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Automatic deduction of the drainage network direction from Landsat imagery is a problem in remote sensing. The
problem can be formulated in the abstract as a consistent labeling problem which is given a set of units (stream
iegments), possible labels (flow directions), and constraints on the way adjacent stream segments must be labeled. The
zoal is to find a mapping from their units to the labels that satisfies the constraints. Consistent labeling problems can be
iolved by tree search algorithms. In thisypaper, the stream labeling problem is formulated as a consistent labeling
oroblem. The extraction of stream and villey segments from the Landsat images is discussed, and constraints on
iegments which meet at junctions are given. The tree search algorithm, employing a methed called forward checking, is
ziven and is used to determine the flow direction of all the stream segments in a way that is globally consistent with the

unction constraints.
I. Introduction

There is a wealth of information in
spatial patterns on aerial imagery, but
nost computer data processing of re-
notely sensed imagery, being limited to
sixel spectral characteristics, does not
nake use of it. It is a common task for a
shotointerpreter to examine the spatial
sattern on an aerial image and be able to
ell the elevation of one area relative to
nother and be able to interpret the
itream network. The problem we address
1ere is how can a computer do this task.

In this paper, we describe how to ex-
ract a drainage network from a Landsat
scene of mountainous terrain. The prob-
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lem is not only to locate the stream seg-
ments, but also to deduce the flow direc-
tions of these segments. In order to locate
the stream segments, we use both spectral
and spatial information from the Landsat
imagery. In order to deduce the flow
directions of these segments, we apply
the consistent labeling technique
(Haralick and Shapiro, 1979; 1980) which
requires the defining of a set of con-
straints for related segments and applying
these constraints to all the stream seg-
ments.

Before any meaningful spatial rea-
soning work can be applied to the Land-
sat imagery or any other kind of imagery,
it is necessary to split the reflectance
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information and topographic information
which are mixed in the original Landsat
imagery. (Eliason et al, 1981; Wang
et al.,, 1983). From the reflectance infor-
mation, visible stream segments can be
detected by procedures described in Sec.
2,

Flow directions of these stream seg-
ments can be deduced by defining con-
straints at junctions based on segment
orientations and lengths and finding opti-
mal flow directions satisfying these con-
straints. Due to the low resolution of
Landsat imagery, few visible stream seg-
ments can be detected, and few junctions
are available. We can increase the num-
ber of junctions by including the junc-
tions where valley segments intersect the
visible stream segments. Although these
small valley segments do not necessarily
carry sizeable channels of open water,
they do serve as pathways for water flow,
and therefore must be organized spatially
according to the same logic as are chan-
nels of open water. The detection of val-
ley segments is discussed in Sec. 3.

In Sec. 4, the constraints at stream
junctions are given, and the model of
deducing the flow directions of streams is
formalized. This model is a particular in-
stance of the general consistent labeling
model which is introduced in Sec. 5. The
implementation is described and experi-
mental results are given in Sec. 6. The
results are discussed and conclusions pre-
sented in Sec. 7.

2. Visible Stream Segments

We examine three areas in southeastern
West Virginia. The original Landsat
imagery for these three windows are
shown in Fig. 1. This area was imaged by
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the Landsat-1 MSS on 13 April 1976
(scene ID: 5360-14502). Drainage in thig
region is through tributaries of the New
(Kanawha) River, which flows west intg
the Ohio drainage system. The overall
drainage pattern within this region is that
of a relatively large channel superimposed
over the finer texture of a dentritic pat-
tern formed by smaller streams. Unfor-
tunately, only the large channels can be
located by the procedures stated below
because 1 pixel in the Landsat imagery
represents approximately a 57 X 80 m area
on the ground.

As described in Wang et al. (1983), a
four-band material reflectance image can
be computed from the original Landsat
imagery. Visible rivers can be located by
applying the following Alfoldi and
Munday process (1978) to this material
reflectance image.

1. A band 4 green coefficient x of
every pixel is calculated as a ratio:
the radiance of band 4 over the
radiance sum of bands 4, 5, and 6.
Similarly a band 5 red coefficient y
is calculated for every pixel. x and y
are called Landsat chromaticity co-
ordinates.

2. In this coordinate system, Munday
(1974) has determined a curve (Fig.
2) which is the locus of the positions
of chromaticity values of water bod-
ies. If, for some pixels, the x, y val-
ues calculated in Eq. (1) are close to
this curve, then those pixels can be
identified as portions of water bod-
ies. Thus, the chromaticity tech-
nique permits identification of those
rivers and water bodies large enough
to dominate the spectral properties
of pixels. Because most streams will
be much smaller than a Landsat
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FIGURE 2. Chromaticity plot.
pixel, we must employ another

method, deseribed below, to iden-
tify smaller streams and rivers.

3. Valley Segments

In the well-known Waltz ( 1975) prob-
lem of labeling edges of polyhedra ob-
jects, there are only three kinds of edges:
convex, concave, and boundary. Of all the
possible ways three such edges can meet
in a junction there are only 18 legal junc-
tion configurations. Similarly in our prob-
lem, we are interested in assigning labels
of {upstream, downstream} to the visible
stream segments by looking at the con-
straints at junctions. For example, as
shown in Fig, 3, when a smaller stream 8q
flows into a larger stream which is com.
posed of two segments s, and s because
of this intersection, very often the angle
between s, and sy is less than 90°. The
general rules about flow directions at
junctions are given in Sec. 4. In the fol-
lowing, we describe why and how to de-
tect valley segments.

As discussed before, only the large
channels can be located due to the Jow
resolution. In order to have more junc-
tions, we need to include the first order
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streams which intersect the large chan-
nels. Even though we cannot see these
smaller streams in the Landsat imagery,
we can detect valley segments instead
and assume that water flows through these
valley segments which are very close to
the large channels,

Valley segments can be detected by the
knowledge that sides of hillsides facing
the sun must be directly lit and sides of
hillsides facing away from the sun must
be indirectly lit or in shadow. A directly
lit to indirectly lit transition in a direction
moving away from the sun is a ridge. An
indirectly lit to directly lit transition in a
direction moving away from the sun is a
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TABLE 1 Rules of Flow Directions at ]unciions
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PATTERN
Numpes A(s), §3) A(5y, 5p) A(sg,53) UsrsTREAM DownsTREAM
=180° =80° =90°
1 L(sy)» max{ L(s)), L(s3)) s, and s, 53
2 L(sy) < min{ L(s,), L{s5)) o §1 0T 85
3 L(sy) < min(L(s,),L(55)) sy and sy 5
4 L(s))=L(sg)= L(s3) . 8y 5y OT 83
5 =180° <90° -90° sy and s, 83
6 =180° >80° <80° g and s, 51
7 < 180° >90° »90° sy and s, 85
180° >90° < 90°
8 L(s))= L{sg)= L(s3) 55 and s, 5
9 L{sg) < min(L(s,), L(s3)) ?
10 L(sy)« min( L(sy), L(s3)) 55 and s 5,
11 L(sg) =< min(L(s,),L(s5)) ?
=120° =120° =120°
12 L(s) = L(sy) = L(s3) ®
13 L(sg) < min(L(s,), L(s3)) 5y and sy 5y
14 L{s)) < min( L(s;),L(s3)) sy and 55 5y
15 L(s) = min(L(s,),L(s3)) 5, and s, 8y

valley. This is illustrated in Fig. 4. Then
valleys and ridges exist on the border
between shadowed and directly lit areas.
The shadowed areas can be located by
calculating a binary shadow image based
on clustering (Wang et al., 1983).

4. Constraints at Junctions

It is believed that when several stream
segments join at a junction, there are
constraints based on orientation and
length patterns. The general rules about
flow directions at junctions are given in
Table 1 which is designed by J. B.
Campbell. A(s,, s,) indicates the clock-
wise angle between segments s, and s,
and L(s) indicates the length of a seg-
ment s.

We are interested in two kinds of junc-
tions. Junctions of the first kind are
vertexes at which three stream segments
meet. The set of such junctions is called
J3. Junctions of the second kind are
vertexes at which two stream segments

and one valley segment meet. The set of
such junctions is called J,. Also we call S
the set of all stream segments and V the
set of all valley segments.

Let J=J;UJ,, X be the set of junc-
tion patterns in Table 1, and L=
{upstream, downstream}. Then one can
define a: J— X as the function that as-
signs junction patterns to junctions. As an
example, for the junction j in Fig. 3,
a(j) =5 because A(s), s;) = 180°,
A(s,, 85) <90° and A(s,, s;) > 90°. For
each pattern in Table 1, the flow direc-
tions of segments s, s,, 5, can be put in
a triple which is an element in L X L X L,
Thus the mapping from pattern numbers
to flow directions can be defined a
b: X - L. X L X L. For the junction j in
Fig. 3, b(a(j))=(upstream, upstream,
downstream).

If three stream segments meet at a
junction, two constraint relations can be
formally stated on the basis of Table 1 as
follows. One is concemed with all triples
of stream segments that constrain each
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other because they meet at this junction;
the other is concerned with all triples of
segment-label pairs where the stream seg-
ments meet in a junction and the labels
are possible for that type of junction. For
each x in X, we can define T, and R _ as
follows:

Ii= {{Susz:snﬂslssz,%e&

and s, 55, 5,4
meet at a junction j of type x, j € J,},

R, = {{(31-&01):(52’{2)’(53:fa)}|
{5,855, 5;) €T,

and (fl,fg,(?)eh(x)}.

If two stream segments and one valley
segment meet in a junction, two similar
constraint relations can be stated as fol-
lows. For each x in X,

T;={{s;85}I5),5, €8

and there exists s, € V such that s, s,, 5,
meet at a junction j of type x, j€ J, ],
R, = {{(s1. 1), (52, &)} (51,50} €T,
(¢4, 45, ,) € b(x)).

Now let
T=( U Tn(j))lu( ) Tu’(j))
JE€L i€h
and

R=(U

i er()))u( U R:l(‘i))’
J€L i€h

which means T consists of all triples or
pairs of stream segments that constrain
each other at junctions and R is the
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corresponding segment-label constraint
relation.

Now the labeling problem of assigning
{upstream, downstream} to all stream
segments can be described by a compati-
bility model (S, L, T, R), which is a par-
ticular instance of the general consistent
labeling problem. Because there are many
spatial inference problems which are in-
stances of the consistent labeling prob-
lem, the form of the general consistent
labeling problem as given by Ullman
et al. (1982) is reviewed in the next sec-
tion.

5. Consistent Labeling

Let U be a set of objects called units,
and L be a set of possible labels for those
units. Let 1'C { f CU} be the collection
of those subsets of units from U that
mutually constrain one another. That is, if
f={u,uy,...,u,} is an element of T,
then not all possible labelings of u,..., u,
are legal labelings. Thus there is at least
one label assignment [, 1,,..., [, so that
u, having label I,, u, having label I,,...,
uy having label I, is a forbidden labeling.
T is called the unit constraint set, Finally,
let Rc{glgcUXL, g single-valued,
and Dom(g) € T'} be the set of unit-label
mappings in which constrained subsets
of units are mapped to their allowable
subsets of labels. If g = {(u,[)),
(tg, l3),..,(uy, 1})) is an element of R,
then w,,u,,...,u, are distinct units,
{uy, ug,...,u;} is an element of T mean-
ing u,, u,,..., u, mutually constrain one
another, and u, having label 1, u, hav-
ing label [,,..., and u, having label [,
are all simultaneously allowed.

In the consistent labeling problem, one
is looking for functions that assign a label
in L to each unit in U and satisfy the
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constraints imposed by T and R. That is,
2 consistent labeling is one which when
restricted to any unit constraint subset in
T yields a mapping in R. In order to
state this more precisely, the restriction of
2 mapping is first defined. Let h: U— L
be a function that maps each unit in U to
label in L. Let f €U be a subset of the
units. The restriction h|f (read h re-
stricted by f) is defined by h|f = {(u,l)
= hlu € f}. With this notation, a con-
sistent labeling is defined as follows.

A function h: U— L is a consistent
labeling if and only if for every f€T,
h|f is an element of R.

An example is given below. Suppose
the inputs to the problem are as follows:

unary constraint

{1,2}, binary constraints
(2.5),
{1,3,4}) ternary constraint,

{{(1,a)}, {(1, b))},
{(1,a),(2,a)},
{(1,a),(2, b))},
{(1,b).(2, b)),
{(2,0),(5,a)},

12, 5),(5,¢)},
{(1,a),(3,2),(4,¢)},
{((1,b).(3,a).(4,a)} }.

unary constraint

binary constraints

ternary constraints

Then h = {(1,a)(2,a) (3,a) (4,¢) (5,a)}
is a consistent labeling. To see this, note
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that h|){1} = {(1, a)}, h|{1,2} =

{(1,a),(2,0)}, h[{2,5) ={(2,0).(5,a)},
and h|{1,3,4} = {(1,4a),(3,a),(4,c)} are
all elements of R.

If having 1,,..., [, applied to u,,..., u,
when {(u,1}),...,(u; [,)} isnotin R is
allowed with a penalty, the process is
called inexact consistent labeling (Shapiro
and Haralick, 1981). In order to include
these mappings, an error weighting func-
tion Ew is defined as Ew: G —[0,1],
where G C {g|g €U X L, g single-valued
and Dom(g)e T}. Ew({(u,, ),
(ug, ly), ... (uy, 1)) is the error which
occurs when labels [,,1,,...,1; are ap-
plied to ©,, uy,..., ;.

If ((up, b)), (ug, 1)) isin R, Ew is
zero; otherwise, Ew is a constant ec and
usually is defined as the reciprocal of the
square of the size of U. The mapping h:
U — L is an inexact consistent labeling if
for all f in T, the sum of Ew(h|f) is
within some upper bound, usually 1.

6. Relational Reasoning Model and Flow
Direction of Streams

In the last section, the very general
consistent labeling model was introduced
and the unit-label pairs in the elements
of R were just assumed to be there. How-
ever, if one goes back to the flow direc-
tion problem and looks at Table 1, it is
clear that one cannot talk about unit-label
pairs without looking at the property val-
ues, such as angles and lengths, of these
units. In the following, based on the very
general consistent labeling model, a rela-
tional reasoning model is defined to ex-
plicitly include these properties. How-
ever, these properties are only related to
the creation of elements in the set R; the
basic tree searching technique is just the
same for both the general consistent label-
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ing model and the relational reasoning
model. We first show that the relational
reasoning model is applicable to the flow
direction problem, and then discuss the
tree searching strategies designed by
Shapiro and Haralick (1981).

In relational reasoning problems, many
spectral and geometrical properties can
be computed for the locally detected units.
Some frequently used properties are aver-
age gray level, size, and shape descrip-
tors. For each unit, a list of property
values can be computed. Considering all
the units, these lists form an array which
can be named P. Thus for a unit u, P[u]
gives the list of property values for u. For
stream junctions, the line length of one
segment and the clockwise angle from
one segment to the next one can be de-
tected so the P[s]= (angle, length) for a
unit s. For example, in Fig. 3, P[s,]=
(45,10), P[s,]=(135,10), and P[s;]=
(180,15).

For each junction pattern in Table 1,
the angles must be within certain ranges.
With respect to pattern number 5, P[s,]
must be in the property range ([0,89],
[1,ub]), P[s,] must be in the range
([91,179],(1, ub]), and P[s;] must be in
the range ([180,180],[1, ub]) for some up-
per bound ub on the line length.

However, simply specifying a range for
each unit is not enough. Sometimes one
needs to compare the property values for
different units. One example for the
stream junctions is the pattern “L(s;) >
max(L(s,), L(s,)).” To handle this type
of constraint, a relation r(P[u],...,
P[u,]) must be defined on the property
lists of the related units.

Now the relational reasoning model is a
6-tuple (U, P, L, T,R, Ew). U, L, T, Ew
have the same meanings as before;
however, the elements in B now have
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the form {(u,, py 1))y s (g prs 1),
r(Plu,), Pluyl),..., Plu,]}, where p; is
the list of the required ranges of property
value for all the properties in P for unit
u,, i =1 to k. If the property values of u,
are within the ranges specified by p, for
i=1tok, {u,...,u,} is contained in T,
and relation r is satisfied, then it is legal
to assign label [, to u,..., [, to u, at the
same time.

The relational reasoning model (U, P,
L,T,R, Ew) can be applied to deduce
the flow directions of visible rivers. U
contains the units of visible rivers. P con-
tains all the properties detectable from
the stream segments. The most important
properties are the length of a segment
and the orientation of the segment at one
end because they are used in Table 1. L
is {upstream =1, downstream =2}, T
contains the junction relations. R con-
tains the relations of legal flow directions
defined in Table 1. For {u,,...,u;} in T,
if {(uy,1),...,(uy, 1)} is in R, the error
function Ew({(u,1)).....(u, 1;)}) is de-
fined to be zero: otherwise, it is ec, the
reciprocal of the square of the total num-
ber of stream segments.

To find the best possible labeling, four
different tree searching strategies were
described for the inexact consistent label-
ing problem (Shapiro and Haralick, 1981).
Experiments were done to evaluate their
performance. Forward checking was
found the most efficient one. In the fol-
lowing, the idea of forward checking
strategy is described first in English and
then followed by mathematical equations.
The detailed algorithm designed by
Shapiro and Haralick (1981) is listed in
the Appendix.

A tree search is performed to find a
label for each unit. Each node of the tree
represents a possible assignment of a label
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[ to a unit u. Associated with such a node
is (1) the past error, (2) the error of this
instantiation, and (3) the future error.
Past error consists of the error of the
partial mapping defined by the ancestors
of this node in the tree. This error is the
sum of Ew(h|f) for all f €T involving
past units. Error of instantiation is the
error induced by the assignment of label [
to unit u.

In a simple backtracking tree search,
the error of instantiation is computed at
the time [ is assigned to u. In a tree
search with forward checking, an error
table keeps track of how much error the
assignment of any label to an uninstanti-
ated unit will generate. This is accom-
plished by constructing an updated table
each time an assignment of [’ to u’ is
made and propagating forward an error
to each pair of as-yet-unassigned unit u”
and possible label ["” in that table. The
error propagated is that error that would
be caused by a simultaneous assignment
of u' tol” and u” to 1”.

At any node of the tree, each as-yet-
uninstantiated unit has a label in the error
table with minimal propagated error. The
sum of the minimum error for each such
unit is the future error.

If at any node of the tree, the sum of
the past error, error of instantiation, and
future error is greater than the allowable
threshold, then the assignment at this
node is not made and backtracking oc-
curs. Otherwise, the error of this assign-
ment is propagated forward and the tree
search continues. Details of these are
given below.

The inexact consistent labeling prob-
lem can be solved by a brute force back-
tracking tree search. Before the bottom of
the tree is reached, only some of the units
are labeled, and thus only the error in-
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curred against all units which have al-
ready been assigned labels can be calcu-
lated. Such a labeling is called a partial
labeling; the labeled units are called past
units, and the set of all past units is called
Up. Similarly, the units which have not
been labeled are called future units, and
the set of all future units is called Uf.
Also let T1 be the set of all sets composed
of units which have already been assign-

ed labels, ie. Tl= {{u, u,, ...,
ey lu,, gy, ..., € Up and
{u,, tg,...,u;} €T}). Thus the error for

‘past units, ep, incurred in backtracking is

= X Ew({(uyh(u),..,

eTl

(uk’h(uk))}) (1)
for a partial labeling h. If the error sum
exceeds an error bound eb, the tree search
must either try the next label for the
current unit or if there is no next label, it
must backtrack.

As a simple example, let U=
{1,2,3,4,5}, L= {a,b,c}, T=
(1), (1,2),(L4)), &= ({(1.a)),
(L a)@ b)) (Lb), @b), (L D)
(4, b))}, error constant ec =1/6, and er-
ror bound eb=0.2. In the tree search,
label a is assigned to 1 first. Thus Up =
{1}, TI={{1}}, ep(Up, h)=0 because
{(1,a)} is in R.

Next, label a is assigned to 2 because
backtracking is depth-first. Now Up=
(1,2}, T0=((1}.(L2}). ep(Up,h)=
1/6 because h = {(1,a),(2,a))} is not in
R. Since ep is smaller than eb = 0.2, one
can continue and assign label a to unit 3.
As {1,3}, (2,3} are not in T, T is not
changed and ep(Up, h) is not changed.

Next, label a is assigned to unit 4
which will cause Up = {1,2,3,4}, Tl=
(1), (1,2}.{L 4}, ep(Up, h) = 1/6-+ 1/6
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=1/3) because {(1,a),(4,a)} is not in
R. At this point, ep = 1/3, which is larger
than eb = 0.2, and one cannot continue
with unit 5. Instead, next label b is as-
signed to unit 4. This is the trace for
backtracking.

A technique called backtracking with
forward checking can improve the speed
of tree search. For the previous example,
3 units were assigned labels before a cutoff
happened. Actually, by looking at sets
T, R and doing some calculations
described below, a decision about cutoff
can be made even after the first unit is
assigned a label. Thus the searching is
more efficient. This technique is similar
to the branch and bound technique ex-
cept that a fixed bound value is used.

The speed of tree search can be
improved if one also considers the mini-
mum error that the current labeling must
incur against future units which have not
been assigned labels. Thus the set in T
containing only one future unit is of inter-
est; for a future unit u and label [/, define

{{uy,-.

and n # i implies u, € Up}.

T(u,i,Up)= LuJeT|lu=u

For example, when Up = {1}, h=
((L,a)}, T(2,2(1})= {{1,2}},
T(4,2,{1)) = {{1.4}}.

Using labeling k on all units except u
and assigning label [ to u, the error (epf,
error for past and future units) is

epf(u,l; Up, h)

k
=L X
i=1 (..., u;)

eT(u,i,lUp)
Ew([(“lsk(u1))=--->(ui~~1, h(uf——l))s
(0, 1), (2 1)y (ugs R(w))})

(2)
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In the continuing example, if u=2,
1= a, then epf(2,a,(1},{(1,a)}))=
Ew({(1, a),(2, a)}) = 1/6 because
{(1,a),(2,a)} is not in R.

To be complete, one should also con-
sider the smallest error of the units in the
nodes with higher level numbers in the
tree created by backtracking or the units
other than u in Uf. It is

2 mm epf(u m,Up, h),

veUfmE
v*u

(3)

For the continuing example, when

v=3

min epf(3,m, {1},{(1,a)})=0

mel

because T(3,4,{1}) is always empty.
When v=4

epf(4,a,{1},{(1,a)})

epf(4,b,{1}.{(1,a)})

epf(4,¢,{1}.{(1,a)})

min epf(4,m, {1}, {(1 ,a)})=1/6-

1/
1/
1/

When v =5,

min epf(5,m.{1},{(L,a)})=0

mel

for the same reason as when v = 3. Now
the sum in Eq. (3)is 0 1/6 0=1/6.

For current labeling h, if the summa-
tion of Egs. (1), (2), and (3) exceeds an
error bound for any label [ for the current
unit #, then one needs either try the next
label for the current unit or backtrack.
This is called backtracking tree search
with forward checking. From the above
calculations, for u=2, 1=a, 0+1/6+
1/6=1/3> 02, and one needs to try
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FIGURE 5. Flow directions of streams.

the next label b for current unit 2. Thus,
it is clear that only one node is generated
in the searching tree as opposed to three
nodes in the case of backtracking.
Implementing the model (U, P, L,
T, R, Ew) by using the algorithm of for-
ward checking, the flow directions for the
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three test areas have been deduced. They
are labeled as in Fig. 5. The valley seg-
ments that are used to help make the
decision are also shown in Fig. 5. The
flow directions are correct with respect to
the ground truth.

7. Discussion

In this research, we have described a
set of constraint rules for stream junctions
and applied them to the units detected
from real world imagery to prove the
usefulness of the consistent labeling tech-
nique. Even though the numbers of units
in the test are not large, the mathematical
model of the spatial reasoning model is
precise and useful for many applications.
The reasons that the numbers of units in
the test are not large are:

1. The resolution of the Landsat imag-
ery is low so that few stream seg-
ments can be detected. This will not
be as great a problem as sensors
with higher spatial resolution, such
as Thematic Mapper, become avail-
able.

2. Even if the resolution is improved
and more stream segments can be
detected, most flow directions can
be determined by inspection of the
drainage network. Thus, the only
streams left with unknown flow
directions would be the largest
streams in the imagery and the total
number of units suitable for the con-
sistent labeling problem is very
limited.

Instead, more challenging tasks for the
consistent labeling process can be found
in the domain of pattern recognition such
as classifying ground objects in urban
areas. Hundreds of elements in the unil
constraint set T and unit-label constrain!
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set R can be defined because of the
diversity of ground objects.

The rules in Table 1 can be improved if
we digitize a large set of stream networks
from topographic maps and observe the
junction patterns in these networks,

Appendix: Forward Checking Algorithm

/* ULTAB and MINERR are stacks, one table per level;
CONTROL: = forward;
while CONTROL = forward or some units have been assigned labels
do begin
if all units have a label then CONTROL := back;
if CONTROL = back then back up one level;
U = next unit to try;
CONTROL := back:
while there are labels to try for unit U
do begin
L == next label for U;
PERR = error of partial labeling so far;
BERR := FORER(ULTAB, U,L);
FERR := FUTMIN(future units)
if PERR +BERR + FERR < ¢ then
begin
ERRF := UPDATE(ULTAB, U, L, PERR + BERR);
if UPDATE fails then try next label;
CONTROL := forward;
add (U, L) to the partial labeling;
if all units have labels then stop;
move forward one level;

end
end
end
/*
procedure FUTMIN(future units);
FUTMIN := 0;

for each future unit UF do
FUTMIN := FUTMIN + MINERR(UF)
end FUTMIN

/*
procedure UPDATE(ULTAB, U, L, PASTERR);
UPDATE := 0,

for each future unit UF
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do begin
SMALLERR = 99999.;

for each label LF that is eligible for UF

do begin

if {(U,L),(UF,LF)} is in the unitlabel

constraint relation
then ERR =0
else ERR := WEIGHT(U, UF);
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ULTAB(UF,LF) := ULTAB(UF, LF)+ERR,;

if ULTAB(UF,LF) < SMALLERR

then SMALLERR := ULTAB(UF,LF)

end
UPDATE := UPDATE + SMALLERR

if UPDATE + PASTERR > e then fail return;

MINERR(UF) := SMALLERR

end

end UPDATE

*

In the above algorithm, FORER calculates epf(u,[l; Up, ) of Eq. (2). MINERR
calculate minepf{v, m; Up, h) of Eq. (3). ¢ is the error bound for tree search, and

WEIGHT is the error constant.
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