
image inside the word block window, where 1 <h=<H and
lsw=<W. Let f(k) denote the calculated probability pro-
jection profile. Then f(h)=(1/W)E¥_ P[h,w], where
I=h=<H. The cut points of the projection profile f(%) are
defined as the local minimums of f(4) in a neighborhood
of size W}, and whose values are less than or equal to a
cut-point threshold T, where 0.0 < T, < 1.0 and T, has a
default value of 0.5 (see Fig. 6). If the number of such
detected cut points other than the two endpoints (A=1 and
h=H) is greater than zero, then the word block needs to be
split further. The following algorithm describes the proce-
dure to compute the cut points in the projection profile

f(h):
Algorithm:

1. Morphologically open the projection profile f(h) by
a flat structuring element of size W,/2, denoted by
k. This will remove the narrow upshoot spikes in
f(h). Letfi=fok,.

2. Morphologically close f(#) by a flat structuring el-
ement of size D,,, denoted by k,. This will bridge
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Fig. 6 lllustration of the projection profile analysis on the posterior probability map image: (a) word boxes before the analysis, (b) the posterior
probability map image, (c) f(h), (d} f1(h), () f2(h), (f) f3(R), (g) f.(h), and (h) word boxes after the analysis.

the narrow valleys in f,(4) and ensure that the cut
points are at least D, pixels wide. We select the de-
faultD,, = 5. Letf,= f,°k,.

3. Morphologically erode f,(%) by a flat structuring el-
ement of size W, denoted by k;. Let f3=f,Oks.
Then the set of possible cut points is defined as {H
e [1,H]|f2(h)=<T_and f,(h)=f5(h)}, which is the
set of local minimums of f,(k) in a neighborhood of
size W;, and whose values are less than or equal to
the cut-point threshold 7',.. O

The detected cut points produce a set of intervals (or run
lengths) along the height direction. If the number of such
intervals that do not contain the two endpoints (A=1 and
h=H) is greater than zero, then the word region needs to

be split further at those intervals and the bounding boxes of
the subword regions are recomputed. Figure 6 gives an il-
lustration of the projection profile analysis process.

6 Experimental Protocol

In the previous section, we outlined a word segmentation
algorithm. The algorithm requires the posterior probability
P(Z=1|%=y) to be estimated. Also, to make the word
segmentation algorithm fully automatic, we need to de-
velop a procedure to estimate the optimal threshold param-
eter 7, on a per image basis.

6.1 Posterior Probability Distribution Estimation

The estimation of the posterior probability distribution is
based on the 168 synthetic document images. The process
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to create the ground truth layout structures for these images
is described in Sec. 2. To compute the posterior probability
distribution, we first generate a word masking image for
each of the 168 document images. The word mask image is
bilevel and has a binary one pixel if and only if the pixel is
a word pixel. Each document image and its corresponding
word mask image are then rotated at various degrees of 0,
+0.2, £0.4, and *0.6 deg using a nearest neighbor inter-
polation algorithm. The range of rotation angles is selected
because our skew estimation algorithm is capable of esti-
mating text skew angles on document images that are
within 0.5 deg of the true text skew angles at a probability
of 99%.!! This generates a total input training image popu-
lation of 1176=168X7 images. Each image is of size 1650
X1275.

We adopt a rather brute-force method to estimate the
posterior probability P(#=1|Z=y):

P(%=1,%=y)
- P(#=y)

P(F=1,7=Y)
TP(F=0, Y=y)+ P(Z=1,%=y)

P(%=1|=y)=

The joint probability distributions are estimated using
the frequency counts #(.%=0,%=y) and #=1,%=y).
In the experiment, we choose the dimensionality of # to be
equal to n=3. Let K, be a horizontal 1X2 structuring ele-
ment, K, be a vertical 2X1 structuring element, and K5 be
a 2X2 square structuring element. We further bound the
observation vector %/ to lic inside the three-dimensional
cube [0O,N]X[0,N]X[0,N], where N is the allowed maxi-
mum output value of the closing transform. For the word
segmentation, we select N=63. Since the vectors %
=(y,,y2,¥3) are integer vectors, we can represent the pos-
terior probability P(#=1|%=y) by a simple three-way
look-up table. It also made the counting process very
simple.

In this paper, we further assume that P(%=1|%=y) is
symmetric with respect to the first two coordinates of 2,
ie., PLZ=1|#=(y1.y2y3)]=PLL=1|¥=(y1,y2.y3)].
This will permit the posterior probability distribution to
characterize text words laid out in both the horizontal and
the vertical directions. Therefore, we estimate P(%=0.%
=y) from the frequency count #(Z=0,2=y,y2.¥3)
+#[ % =0,% = (¥2.¥1,¥3)] and P(Z =1.%=y) from the
frequency count #.L=1,Z=(y,y2y3)] +#[£=1,

Y=0yny1y3l.

6.2 Word Segmentation Algorithm Evaluation

The output of the word segmentation algorithm is a set of
word bounding boxes. To evaluate its performance, we
need to compare the output word bounding boxes with the
ground truth word bounding boxes provided through the
procedure given in Sec. 2. Let $=({G,,Gs,...,Gy} repre-
sent the total of N ground truth word bounding boxes and
let &= {D,Ds,...,Dy} denote the total of M detected
word bounding boxes from the word segmentation algo-
rithm. The evaluation problem can be formally stated as
follows: Given two sets of bounding boxes & and 7, es-
tablish the element mappings between the two sets and re-
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port the number of misdetections (1-0 mappings), false de-
tections (0-1 mappings), correct detections (1-1 mappings),
split detections (1-m mappings), merged detections (m-1
mappings), and spurious detections (m-m mappings).

To establish the element mappings, we first define the
similarity between two bounding boxes A and B, denoted
by s(A,B):

_ Area(ANB)
s(AB)= Area(A)

where AN B denotes the region where A and B overlap.
The similarity defines the percentage area coverage of A by
B.

Then based on the similarity measure, we define two
mappings g: ¥ —% and d: ZP— %"

8(G)={D;e 4|G;=arg max s(D;.X)},
Xe¥

d(D;)={G,;e ¥|D;=arg max 5(GX)},

XeH

where g(G;) denotes the set of D; e % that has the highest
percentage area coverage by G; among all other boxes in
¥, and d(D;) denotes the set of G; e & that has the highest
percentage area coverage by D; among all other boxes in
. Therefore, we establish links from G; to g(G;) and
from D; to d(Dj).

Based on the two functions g: ¥—% and d: &%— %, we
can establish mappings between the elements of ¥ and &/
The rules are described as follows:

1. If there exists a G; such that s(G;,D;)=0 for all
j=1,2,...,M, then the G, is counted as a misdetec-
tion (1-0 mapping).

2. If there exists a D | such that s(D »G)=0 for all
i=1,2,...,N, then the D; is counted as a false detc-
tion (0-1 mapping).

3. There is a correct detection (1-1 mapping) between
G; and D; if and only if g(G,)={D,;} and d(D;)
=4G: ]

4. There is a split detection (1-m mapping) between
G; and {D;,D; ,...,D; } if and only if (1) g(G))
={D11’Diz""’Dim}; (2) there exists one
Dyeg(G;) such that d(Dy)={G;} and for all
Deg(G,) but D # Dy, d(D)=®; and (3) for all
De&g(Gy), Gi¢d(D).

5. There is a merged detection (m-1 mapping) between
{GEI,GIAZ,...,G,-”} and D; if and only if (1) d(D);)
={G;.Gi,.-..G; }; (2) there exists one G,
€d(D;) such that g(Gy)={D;} and for all
Ged(D;) but G#Gy, g(G)=0; and (3) for all
Ged(D;), D& g(G).

6. Any other detections are counted as spurious detec-
tions (m-m mappings).
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Table 3 Economic gain coefficients.

Y10 Yo1 Yi1 Yim Ymi Ymm

0.0 0.0 1.0 0.5 0.5 0.0

Once the element mappings between % and <7 have
been established, we count the numbers of missed, false,
correct, split, merged, and spurious detections. Let N,
Ngi, and Ny, be the numbers of missed false, and correct
detections, respectively. Let N§,., N3,,, and N¥  denote the
numbers of words in the ¥ that have the 1-m, m-1, and
m -m mappings with words in the &7 Similarly, let NY |

N2, and N9 denote the numbers of words in the & that
have the 1-m, m-1, and m-m mappings with words in the
% Then the following relations satisfy: (1) N=N o+ N,
+N§,+NE NS 0 (2) M=Ng +N;+N¢ +N2,
+N2 s (BN, < NY ;and (4) NS, = N,

The performance of the word segmentation algorithm
can be measured through a goodness function. Let it be
denoted as «. It is defined by

k=min{ky,x3),

where

®1=(71oN10+ YiiV 11+ Y1Vt Yl NS,
+ VimNE VN,

k2= (YorNoy + V11N 11+ ¥1uNT, + YmiNe

+ -ymmem)fM,

0.20

016

Probability

0.08 -

0.04

I [JL

0.50 0.60 0.70 0.80 0.80 1.00
Optimal Threshold Value

(a)

and the ¥10, Yo1» Yi1» Yims ¥m1» and v,,,, are economic
gain coefficients for the missed, false, correct, split,
merged, and spurious detections. The larger the goodness
measure k, the better the performance of the word segmen-
tation algorithm. In the experiment, we choose the eco-
nomic gain coefficients as in Table 3.

6.3 Optimal Threshold Determination

In the word segmentation algorithm, there is a threshold
value T, that needs to be computed on a per image basis.
Therefore, it is necessary to develop an automatic proce-
dure to predict the optimal threshold value on the fly. Our
approach to this problem is to first determine the optlmal
threshold values for each of the training document images
and then construct a regressmn function to predict the op-
timal threshold value given the histogram of the posterior
probability map image. !

Given an input document image, x is a function of the
threshold value T,, ie., &=« 7,). The optimal T, is de-
fined as the value that produces the best word segmentauon
goodness measure. Let T,”" denote the optimal threshold
value. Then,

ToP'=arg[ max «(T,)].
T,e[0.1]

Figure 7 illustrates the probability distributions of the
optimal threshold values 7,7* and the corresponding good-
ness measures for the 1176 training document images. The
cumulative probability is defined as the Prob[ x = «,], i.e.,
the probability that the goodness measure « is no less than
Kko. We observe that the optimal threshold values lie ap-
proximately in the range of [0.5, 1.0].

08

o o o o
3] o ~ )
T T

Cumulative Probability
o
kY

03

02 4

01 r

L R .
0.5 0.6 0.7 0.8 0.8 1.0
Goodness Measure

(b)

Fig. 7 lllustration of the probability distributions of the optimal threshold values Tom and the corresponding goodness measure for the training

document images.

Journal of Electronic Imaging / January 1996 / Vol. 5(1)/ 33



Chen, Haralick, and Phillips

Table 4 Algorithm performance with respect to the ground truth on
the training image set.

Table 6 Algorithm performance with respect to the ground truth on
the testing image set.

Total ground

truth words  Correct Split Merged Missed Spurious

Total ground

truth words  Correct Split Merged Missed Spurious

429,338 408,741 8440 10961 376 820

(95.20%) (1.97%) (2.55%) (0.09%) (0.19%)

245584 4137 7123 846 638
(95.07%) (1.60%) (2.76%) (0.33%) (0.25%)

258,328

7 Experimental Results

7.1 Performance on the Training Images

To benchmark the optimal performance of our word seg-
mentation algorithm, we tested the algorithm on the 1176
training document images described in Sec. 6.1 under the
optimal threshold setting 7', = T;” !. Tables 4 and 5 illustrate
the percentages of missed, false, correct, split, merged, and
spurious detections with respect to the ground truth (not the
manually edited golden ground truth discussed in Sec. 2.3)
as well as the algorithm output. The word boxes from dis-
played math zones are excluded during the evaluation be-
cause the ground truth word boxes for mathematical formu-
las are not accurate. Of the 429.338 ground truth words,
95.20% of them are correctly detected and 1.97% and
2.55% of the words are split or merged, respectively. The
total missed and spurious detections account for about
0.28% of the total ground truth words. On the other hand,
of the 434,390 words detected by the algorithm, 94.10% of
them are correctly detected as the ground truth words, and
4.42% and 1.14% of the detected words are derived from
either split or merged ground truth words, respectively. The
total false and spurious detections account for about 0.35%
of the total algorithm output.

7.2 Performance on the Testing Images

To assess the optimal performance of the algorithm on
other document image population, we first prepared a new
set of 96 LaTeX document pages, and then created the cor-
responding TIFF images and the ground truth word bound-
ing boxes using the programs described in Sec. 2. Each of
the 96 document images and its corresponding ground truth
word bounding boxes are further rotated at various degrees
of 0, =0.2, 0.4, and £0.6 deg. This generates a total of
672 testing document images.

Under the optimal threshold settings (7,=T;""), Tables
6 and 7 illustrate the percentages of missed, false, correct,
split, merged, and spurious detections with respect to the
ground truth as well as the algorithm output. Of the
258,328 ground truth words, 95.07% of them are correctly
detected, and 1.60% and 2.76% of the words are split or
merged, respectively. The total missed and spurious detec-

Table 5 Algorithm performance with respect to the algorithm output
on the training image set.

tions account for about 0.58% of the total ground truth
words. On the other hand, of the 258,802 words detected by
the algorithm, 94.89% of them are correctly detected as the
ground truth words, and 3.59% and 1.14% of the detected
words are derived from either split or merged ground truth
words, respectively. The total false and spurious detections
account for about 0.37% of the total algorithm output. The
evaluation does not exclude the word boxes from the dis-
played mathematical formula. This explains the slight
changes in the percentages for the split, merged, and spu-
rious detections. But otherwise, the performance of the
word segmentation algorithm on the testing document im-
ages is not significantly different from that on the training
document images because the training set is sufficiently
large.

7.3 Performance on the Real Images

We applied the same algorithm on a set of 763 real docu-
ment images randomly selected from the “UW English
Document Image Database (I) & (II).”” We first constructed
the ground truth word bounding boxes for these real images
using a methodology similar to the one described in Sec.
2.3. The work is part of our efforts in constructing the UW
English Document Image Database (III), which will be
available to the public in 1996. There are a total of about
380,000 ground truth words in this set of images.

Figure 8 plots the probability distributions of the correct
word detection rate of our word segmentation algorithm on
a per image basis. We fixed 7,=0.95 for all the images in
the experiment. It shows that on most of the images, the
correct word detection rate is more than 90%.

Figures 9 and 10 illustrate two examples of the word
segmentation results. The whole process takes about 20 s
per image on a Sun Sparc 10 workstation,

8 Conclusions and Future Work

In this paper, we discuss an engineering approach for text
word extraction in document images. We first presented an
automatic method to generate a large amount of nearly per-
fect document layout ground truth data from the LaTeX
DVI files. Then, we used the layout ground truth data to
build a statistical model to characterize the word structures

Table 7 Algorithm performance with respect to the algorithm cutput
on the testing image set.

Total detected

Total detected

words Correct Split  Merged False Spurious words Correct Split  Merged False Spurious
434,390 408741 19196 4940 763 750 258,802 245584 9290 2961 313 654
(94.10%) (4.42%) (1.14%) (0.18%) (0.17%) (94.89%) (3.59%) (1.14%) (0.12%) (0.25%)
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Fig. 10 lllustration of a
tracted word bounding boxes.

real document image overlaid with the ex-

on document images. We developed and evaluated a word
segmentation algorithm that is capable of simultaneously
detecting all the words on a document image. The experi-
mental results demonstrate that the correct word detection
percentage is about 95% on synthetic document images and
more than 90% on most of the real images.

As future work, we want to optimize the word segmen-
tation algorithm on real document images, which may in-
clude training the algorithm on real document images and
developing procedures to allow the word segmentation al-
gorithm to predict the optimal threshold parameter T, on
the fly. A regression tree function can be constructed to
predict the T,7* given the histogram of the posterior prob-
ability map image, similar to the process described in Ref.

11.
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