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ABSTRACT 
In this article, we developed a Bayesian model to characterize text 
line and text block structures on document images using the text 
word bounding boxes. We posed the extraction problem as finding 
the text lines and text blocks that maximize the Bayesian probability 
of the text lines and text blocks given the text word bounding boxes. 
In particular, we derived the so-called probabilistic linear displace- 
ment model (PLDM) to model the text line structures from text word 
bounding boxes. We also developed an augmented PLDM model to 
characterize the text block structures from text line bounding boxes. 
By systematically gathering statistics from a large population of 
document images, we are able to validate our models through 
experiments and determine the proper model parameters. We de- 
signed and implemented an iterative algorithm that used these 
probabilistic models to extract the text lines and text blocks. The 
quantitative performances of the algorithm in terms of the rates of 
miss, false, correct, splitting, merging, and spurious detections of the 
text lines and text blocks are reported. o 1996 John Wiley & Sons, Inc. 

1. INTRODUCTION 
Document layout analysis identifies various objects of interest on a 
document image and describes their spatial relations. An object is 
defined as a homogeneous rectangular region that corresponds to 
one type: character, word, text line, text block, or nontextual 
region. 

Earlier work on document layout analysis can be categorically 
divided into two groups. One group employs the top-down or 
model-driven approach [1,2,3]. It starts at the global image level 
and successively decomposes the image into smaller regions. Each 
region has one type: character, word, text line, text block, or 
nontextual region. Nagy [2] and Srihari [ 3 ]  employed an X-Y tree 
as the representation of a document layout structure. The X-Y tree 
is a nested decomposition of rectangular blocks into smaller 
rectangular blocks. Each node in the X-Y tree corresponds to a 
rectangular block. The root node is the largest rectangular block, 
i.e., the input document image. At each level, the decomposition is 
induced by partitions only in one direction (horizontal or vertical), 
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but a block may have an arbitrary number of children. In the 
process of partitioning, a block is segmented into subblocks by 
making cuts in the horizontal profile corresponding to troughs of 
depth and width greater than some threshold. Each resulting 
subblock has a vertical projection profile that can be similarly 
partitioned for vertical segmentation. The segmentation process 
may be carried out recursively to any desired depth with alternating 
horizontal and vertical subdivisions. 

The main problems of this approach are as follows. 1)  At each 
step of the successive decompositions, the system has to select the 
correct decomposition model since the models for the text block, 
text line, word, or character, decomposition are inherently differ- 
ent. On the other hand, there are occasions when such model 
selections do not correspond to the levels in the decomposition 
tree. 2) Some popular top-down decomposition schemes, such as 
the above-mentioned recursive X-Y cut technique, do not work for 
certain types of document layout topology. 

The other group adopts the bottom-up or data-driven approach 
[4,5]. It starts by synthesizing evidence at the black-and-white 
pixel level and then merges pixels into characters, characters into 
words, words into lines, lines into blocks, etc., until the whole 
document is completely labeled [4]. The technique is based on a 
connected component analysis. A connected component is a set of 
binary one pixels in a binary image which are either four-con- 
nected or eight-connected. The algorithm assumes that each 
connected component in the image corresponds to one character or 
nontextual object. It starts by extracting all the connected com- 
ponents in the input image. A Hough transform is applied to the 
centroid of the enclosing rectangles of the connected components 
to find collinear components. Positional relationships between 
collinear components, an intercharacter gap threshold, and an 
interword gap threshold are then used to group the components into 
text strings. One drawback of the method is that it is sensitive to 
touching characters and fragmented characters because the underly- 
ing connectivity assumptions are violated. 

The problems associated with all these earlier techniques are 
that they were developed on a trial-and-error basis and although 
they provide illustrative results, hardly any have been tested o n  
significant sized data sets. In addition, most papers do not give any 
explicit quantitative performance measure of their system. Al- 
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though the appropriate performance measures for the document 
layout analysis are not obvious and are hard to derive, it is clear 
that suitable performance measures not only facilitate us to 
construct a system that optimizes its performance measures given 
the training data set, but also enable us to predict the system 
performance based on the testing data set. 

This article describes the continuation of work reported in [lo] 
and [ 1 I ] ,  where we developed and evaluated a word segmentation 
algorithm that is capable of detecting all text words on document 
images simultaneously. We derived quantitative measures to evalu- 
ate the performance of the document layout analysis algorithms. 
The experimental results indicated that we achieved a high correct 
word detection rate (about 95%) over a very large image popula- 
tion. In this work, we develop statistical models to characterize the 
text line and text block structures on document images given the 
text word bounding boxes. We pose the extraction problem as 
finding the text lines and text blocks that maximize the Bayesian 
probability of the text lines and text blocks by observing the text 
word bounding boxes. 

Section I1 provides the general problem statement of the text 
line and text block detection and describes an iterative algorithm to 
solve the problem. Section 111 discusses the probabilistic linear 
displacement model (PLDM) and demonstrates how it can be used 
to model the text line structures on document images. Section IV 
describes a generic Bayesian algorithm for detecting the linear 
displacement structures (LDS) from a set of observations. Then in 
Section V, we apply the generic algorithm to extract text lines from 
the document images. Section VI describes an augmented prob- 
abilistic linear displacement model (APLDM) for characterizing 
the text block structures on document images. Section VII uses the 
APLDM model to extract text block from the document images. 
Finally, in Section VIII, we discuss an experimental protocol to 
validate our models via experiments, and reports the performance 
of our algorithms. 

II. TEXT LINE AND TEXT BLOCK DETECTION 
Let 2 denote the set of detected word bounding boxes from a 
bilevel document image I. Let @ and A be the sets of text lines and 
text blocks on I. The problem of text line and text block extraction 
can be formulated as follows: Given a set of detected word 
bounding boxes 2, find the @ and A that maximize the conditional 
probability P(@, A 12). 

Based on the above Bayesian formulation, the conditional 
probability P(@, A 12) can be evaluated as: 

P(@, A 12) = P(A 1 %  @)P(@ 13) 
= P(@ 12, A)P(A I s) . 

( 1 )  

(2) 

Suppose we have an initial estimate of (@, A), denoted by ( @ I ,  A'), 
where t = 0. Normally, we would start @" as the single bounding 
box that encloses every word bounding box in b and A" = 0. Then 
we can iteratively update the @' and A' to maximize the con- 
ditional probability P(@, A 1 s) via the following two-step process 
(let Njrer be the number of iterations): 

Algorithm 1. Text Line and Text Block Detection 

1. Let t = 0 .  
2. Computes the optimal A'+' such that: 

= arg m;x P(A 1 b, a') (3) 

We will describe an algorithm to compute A"' in Section V. 
3. Calculates the optimal @'+I such that: 

@ ' + I  arg m2x P(@, A = A"' 12) 
= arg mtx P(@ I A"') 

= arg max P(@ I A '+')  (4) 
@ 

where it is assumed that P(@ 12, A"') = P(@ I A'+'). We 
will describe an algorithm to compute @ ' + I  in Section VII. 

4. If t 5 N,,,, then return (@', A'); else t = t + 1 and go to Step 
2. 17 

In the following sections, we begin to introduce the statistical 
models to characterize the text line and text block structures on 
document images (see Sections I11 and VI). Then, in Section V, we 
describe the solution to the first subproblem of finding the text 
lines given an initial delineation of text blocks and a set of text 
word bounding boxes. In Section VII, we solve the second 
subproblem of finding the text blocks given a set of text line 
bounding boxes. 

111. PROBABILISTIC LINEAR DISPLACEMENT MODEL 
We first describe the deterministic linear displacement model 
(DLDM), and then generalize it  to the probabilistic case. In the 
DLDM, we have a set of M objects ( M ? 2 ) ,  denoted by 
93 = {Bl, B,, . . . , B,}. Let L denote a baseline of these objects, 
which is represented by the equation: 

( 5 )  x sin cp + y  cos (p - p = 0 

where cp denotes the orientation of the baseline and p is the 
distance of the baseline to the origin of the coordinate system. 

The DLDM requires that the objects B , ,  B,, . . . , B, are col- 
linear along the baseline L. Let E, = E(B,, L )  define a distance 
function of B, to the baseline L and i = I ,  2,.  . . , M .  Then, the 
collinearity implies eZ = 0, where i = 1,2, .  . . , M. 

Since B ,  , B,, . . . , B, are collinear, we can order them accord- 
ing to their positions along the baseline L. Without the loss of 
generality, we would assume that the sequence ( B ,  , B,, . . . , B,) is 
one such an ordering, denoted as B ,  5 B, 5 . . . s  B,. The DLDM 
requires that the adjacent objects in the sequence ( B , ,  B,, . . . , B,) 
be equally spaced along the baseline L. Let 8, = S(B,, B, + ) define a 
distance function between B, and B,+, along the baseline L (also 
defined as the displacement), where i = 1,2, .  . . , M - 1. Figure 1 
shows an example of the DLDM. 

In general, if a set of M objects can be modeled by a linear 

Figure 1. Example of the DLDM. The geometric centroids of €3, , B,, 
B,, and €3, are collinear and equally spaced along the baseline L. 
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displacement model, we say that the set of objects constitute a 
linear displacement structure (LDS). We also call the pair 
(B,, B,+ , ) adjacent in the LDS, where i = 1,2, . . . , M - 1. When 
M = 1, we treat the object as a special case of LDS with a single 
object. 

In contrary to the DLDM, which requires B , ,  B,, . . . , B,,, to be 
strictly collinear along the baseline L (i.e., E, = 0 for i = 
1,2, . . . , M )  and the displacement to be a constant (i.e., 8, = pa for 
i = 1,2, . . . , M - I ) ,  the PLDM says that they follow a probability 
distribution. Typically, we would assume that E, ( i  = 1,2, . . . , M )  
and at ( i  = I ,  2, . . . , M - 1 )  are independently distributed random 
variables given the baseline (p ,  40) and the displacement pS, as 
indicated through the following probability calculations: 

P(B]>B, ,  . . . 3 B M  I p? P? p8) 

= R E I ,  €2,. . . > E M ,  4% s,, . . . 1 % - I  I P> c p 2  PSI 

= P(EI, €2,. . . 3 EM I p> c p 7  paU,P(gl~ 4,. ' ' 1 % - I  I P, cp, P a )  

= P ( E , ,  E,, . . . , EM 1 p, cp)P(S,, 4,. . . 3 & - I  I P, cp. p a )  

M M - I  

= n R E ,  I P> cp) n m, I cp. Pa).  (6) 
, = I  , = I  

We would further assume that P(E; 1 p. cp) and P(8i 1 p, cp, pa) are 
Gaussian, i.e., 

R E ,  

P(4 

where ps is an unknown mean and a,, us are known constants. We 
provide an experimental study on the adequacy of these models in 
Section VIII. 

In addition, we also could put a prior probability distribution on 
the parameters p, cp, and pa. Using a model that the parameters are 
independent, we assume that p comes from a uniform distribution 
over an interval of size 1 /A, i.e., P(p)  = A, and that cp, ps come 
from Gaussian distributions 

where uv, p, and u are known constants. 
It is now possible to write the joint probability distribution of 

B , ,  B,, . . . , B, and p, cp, p8 given that B , ,  B,, . . . , B, come from 
a linear displacement structure (LDS). Hence, we have 

Figure 2 defines the six types of bounding box edges, where 
AB, EF, and CD are the top, center, and bottom horizontal edges; 
AD, GH, and BC are the left, center, and right vertical edges. The 
PLDM can be used to model separately the top, center, or bottom 
edges of the word-bounding boxes that belong to the same 
horizontal text line. 

Figure 2. Six types of bounding box edges. 

IV. GENERIC LINEAR DISPLACEMENT STRUCTURE 
DETECTION 
In this section, we first pose the generic linear displacement 
structure detection problem. Then, we provide the theoretical 
analysis and describe a generic two-step algorithm for finding one 
linear displacement structure from a set of observed word edges. 
Finally, we describe an integrated algorithm for detecting multiple 
linear displacement structures from a set of observed word edges. 

A. Generic Problem Statement. Let 8 = {El, E2, . . . , EM} 
denote a set of observed word edges. Without the loss of generality, 
we assume that the edges are horizontal. 

There exists a subset of 8, denoted by Y = {E, I, Et2, . . . , EtN}  C 
8 that comes from a linear displacement structure L, where N 5 M 
is the number edges in Y. Denote 9= 8 - 9'. Let 9 = { k  E 
{ 1,2, . . . , M }  I E, E Y} represent the set of edge indices in -5f Let 
the number of elements in 9 and 9 be N and M - N ,  respectively. 
Without the loss of generality, we assume that 
Y = {E, I, E z 2 ,  . . . , EzN} is properly ordered along the baseline of L. 
Let S, = S(Et,, Ell,+,)) for j = 1,2, . . . , N - 1. 

As in Section 111, let the linear displacement structure L be 
parameterized by p, cp, and pa. Then, the problem of detecting the 
linear displacement structure L by observing the edge set 8 can be 
formally stated as follows. Given the edge set 
8 = { E l ,  E2, . . . , EM}.  Find the linear displacement structure L to 
maximize the conditional probability P ( p ,  cp, pa, f 1 8). 

6. Algorithm Description. To set up the Bayesian framework, 
we need to write expressions for the probability density of 
observing Y given that it comes from L. From Section 111, we have 

Also, we need the probability density of observing 9 given that 
it does not come from L. Using the model that the observations in 
9 are independent given that they do not come from L and that 
they come from a uniform distribution over an area of 1 / y ,  we 
have 

Finally, we need the probability q that an observed edge E E 8 
comes from the linear displacement structure L. Hence, P ( E E  
Y) = q and P(E E 9) = 1 - q. By assuming P ( 9  I p, cp, p6) = 
P( 9) = qN( 1 - q)'-N, we have 
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(12) 

By taking logarithms on both sides of the above equation, we 
can show that the maximization of the conditional probability 
P(p, 9, p6, I1 g),  is equivalent to finding the 3, b, +, and fi6 to 
minimize the quantity J, where 

- N In q - (M - N )  In y(1 - q ) .  (13) 

We adopt a two-step procedure to search for the minimum of J .  
The first step computes an optimal subset of collinear edges in 8, 
denoted by (9', b, +), that minimizes J , ,  where 

- ( M - N ) l n y ( l  - q ) .  (14) 

Algorithm 2 summarizes the iterative minimization process (see 
Bayesian fitting [ 131). It starts with an initial estimate of a baseline, 
denoted by ( p " ,  ( P O ) .  We will describe a process to obtain this 
initial estimate in Section IVE. 

Algorithm 2. Collinear Edge Detection 

1 .  At iteration t, determine which collinear edges to take. 

4' = {i I P(E, I p', q')q > y( 1 - q), where i = 1,2, . . . , M }  . 

2. 

3. 

4. 

5. 

In 

(15) 

Compute the joint probability P'. Define P' by 

P ' =  n P(ct ( p ' .  q')q"[y(I -q)lM-"fYp')P(cp') (16) 
rE.9' 

where N' is the size of 4'. 
Determine the new Bayesian estimate of the baseline param- 
eters ( p " ' ,  9"') to maximize the probability (see Section 
IVC) 

Iterate as long as P"' >P' and t < Q ,  where Q is the 
maximum number of iterations. 
Choose 9' = 9', N' = N ' ,  6 = p '+ '  and I$ = I$ '+ ' .  

the second step (see Algorithm 3), we search for the equally 
spaced edges in Y' = {E, E 8 1 i E 9'1 given the optima1 subset of 

collinear edges ( f", 5, 4) from the previous step (assuming N' 1 

2), and calculates 3 and ,La that minimize J2,  where 

- N I n q - ( N ' - N ) I n  y(l -9). (18) 

Algorithm 3. Equal Displacement Edge Detection 

1. 
2. 

3. 

4. 
5. 

If N' < 2, then return p= @and 9 = 0: 
Else order the edges in Y' along the baseline (6, +).Without 
the loss of generality, let 9' = (E,l, E , 2 ,  . . . , E,,,) be the 
ordered sequence. 
For each possible subsequence of edges of length N + 1, 
denoted by Y ( u ,  N )  = (E,", E,(u+l , ,  . . . , E,,.+,,), where 1 5 

u < u + N 5 N ' ,  derive the Bayesian estimate of the dis- 
placement p8 = ii8 (see Section IVD) and compute the joint 
probability P(u, N ) ,  defined by 

N 

P(u, N )  = n PCS, I b, +, f i8 )qN 
/ = I  

. rY( 1 - q ) Y N  . P(ICL&) (19) 

where s, = w<~+J~l ) ,  E,("+,,). 
Determine the u*,  N* that maximize P(u, N) .  
Let Po = [ y (  1 - q)]"' denote the probability that there is not 
a linear displacement structure in Y(u* ,  N * )  and P* = 
",N:I P(S, 1 b, +, f i8)qN* denote the probability that 
Y(u*, N * )  comes from a linear displacement structure. If 
P* P,,, then return p= 9 ( u * ,  N*),  3 = {k 1 Ek E 91, and 
the corresponding &; else return p= @'and 9 = 0: U 

Therefore, given a set of edges 8 and an initial baseline 
estimate ( p " ,  qO), the sequential execution of Algorithms 2 and 3 
produces a single linear displacement structure in 8 (if there is 
one), parameterized by (6, 6, fi6, 3), that maximizes the con- 
ditional probability P ( p ,  q, p8. 4 I 8). 

C. Baseline Parameter Estimation. In this section, we derive 
the Bayesian estimates of the baseline parameters (denoted by b 
and 6) given a set of N collinear edges, denoted by El ,  E2,  . . . , EN. 
We want to compute the 6 and @ that maximize the joint 
probability distribution 

N 

R E , ,  E2, . . ., E N '  ~2 C P )  = P(P)P(cP)  n P(c, I P,  C P ) .  (20) 
,=I 

Using the PLDM assumptions (Section 111), it is equivalent to 
minimizing the following sum of squares, 

We need to first define the distance of E, to the baseline L 
(denoted by q, where i = I ,  2,. , , , N ) ,  Figure 3 illustrates a 
horizontal edge E, and a baseline, denoted by L. Let E, be 
parameterized by its centroid (x,, y,) and length r, .  The e, is defined 
through the equation 
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X 

Figure 3. Edge €, and its baseline L. The e, is the distance of the 
centroid of €, to the baseline. 

r ,  1 2  

[(x, + r )  sin cp + y ,  cos cp - p]' dr 

1 
12 = (x, sin cp + y, cos cp - p)' + - rf sin'cp 

(22 )  
1 2 . 2  

= ef(p, cp) + 12 r ,  sin cp 

where e,(p,  9) is the distance of the centroid of E, to the baseline. 
The quantity €2 is essentially the mean squared distance from the 
edge points to the baseline L. 

To obtain the Bayesian estimates, we could set the partial 
derivatives of Q(p, cp) with respect to p and cp to zero and then 
solve the equations. Unfortunately, it can be shown that the 
equations do not have a closed-form solution. They can only be 
solved numerically using some iterative schemes, such as the 
gradient descent method. However, in our context, the angle cp of 
the baseline is very small (<< 10"). It justifies the approximation 
cp = sin(cp). Let Q(p, cp) be approximated by, 

The approximate Bayesian estimates of the baseline parameters 6 
and Q can be obtained by: 

i? = px sin Q + py cos Q (24 )  

where px, p,, p,,, p,,, and pxy are the first- and second-order 
moments of the centroids of the edges. 

D. Displacement Parameter Estimation. In this section, we 
derive the Bayesian estimate of the displacement fi, given a set of 
edges El ,  E,, . . . ,EN coming from a linear displacement structure 
L, where L is parameterized by its baseline ( p ,  cp) and the 
displacement p6. Without the loss of generality, we assume that the 
edges E l ,  E,, . . . , EN are properly ordered along the baseline 
direction. 

Let S, = S(E,, E l+ l )  denote the gap length between the two 
adjacent edges along the baseline direction, where j = 

We calculate the fi6 that maximizes the conditional probability 
1,2  , . . . ,  N - 1 .  

distribution 
N -  I 

P(E, ,  E,, . . . 1  EN> P6 I p, c p )  = P h a )  c P(s, I p7 c p 7  P6) > (26) 

which is equivalent to minimizing the following sum of squares, 

/ = 1  

Solving the minimization problem, we can obtain the optimal 
estimate of the displacement fia: 

2 N - I  El=, S, +(Tip 

(N - 1)a2 + f i a  = 

E. Initial Baseline Estimation. Algorithms 2 and 3 are contin- 
gent upon the availability of an initial set of baselines. In this 
section, we discuss a technique to obtain K potential initial 
baselines. It first finds K clusters of edges that correspond to the 
initial baselines. Then, it estimates the baseline parameters for each 
of the clusters. 

Let 8 = { E l ,  E,, . . . , E M }  denote a set of M input edges. Figure 
4 shows two horizontal edges E, and El. Their spatial relation can 
be characterized by two distances d, = d,(E,, El) and d, = 
dy(Ei,  El), which are defined as the parallel and perpendicular 
distances of the two edges, respectively. If the two edges overlap 
horizontally, then the parallel distance d, is designated as zero. 

To cluster the edges, we need the probability distribution of d,, 
and d,, given that two edges are adjacent in a linear displacement 
structure. Using a model that the parallel and perpendicular 
distances are independent, we have 

P(d,, d, I adjacent) = P(dx 1 adjacent)P(dy 1 adjacent). ( 2 9 )  

We further assume that P(d.r I adjacent) be the Gaussian dis- 
tribution and P(d, I adjacent) be the exponential distribution, i.e., 

P(dx I adjacent) = ~ e 2": , 
1 -  & 

JGCr 

where px and a: are the mean and variance of the parallel distance 
and a, is the perpendicular distance decay factor. 

We also need the probability distribution of d, and d> given that 
two edges are nonadjacent. In this case, we assume d, and d, have 
a uniform distribution, i.e., 

P(d,, d, 1 nonadjacent) = 1 / r  . (31 1 

where r is a constant chosen by the user. 
Based on the two probability distributions, we could define an 

undirected graph 9. The vertices of 9 consist of all the elements in 
'X The edges of 9 come from a subset of 8 X g. There is an edge 
between two vertices E, and E, if and only if P(d,, d, I adjacent) > 
1 IT. Typically, two edges E, and E, will satisfy the relation if both 
d, and dy are small relative to the choice of T. 

Suppose the graph 9 has K connected subgraphs, denoted by 

n 

Ei dx 
Figure 4. Parallel and perpendicular distances between the two 
edges. d, is the parallel distance; d, is the perpendicular distance. 
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$, where k = 1,2 , .  . . , K. They can be computed via a simple 
depth-first search algorithm. Each of the subgraph 9: defines a 
cluster of edges (denoted by .Y:, k = 1,2, .  . . , K )  that correspond 
to an initial baseline. Without the loss of generality, we assume that 
.Yy, Yi,  . . . , Y’i are sorted in descending order according to their 
numbers of edges. 

Using the method described in Section 4.3, we could then 
estimate the baseline parameters of the kth cluster Y:. Let it be 
denoted as ( p : ,  p:), where k = 1,2 , .  . . , K. 

F. Multiple Linear Displacement Structure Detection. In a 
given set of edges, there may exist multiple linear displacement 
structures. For example, it is likely that there are multiple text lines 
on a document image. Each text line can be modeled by a linear 
displacement structure. Hence, we need to construct an algorithm 
to find all the linear displacement structures in 8. In this section, 
we describe a greedy algorithm (Algorithm 4) to find multiple 
linear displacement structures in a set of edges. The idea is to 
iteratively detect and then remove one linear displacement structure 
from a set of edges until no more structures can be found. 

Algorithm 4. Multiple Linear Displacement Structure Detection 

1. 

2. 
3. 

4. 

5 .  

Compute the initial baseline estimates from 8 (see Section 
IVE). Let the detected initial baselines be denoted by 
(p: ,  p:), where k = 1,2, .  . . , K. 
Let = 8 and N = 0. 
For k = 1,2, .  . . , K, compute: 
(a) Let gk = gk-,. 
(b) Given the initial baseline ( p i ,  p:) and the set of edges 

gk, find the set of collinear edges 9,‘ through Algorithm 
2. 

(c) If S ;  + 8; then repeat Step 3. 
(d) Given the set of collinear edges .Yi, find the optimal 

subset of equally spaced edges through Algorithm 3. 
If $ #0‘, then it constitutes a linear displacement 
structure, denoted by TN = pk. Let N = N + 1, gk = 

gk - pk, and 9; = .Y; - pk. Repeat Step 3d. 
Else repeat Step 3. 

If gk # 8; then the edges in gk do not belong to any of the 
well-defined linear displacement structures. Each of them is 
regarded as a linear dispIacement structure with a single 
edge, i.e., for all E E gk, let N = N + 1 and TN = {E} .  
Calculate 2 = u Tn, which is the set of detected linear 
displacement structures from %. 

V. TEXT LINE DETECTION 
Theoretically, we could directly apply Algorithm 4 to find the text 
lines. But we discovered in some cases that the algorithm incorrect- 
ly merged two text lines from two neighboring text columns. The 
reason is that the two text lines share a common baseline and the 
algorithm is not able to discriminate two types of word gaps along 
the baseline, i.e., the word gap within a text line (denoted as Class 
I) and the word gap that jumped across two neighboring text 
columns (denoted as Class 11). 

To solve the problem, we observe that there are additional 
information that can be used for the discrimination. The Class I1 
word gaps are usualIy accompanied with long verticaI edges that 
correspond to either the left or the right sides of the text columns, 
whereas the Class I word gaps typically have very short vertical 

Column 1 

4 

LI Lr 

Figure 5. Left and right vertical edge lengths d, and d, of a word. 

edges. Figure 5 illustrates two sets of word-bounding boxes 
93 = {Bl, B,, B,, B,, B,} and V = {C, ,  C,, C,, C4} from two adja- 
cent text columns. The right vertical edges of 93 can be modeled 
by a linear displacement structure L,. Let its height be denoted as 
d,, which is the height of the minimal bounding box that encloses 
93. Similarly, the left vertical edges of V is modeled by a linear 
displacement structure L,. Let its height be denoted as d,. Then 
each of the words in 93 is given a right vertical edge length of d,; 
and each of the words in V is given a left vertical edge length of 
d,. For those words whose right vertical edges do not form a linear 
displacement structure, their right vertical edge lengths are denoted 
as d, = 0. In the same way, for those words whose left vertical 
edges do not form a linear displacement structure, their left vertical 
edge lengths are denoted as d( = 0. 

In the Figure 5, if we assume that B, and C, share a common 
baseline, then the word gaps between the two can be characterized 
by the horizontal displacement 6 = d, and the vertical edge length 
Y = max(dr, d,). 

In general, following the same notations as in Section IVA, let 

right and left vertical edge lengths of the iJth and i,,+,,th words, 
respectively. Assume that v, for j = 1,2, . . . , N - 1 are indepen- 
dently drawn from the following exponential distribution, 

v, = max[dr(B,,), d,(f3,~,+JI9 where d,@, 1 and d,Pt( ,+,))  denote the 

where a” is a constant, which has the meaning of the mean vertical 
edge length. 

By using the model that the 6 and v are independent, we can 
modify Equation (10) as 

N- I 

P ( Y I f r o m L ) =  n P(SIP,PO) LI P ( S , I P , V , P ~ )  
tE.9 / = I  

N-1 

(33) 

Accordingly, the optimization terms in Equations ( 1  3) and ( 18) 
could be rewritten as 

- (M-N)In y(1 -9) 

and 

(34) 
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- (N ' -N)Iny( l  - 4 ) .  (35) 

Consequently, Equation (19) in Algorithm 3 needs to be revised as: 

N N 

P ( 4  N )  = n P(S/ I ii &8,) n P ( y  I p, d q N  
J =  I  / = I  

. [ Y ( l  - q ) 1 N ' - N . P ( 8 i L g ) .  (36) 

By approximating uD -+ m, the solutions to optimizing Equa- 
tions 36 and 19 converge because the effect of the vertical edge 
length v diminishes. Therefore, the modified algorithm is a 
generalization of the original one. 

To summarize, our text line detection algorithm is constructed 
in three passes. In the first two passes, the algorithm computes 
linear displacement structures along the vertical directions based on 
Algorithm 4 (let uv = m). The first pass detects linear displacement 
structures from the left vertical edges of the word bounding boxes. 
Each word is given a left vertical edge length d,. Similarly, the 
second pass finds linear displacement structures from the right 
vertical edges of the word bounding boxes. Each word is given a 
right vertical edge length dr. In the final pass, the algorithm runs 
Algorithm 4 on the set of horizontal word edges (either top, center, 
or bottom edges) by taking into account the vertical edge length 
information obtained from the previous two passes. 

Algorithm 5 describes the text line detection algorithm. The 
input are 2 and an initial set of text blocks @', where denote 
2 = { B l ,  B,, . . . , BM} and @' = { P I ,  P,, . . . , P,}. The output is a 
set of text line bounding boxes A"'. 

Algorithm 5. Text Line Detection 

1. Compute inclusion relationship between text blocks and 
words: Let {e, I k = 1,2, .  . . , K }  be a partition of 2 and 

2, = {B E 2 I k = arg mix Area(B f l  Pi)} 

where the function Area@ n P,) returns the overlapped area 
of B by P,. 

2.  For each subset of words 2, that corresponds to a text block, 
compute text lines in the text block by: 
(a) Pass 1: Run Algorithm 4 (choose uu = m )  to detect linear 

displacement structures on the left edges of words in 2, 
and assign a left vertical edge length to each word. 

(b) Pass 2: Run Algorithm 4 (choose uv = m) to detect linear 
displacement structures on the right edges of words in 2, 
and assign a right vertical edge length to each word. 

(c) Pass 3: Run Algorithm 4 to detect linear displacement 
structures on the horizontal edges (top, center, or bottom 
edges) of words in 2,. Each of the structures constitutes 
a detected text line. Output the bounding boxes of the 
detected text lines. 

i =  I 

3. End 0 

Figure 6 illustrates the text line detection process. Figure 6a 
shows a set of extracted word-bounding boxes. Initially, we choose 

Figure 6. Text line detection process from the word-bounding 
boxes without the text block delineation. (a) Input word-bounding 
boxes; (b) output line-bounding boxes. 

itself in a sort of bootstrapping mode to obtain the initial estimates 
of text lines from the input word bounding boxes. Figure 6b plots 
the detected text lines using Algorithm 5 ,  where the algorithm 
parameters are defined as follows: a, = 8.0, uq = 0.3, p = 21.0, 
u = 10.0, a, = 10.0, a, = 50.0, q = 0.5, and y = 0.1. 

From Figure 6b, we notice that some section headings are 
detected as two separate parts instead of one. This is because the 
gaps between the separated parts are too large to be considered the 
word gaps. The problem can be overcome via the iterations in 
Algorithm 1. That is, we proceed to detect text blocks based on the 
imperfect text lines. Then, by knowing the text blocks, we will 
recompute the text lines. 

Figure 7 illustrates the text line detection process given a set of 
precomputed text blocks. The uses of the algorithm under this 
mode could be as follows. 1 )  If we know ahead of time where the 
texts should appear on document images (usually called the text 
fields), then the algorithm can be used to locate text lines in the 
text fields. 2 )  If we could precompute the locations of text blocks 
or columns via other methods, the algorithm can find text lines in 
the text blocks or text columns robustly. 3) We can embed the 
algorithm as an intermediate step in Algorithm 1. 

Figure 7a shows a set of text block bounding boxes overlaid on 
top of the word-bounding boxes. Figure 7b plots the detected text 
lines using Algorithm 5 ,  where the algorithm parameters are 
defined as follows: ue = 8.0, uq = 0.3, p = 21.0, u = 20.0, u, = 
20.0, a, = m, q = 0.5, and y = 0.1. We see that all the text lines are 
correctly detected. 

(4 (b) 
Figure 7. Text line detection process from the word-bounding 
boxes with the text block delineation. (a) Input word-bounding boxes; . .  . 

@" to include all the word-bounding boxes. The algorithm works (b) output line-bounding boxes. 
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to their row positions in the iamge. In the descending case, L,+, is 
below L,, whereas in the ascending case, L, + I is above L,. 

To setup the framework, we consider the null hypothesis 
(denoted by Xa) that L,+, is the text line in P that immediately 
follows the sequence (L ,  . L,, . . . .  L,). Under the null hypothesis 
Xa, there is a probability distribution of Ln+, by observing the 
sequence ( L l , L z , .  . .  ,L,,). Let it be denoted as 

To characterize the P(Ln+ . I (Ll . L,, . . . .  Ln)) ,  we define the 
features that describe the relationships among the set of text lines. 
In Figure 11, let h, and w, denote the height and width of the text 
line LI, respectively, where i = 1,2, .  . . .  n i- 1. 

Let s, denote the line spacing between two consecutive text 
lines L, and L t + , ,  which is the gap distance between the center 

Let 1 2 ,  c , ,  and I, denote correspondingly the distances of the left, 
center and right vertical edges of L, to the left, center, and right 
vertical edges of the text block P (denoted by %[, gC, and gr, 
respectively), where i = 1,2, .  ... n + 1. The Z$, gC, and gr are 
estimated by fitting Bayesian straight lines on the left, center, and 
right vertical edges of the first n lines L , ,  L,, . . . .  L, (see Section 
IVC). Let %[ = ( f i ,  91, gc = (P,, u: ), and Zr = ( p r ,  9,). 

To simplify the notation, denote H = (h l ,  h,, . . . .  hn),  W =  
(WIrW2'...,Wn)> S=(s1,sz . . . . .  s,z-]), L = ( l l , l *  . . . . .  I ,) ,  c= 
( c , , ~ , , .  . . .  c,!) ,  and R = (r1, I,,. . .  ,I"). Let < = ( / , , c r ,  I,, w,)' be 
a column vector, where i = I ,  2, .  . . .  n. Using the model that the 
text line height and the text line spacing are independent with the 
rest of the variables, we can write the probability 

Wn+, I ( L ] > ~ * > .  . '>L, ) ) .  

horizontal edges of the two lines, where i = 1,2 , .  . . .  n. 

~(L,,+l l(~l,L,, . . . ,~,~)) as 

Figure 8. Four homogeneous types of alignment. (a) Left justified, 
(b) right justified, (c) center justified, and (d) justified. The vertical 
edges of their text lines can be directly modeled by the PLDM. 

VI. AUGMENTED PROBABILISTIC LINEAR 
DISPLACEMENT MODEL 
Figure 8 illustrates four homogeneous types of text block align- 
ment. The left, center, or right vertical edges of the text line 
bounding boxes can be simply modeled by the PLDM. 

When people refer to the justijied texts, they also mean its 
variations, as shown in Figure 9. The differences are the various 
types of indentation at the first andlor last text lines. We could use 
an alternate name called justijied-indent to designate these types of 
alignment. 

Other types of alignment, such as jusfijied-hanging and leff- 
hanging, can also appear in some document images. For the most 
part, they can be modeled by the PLDM except the first and last 
line structures (Fig. lo), which is similar to the justified-indent- 
type alignment. 

To describe these structural variations in text blocks, we 
introduce an augmented probabilistic linear displacement model 
(APLDM). Our viewpoint is based on the idea of partitioning the A 
into maximal subsets the satisfy certain statistical model con- 
straints. 

Let ( L ,  . L,, . . . .  L,J be a sequence of n consecutive text lines 
that come from a text block P E @. Let Lj E A, where i = 0, 1, . . . .  
N .  Let L,, + , E A be another observed text line. As a convention, 
( L ,  . L,, . . . .  L,z) could be either descending or ascending according 

Figure 9. Variations of the justified texts. (a) Indentation at the last 
line; (b) indentation at the first line; (c) indentation at the first and the 
last lines. 

Figure 10. Hanging-type alignments. (a) Justified-hanging; (b) left- 
hanging. 

Furthermore, we assume that the text line height and the text 
line spacing are i.i.d. (i.e., identically and independently distribut- 
ed) Gaussian with unknown means and known variances. Let ph 
and vi denote the mean and variance of the text line height. Let p,$ 
and v: denote the mean and variance of the text line spacing. 
Then, by first-order approximation, the probabilities P(h, + I H )  
and P(s, I S) can be approximated by, 

p ( h n  + I I = 1 p(hn + I > pit I d p h  
wh 

I 1 ................................... j ................................. I... 
L2 . T  1 J i 81 

.................................. 1 ............................... i..l.... 

I 

Figure 11. Text line features. 
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and 

where fi,, is the estimaed mean text line height that maximizes 
P ( k h  I H ) ,  and fiT is the estimated mean text line spacing that 
maximizes P( pS I S). We assume that pk has a Gaussian N( fib, a:h) 

prior probability distribution and that ,us has a Gaussian N(&, a:,) 
prior probability distribution. Then, the fi, and fi, can be com- 
puted through Equations (40) and (41) (see Section IVD): 

If (Ll,  L,, . . . , is descending, then L,,,, can be either the 
intermediate or the last line of P. Let X be a random binary 
variable. It has a binary one value if L,t + I is an intermediate line 
and has a binary zero value if L,,+ I is the last line. Let Z denote the 
type of alignment of the text block P. It can take values such as 
“justified” (Z = O), “left-justified’’ (Z = l),  “right-justified” (Z = 
2), and “center-justified” (Z = 3). Then, the joint probability 
distribution P(Ct + I I L, C, R,  W) can be evaluated as: 

P ( q Z  + I I L, C, R, W )  
1 3  

= c c P(u: , , , ,x ,z lL,C,R,W) 
x = u  :=I1 

1 3  

= c P(.’, + I I x, z ,  L C, R, W)P(x I z ,  L, C, R, W )  
r = o  Z’ti 

X P(z I L, C, R, W )  
1 3  

= c c P(Cn+ , I x ,  z ,  L, C, R, W)P(x)P(z I L, C, R, W )  (42) 
*=o  ;=ti  

where P(x)  = P(X = x )  is the prior probability of the line L,+ , 
being an intermediate line ( X  = 1 )  or the last line (X = 0) under the 
null hypothesis Xti. 

If (Ll ,  L,, . . . , L o )  is ascending, then L,+, can be either the 
intermediate or the first line of P. Let Y be a random binary 
variable. It has a binary one value if L, + I is an intermediate line 
and has a binary zero value if L, + I is the last line. We use the same 
Z to denote the type of alignment of the text block P. Then, the 
joint probability distribution P(Gn+, I L, C, R, W) can be similarly 
evaluated as: 

1 3  

P(Cn+, IL ,C,R,W)= c c P(Gn+, ( y , z , L , C , R , W )  
y = o  z = o  

X P(y)P(z 1 L, C, R, W )  (43) 

where P( y )  = P(Y = y) is the prior probability of the line L,,+ 
being an intermediate line (Y = 1) or the first line (Y = 0) under the 
null hypothesis Xo. 

By the Bayesian rule, P(z I L, C ,  R, W) can be calculated as: 

(44) - P(L, C, R, W I z)P(z) 
Z:=” P(L, C, R, W I z)P(z) 

- 

where P(z) is the prior probability of observing the type Z = z text 
block alignment. The probability P(L, C, R, W I z )  can be approxi- 
mated by [12]: 

P(L, C, R,  W I z )  = P(L, C, R, W I z ,  g,, gc, gr3 P,) I 
x P( g/, gr> gr, P, I z )  dp, 4% 4, drp, dPr dP, 

= P(L, C, R, W I z ,  gl, gc, g,, f iw)  

= n P(< I z ,  g/, $< 7 % fi,) (45) 
, = I  

where 8/, gc, and gr are the Bayesian estimates of the g,, gC, and 
gr, respectively. The fi ,  = Z:= I wt is the sample mean text line 
width. The random variables pl, p, , pr ,  and p, have uniform prior 
probability distributions. 

Since (Ll , L,, . . . , L,) are assumed to be intermediate text lines, 
they come from one of the four homogeneous types of alignment 
as illustrated in Figure 8. The probabilities P(< 1 z ,  g;, gc, gr, f iw)  
for z = 0, 1 ,2 ,3  have the following form: 

P(< 1 z = 0, $/, @<, gr, fi,) = P(c,,  w z  I z = 0, gc, f i * )  
= P(c, I z = 0, QP(W,  I z = O , f i , )  

= P(Z, I z = 1, @P(W, I z = 1, f iJ  

(47) 
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Table I. Probability distributions of P(<,,+, Ix, z, S, gC, g,, P%,). 
Descending Text Line Sequence 

z=z x = o  X=l 

where a: and a: are known variances. Let A be a constant. For 
the left-, right-, and center-justified text, we assume that the text 
line width follows a uniform distribution. 

In the same way, we can approximate the probabilities 
P(<,+, Ix, z ,  L, C, R, W )  and P(G,,+, I y ,  z,L, C, R, W )  as follows: 

P(Gn+,  Ix,z,L,C,R, W ) = P ( <  Ix,z, gl, gc, gr , f iw)  (50) 

P(CT + I 1 y ,  z ,  L, C, R,  W )  = P(< I Y z ,  g17 @, gr3 fiw 1 ( 5  1 1 

Tables I and I1 summarize the distributions P(ct+ I I x ,  z ,  gl, gc, gr, 
f i w )  and P(G,,+, I y ,  z,  gl, gc, gr, f i w )  for the descending and 
ascending text line sequences. 

To summarize, we can compute the probabilities in Equations 
(42) and (43) as Equations (52) and (53) respectively: 

~ ( n ) =  -ln[P(L,+, l(Ll,L2,. . . + $ , ) ) I .  (54) 

Let P[T(n)l Xn] denote the probability distribution of T(n) under 
the null hypothesis Xn. Let P [ T ( ~ )  I X , ]  denote the probability 
distribution of ~ ( n )  under the alternate hypothesis 2,. Then, we 
could set a threshold T(n) to minimize the false-alarm rate and the 
misdetection rate. The decision rule would be as follows: if 
~ ( n )  5 T(n), then decide on the null hypothesis Xn; else, decide on 
the alternate hypothesis 2,. The two distributions P[7(n) I 9 1  and 
P[7(n) 1 X I ]  will be determined through the experiments (see 
Section VIIIB). 

Table 11. Probability distributions of P(Kn+, I y .  z, gc, g,, a,). 
Ascending Text Line Sequence 

z=z Y = O  Y = l  

VII. TEXT BLOCK DETECTION 
Once the probability distributions P [ T ( ~ )  I Xnl and P[T(n) I 2, 1 are 
known, we can easily construct an algorithm to detect the text 
blocks given a set of text lines. Algorithm 6 illustrates such an 
algorithm. Let A' denote a set of input text lines. Let the output text 
blocks be denoted as @'+I. 

Algorithm 6. Text Block Detection 

1 .  L e t X = A ' a n d @ ' + ' = K  
2. Repeat the following steps until X = €X 

(a) Pick a text line from X. Let x,, E X  and X = X - {x,}. 
(b) Let Y = {x,} and let n denote the size of Y. 
(c) Grow Y in both directions. Repeat the following steps 

until no more members of X can be added to Y 
Sort the text lines in Y. Let Y, denote the descending 
sequence, and Ya denote the ascending sequence. 
Calculate P, = P(x I Y,) and Pa = P(x I Yo),  which are 
the probabilities of x being the bottom-most line and 
the top-most line, respectively. 
Compute S = {x E X  I ~ ( n )  = -In[max(P,, Pa)]  5 T(n)}. 
Let Y = Y U S  a n d X = X - S .  

(d) If n > 1, continue to grow Y downwardly. Repeat the 
following steps until not more members of X can be 
added to Y 

Sort the text lines in Y.  Let Y, denote the descending 
sequence. Remove the top-most line from Y,, let it be 
denoted as Y; .  The Y ;  will have size n'. 
Calculate P, = P(n I YL), which are the probabilities of 
x being the bottom-most line. 
Compute S = {x E X  I ~ ( n )  = -In P, 5 ~ ( n ) } .  
Let Y = Y U S  a n d X = X - S .  

(e) If n > 1, continue to grow Y upwardly. Repeat the 
following steps until no more members of X can be 
added to Y 

Sort the text lines in Y.  Let Yo denote the ascending 
sequence. Remove the bottom-most line from Yo, let it 
be denoted as Y l .  The Y :  will have size n' .  
Calculate Pa = P(x I Y : ) ,  which are the probabilities of 
x being the top-most line. 
Compute S = {x E X  I ~ ( n )  = -In 
Let Y = Y U S  a n d X = X - S .  

5 ~ ( n ) } .  

(f) Calculate the bounding boxes of Y and add it to @ ' + I .  

3. output @ ' + I .  0 

To illustrate the algorithm, Figure 12a shows a set of text line 
bounding boxes and Figure 12b plots the detected text blocks using 
the Algorithm 6, where we choose T(n) = 30.0 for all n (see 
Section VIIIB). We see that all the text blocks are correctly 
detected. 

Figure 13 illustrates a degenerate case of the augmented PLDM 
model. Figure 13a shows the set of inputs text line bounding boxes 
and Figure 13b plots the detected text blocks using Algorithm 6. It 
shows a justified-indent text block with only two lines. In this 
situation, Algorithm 6 failed to compute the correct text block 
bounding boxes. Instead, we can implement a heuristic procedure 
to handle this kind of case during the postprocessing stage. Figure 
13c shows the post-processing result by using the heuristics that 
each of the merging two text blocks contains a single text line, and 
that the merged text block does not intersect with other text blocks 
in the document image. 
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Figure 12. Text block detection process from the text line bounding 
boxes. (a) Input text line bounding boxes; (b) output text block 
bounding boxes. 

VIII. EXPERIMENTAL PROTOCOL 
The experiments consists of two stages. In the first stage, we 
conduct a series of experiments on the set of 168 fully layout 
ground-truthed document images described in [ 101. We also rotate 
these images and their corresponding glyph, word, text line, and 
text block bounding boxes at various degrees of 20.2", ?0.4", and 
50.6". The rotation of a bounding box is done in such a way that 
we first rotate its four corners, and then we calculate the minimum 
rectilinear bounding box that encloses all the rotated corners. This 
generates a total population of 1176 = 168 X 7 ground-truthed 

Figure 13. Degenerate case of the text block detection from the 
text line bounding boxes. (a) Text line bounding boxes; (b) output text 
block bounding boxes from Algorithm 6; (c) text block bounding boxes 
after postprocessing. 

document images. From these images, we compute the empirical 
probability distributions that we used to characterize the text line 
and text block structures. The purpose is to experimentally validate 
our models and show that they are in fact close approximations of 
the real situations. In addition, the empirical distributions provide a 
basis for choosing the default model parameters. 

In the second stage, we perform experiments to evaluate the text 
line and text block detection algorithm quantitatively under the 
various configurations. The text word bounding boxes detected via 
the word segmentation algorithm described in [10,11] are used 
during the evaluation. The algorithm parameters are set to their 
default values obtained during the model validation processes 
unless otherwise indicated. We then compare the ground truth text 
line and text block bounding boxes with those obtained by the 
detection, and compute the rates of miss, false, correct, splitting, 
merging, and spurious detections for the text lines and text blocks 
[10,11]. 

A. Text Line Model Validation. Figure 14 plots empirical 
PLDM distributions for the text lines. Figure 14a shows the prior 
distribution of the baseline orientation cp. Figure 14b shows the 
distribution of the squared line-fit error E'. The center horizontal 
word edges has the smallest tail area than the other two. This 
suggests that we should use the center horizontal word edges to 
extract text lines. Figure 14c shows the prior distribution of the 
mean word displacement p6 within a text line. Figure 14d shows 
the distribution of the word displacement 6 around its mean p8 
within a text line. From the figures, we estimated a+ -0.6", 
ae -3.0, f i  ~ 2 1 . 0 ,  a= 5.0, and a, -2.0. 

B. Text Block Model Validation. Figure 15 plots empirical 
APLDM distributions for the text blocks. Figure 15a shows the 
prior distribution of the mean line height ph within a text block. 
Figure 15b shows the distribution of the line height around its 
mean ph within a text block. Figure 15c shows the prior dis- 
tribution of the mean line spacing p3 within a text block. Figure 
15d shows the distribution of the line spacing around its mean pJ 
within a text block. Figure 15e shows the prior distribution of the 
mean text line width for justified text blocks (exclude the first and 
the last text lines). It is approximately uniform across a wide range 
of values. Figure 15f shows the distribution of the text line width 
around its mean for the justified text blocks. Figure 15g shows the 
distribution of the baseline orientation cp for the aligned vertical 
text line edges. Figure 15h shows the distribution of the squared 
line-fit error E' for the aligned vertical text line edges. From the 
figures, we estimated p,, ~ 4 5 . 0 ,  aGh ==1 12.0, a, = 3.0, p, = 50.0, 
a- = 9.0, a$ = 2.0, a, = 2.0, a+ -0.4", and a, = 2.0. 

Figure 16 illustrates the empirical probability distributions of 
~ ( n )  under the null hypothesis go. In the experiment, we chose the 
following parameter values: 1) P(Z = 0) = P(Z = 1) = P(Z = 2) = 
P(Z= 3); 2) P(X = 0 )  = P(X = 1); 3 )  P(Y = 0) = P(Y = 1); 4) o, = 
l . 0 , a p = 0 . 4 , q = 0 . 5 ,  y=0 .1 ;5 ) /1h=45 .0 ,~~- ,h=12 .0 , a ,=3 .0 ;  
6) /1< = 50.0, a- = 9.0, a, = 2.0; 7) a,,, = 3.0, A = 0.05; 8) 1 d 
n c: 8. We do not plot the empirical probability distributions of ~ ( n )  
under the alternate hypothesis 2, because it is shown that they 
have virtually zero probabilities in the range 0.0 5 ~ ( n )  540.0.  
From the figures, we observe that the variations of P [ T ( ~ )  123 
with respect to n are very small, especially for n 2 2. This suggests 
that we could use a single constant threshold T to replace the 
variable threshold T(n) in Algorithm 6 

% 

wr 
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C. Performance Evaluation Results. Tables I11 and IV sum- 
marize the performance of the text line detection algorithm 
(Algorithm 5) by knowing the initial ground truth text blocks. The 
parameter settings are uc = 8.0 and 17, = 1000.0. Some of the text 
line detection errors may be due to the imperfect word detection 
[10,11]. 

Tables V and VI summarize the performance of the text line 
detection algorithm (Algorithm 5) without knowing the initial text 
blocks. The parameter settings are a, = 8.0, uv = 150.0, and a, = 

6.0. 
Tables VII and VIII summarize the performance of the text 

block detection algorithm (Algorithm 6) by knowing the ground 
truth text lines. The parameter settings are T(n) = 70.0 for all n, 
and a, = 9.0. 

Finally, Tables IX-XI1 summarize the performance of the 
iterative text line and text block detection algorithm (Algorithm I ) ,  
where its input are the word-bounding boxes from the word 
segmentation algorithm. We chose the number of iterations q,,, = 

7. Tables IX and X show the rates of miss, false, correct, splitting, 

“i- 

merging, and spurious detections for text lines with respect to the 
ground truth as well as the algorithm output. 

On the other hand, Tables XI and XI1 show the rates of miss, 
false, correct, splitting, merging, and spurious detections for text 
blocks with respect to the ground truth as well as the algorithm 
output. 

X. CONCLUSIONS AND FUTURE WORK 
In this article, we discussed a statistical method for modeling and 
extracting text lines and text blocks from document images. We 
derived the so-called probabilistic linear displacement model 
(PLDM) to model the text line structures from text word bounding 
boxes. We also developed an augmented PLDM model to char- 
acterize the text block structures from text line bounding boxes. We 
gathered statistics by going through a large population of document 
images. 

We described and evaluated an iterative text line and text block 
detection algorithm and reported its quantitative performance in 

Figure 15. Empirical APLDM distributions for the text blocks. 

354 Vol. 7, 343-356 (1996) 



I 

I 

(4 W 5 )  I 'Hol 
Figure 16. Empirical distribution of the test statistics ~ ( n )  under the null hypothesis Xo 

Table 111. Performance with respect to the ground truth text lines. 

Total Ground Truth Lines Correct Splitting Merging Miss spurious 

44,491 43,048 79 1299 7 58 
(96.7566%) (0.1776%) (2.9 197%) (0.0157%) (0.1304%) 

Table IV. Performance with respect to the detected text lines. 

Total Detected Lines Correct Splitting Merging False spurious 

43,878 43,048 158 614 0 58 
(98.1084%) (0.3601%) (1.3993%) (O.OOoo%) (0.1322%) 

Table Y Performance with respect to the ground truth text lines. 

Total Ground Truth Lines Correct Splitting Merging Miss spurious 

44,49 1 40,193 3332 709 6 25 1 
(90.3396%) (7.4892%) (1.5936%) (0.0135%) (0.5642%) 

Table VI. Performance with respect to the detected text lines. 

Total Detected Lines Correct Splitting Merging False spurious 

47,888 40,193 6968 350 75 302 
(83.9313%) (14.5506%) (0.7309%) (0.1566%) (0.6306%) 

Table VII. Performance with respect to the ground truth text blocks. 

Total Ground Truth Blocks Correct Splitting Merging Miss spurious 

11,988 10,403 174 1044 4 363 
(86.7784%) (1.4515%) (8.7087%) (0.0334%) (3.0280%) 

Vol. 7, 343-356 (1996) 355 



Table VIII. Performance with respect to the detected text blocks. 

Total Detected Blocks Correct Splitting Merging False spurious 

1 1,657 10,403 
(89.2425%) 

429 
(3.6802%) 

~ 

458 
(3.9290%) 

0 
(0.0000~0) 

367 
(3.1483%) 

Table IX. Performance with respect to the ground truth text lines 

Total Ground Truth Lines Correct Splitting Merging Miss spurious 

44,49 1 40,193 3332 709 6 25 1 
(90.3396%) (7.4892%) (1.5936%) (0.0135%) (0.5642%) 

Table X. Performance with respect to the detected text lines. 

Total Detected Lines Correct Splitting Merging False spurious 
~ ~~ ~ ~ 

47,888 40,193 6968 350 75 302 
(83.9313%) ( 14.5506%) (0.7309%) (0.1566%) (0.6306%) 

Table XI. Performance with respect to the ground truth text blocks. 

Total Ground Truth Blocks Correct Splitting Merging Miss s p u ri 0 us 

I 1,988 10,403 174 1044 4 363 
(86.7784%) ( I  .4515%) (8.7087%) (0.0334%) (3.0280%) 

Table XII. Performance with respect to the detected text blocks 

Total Detected Blocks Correct Splitting Merging False spurious 

1 1,657 10,403 429 458 0 367 
~ 2 4 2 5 % )  (3.6802%) (3.9290%) (0.0000%) (3.1483%) 

terms o f  the rates of miss, false, correct, splitting, merging, and 
spurious detections of the text lines and text blocks. 

As future work, we want to evaluate our system on the real 
document images from the UW English Document Image Database 
( I )  and (11). It would first require the construction of ground truth 
bounding boxes for  text lines and text blocks for  all the images in 
the two databases. We also want to  optimize the performance of the 
text line and text block detection algorithm under different 
parameter settings. 
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