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Abstract 

This paper presents a statistical estimation from which a new objective function for exterior orientation from line correspondences 
is derived. The objective function is based on the assumption that the underlying noise model for the line correspondences is the Fisher 
distribution. The assumption is appropriate for 3D orientation, is different from the underlying noise models fork pixels positions, 
and allows us to do a consistent estimation of the unknown parameters. The objective function gives two important facts: its 
formulation and concept is different for that of previous work, and it automatically estimates six unknown parameters simul­
taneously. As a result, it provides an optimal solution and better accuracy. We design an experimental protocol to evaluate the 
performance of the new algorithm. The results of each experiment shows that the new algorithm produces answers whose errors are 
10%-20% less than the competing decoupled least squares algorithm. 

Keywords: Exterior orientation; Line-to-line correspondence; Objective functions 

1. Introduction 

The problem of determining the orientation and 
position of an object in a 3D world coordinate system 
relative to a 3D camera coordinate system is equivalent 
to solving the relation between the 3D object features 
and their corresponding perspective projection features. 
It is an important problem both in computer vision and 
in photogrammetry. 

Most methods use point features to obtain the trans­
formation function, which is governing the orientation 
and position of an object [1-8]. Besides point-to-point 
correspondences, line-to-line correspondences can be 
used to obtain the transformation function. Lowe [9], 
Kumar and Hanson [10, 11] and Liu et al. [12] use line­
to-line correspondence to determine a transformation 
function. Related application using line information 
include: estimation of motion and structure [13, 14], 
object recognition [15] and exterior orientation [16]. 

The paper is organized in the following way. We first 
give a review on a traditional least square approach in 
Section 2. Section 3 discusses the statistical estimation of 
unknown parameters of position and orientation of a 
camera. We make the assumption that the underlying 
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noise model is the Fisher distribution [18, 19] for the 
line correspondences based on the observation and 
characteristics of the line correspondences. In Section 4 
we design an experimental protocol to carry out the 
performance characterization of the algorithms. 
Section 5 provides the results and discussion. Finally, 
Section 6 gives summary. Before we go to next section, 
we give a problem statement. 

Problem definition 
Suppose 11, 12, .•. , ln are known n line segments in a 3D 
world coordinate system whose observed randomly 
perturbed 2D perspective projections are l il, l i2, ... , l;n­
The problem of exterior orientation using line cor­
respondences is to determine a transformation function 
that governs the relationship between 11, 12 , .•• , ln and 
ln, 1; 2 , ..• , l;n-

2. Decoupled least square approach 

The decoupled least square approach is proposed in 
Ref. [12]. It decouples the transformation function into a 
rotation matrix and a translation vector which are 
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Fig. I. Interpretation plane passing through the center of perspective, 
the 2D image line, and the 3D line after transformation. 

successively determined to reduce the computational 
complexity. This approach has the advantage of com­
putational efficiency, but sacrifices some numerical 
accuracy due to not estimating six unknown parameters 
simultaneously. 

Fig. 1 shows the camera coordinate system, the 3D line 
after transformation, the center of perspective, and the 
2D image line. As we can see the center of perspectivity, 
the 2D image line which is the perspective projection of 
the 3D line, and 3D line itself are on the same plane 
which is called the interpretation plane. Let i1 be a unit 
normal vector of the interpretation plane. Then iiwill be 
perpendicular to the 3D line. It gives 

i11(Rp + T) = 0 

ar RN = o 
where 

(2.1a) 

(2.1 b) 

is the vector of direction cosines of the 3D line before 
transformation, p is an arbitrary point on the 3D line, R 
is a 3 by 3 orthonormal rotation matrix (i.e. RR 1 =I) 
and T is a translation vector. 

Actually Eq. (2.1a) and Eq. (2.1 b) are not independent 
of each other. We can derive Eq. (2.1b) from Eq. (2.1a). 
In Fig. 1 we let 0 be the origin of the camera coordinate 
system, P; and P~ be any two points on the 3D line 
after transformation and N the direction cosine of the 
3D line. Without noise the vector i1 is perpendicular to 
RN, OP!> OP2, i.e. Eqs. (2.1a) and (2.1b). We can 
represent RN as 

~ o"P;- OP~ 
RN= ~ ~ 

IIOP;- OP~II 

Since i1 and the direction cosines of 3D line are known, 
Eq. (2.1a) is an implicit form for the three unknown 

parameters of R. Similarly, Eq. (2.1 b) is an implicit 
form for the six unknown parameters of Rand T. 

A minimum of three correspondences is required to 
solve the problem for both Eqs. (2.1a) and (2.1 b), because 
two points from each line can be used in Eq. (2.1 b). 

2.1. Estimation of unknown parameters 

When the observation contains noise, Eqs. (2.1a) 
and (2.lb) are no longer satisfied. To infer R and T 
from n noisy observations, the traditional least squares 
approach makes an assumption that the noisy is the 
ideal iif RN; plus additive independent identically 
distributed Gaussian distribution, then it minimizes the 
following error function (objective function): 

n 

F1 = E
1 

E = _2)ar RN;)2 (2.2) 
i=l 

Let 

then R(W) is a nonlinear function ofW. Then, applying a 
linearization procedure, Eq. (2.2) becomes 

FI = Et E = ~ ( ii;*t (R(Wk) + oR~:k) 6.w 

oR(Wk) 6.A.. oR(Wk) A ) R)2 

+ o¢> '~-' + 0/'i: u/'i: , (2.3) 

where 1l1 k is the kth iteration of W. 
Taking a partial derivative of F1 with respect to 6.w, 

6.¢> and 6,t;; in Eq. (2.3) and setting it to zero, we obtain 

(2.4) 

where A is an n x 3 matrix 

( 

•k •k •k) a11 a12 a13 
•k •k •k 

A = a21 af2 a23 

•k •k •k ani an2 an3 

6.W is a 3 x 1 parameter vector 

M~(~) 
B is an n x 1 vector 
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and the elements of A and B are computed as follows: 

Eq. (2.4) can be solved by a singular value decom­
position in the least squares sense. Once the estimated 
rotation matrix R is obtained, we can minimize the 
following error function: 

n 2 

F2 = E
1 

f = L L {a;* 1
(RP{ + T)}

2 

i=l j=l 

Substituting the estimated rotation matrix for the above 
equation and taking derivative of F2 with respect to T, it 
gives 

CT=D 

h C [ * * * * * *] 1 d D [ ~>~ RP 1 w ere = a1a1a2a2 ... anan an = -a, 1-
~* 1 RP2 ~*1 RP 1 ~>~RP 1 ~*1 RP2 ] A . h a, 1 - a2 2 ... - an n - an n . gam, t e 
above equation can be solved by a singular value 
decomposition in the least squares sense. 

2.2. Discussion 

Although the estimation procedure mentioned above 
is commonly used, it has two problems: one is that the 
underlying noise for the objective function is assumed to 
come from a Gaussian distribution, but this is not 
necessarily correct; the other is that the unknown 
parameters are not estimated simultaneously; in other 
word, the estimation is not an optimal one, since the 
error in the rotation matrix calculation is propagated 
to the translation vector calculation. 

3. Statistical estimation 

Statistical estimation to unknown parameters of the 
exterior orientation involves the posterior distribution 
and the prior distribution of the unknown parameters 
and an underlying noise model. Many papers related 
to applications of the new algorithm include: image 
analysis [20, 21], pose estimation [22] and object 
recognition [23]. In this section, we first discuss the 
underlying noise model. Then, we obtain the posterior 
distribution of the unknown parameters. Finally, we 
estimate the unknown parameters by the maximum a 
posterior. 

Fig. 2. Effect of the true unit normal vector a by the noise on the 20 
image line segment. 

3.1. Noise model 

To estimate unknown parameters in a consistent way 
we require an underlying noise model. What is an 
appropriate one for line parameters? The chosen one 
should be as close as reasonably possible to the real 
observed noise. To find out what kind of observation 
noise we may encounter, we represent a 2D line as 

cos~u + sin~v- d = 0 (3.1) 

where dis the perpendicular distance from the line to the 
origin and ~ is the angle between the perpendicular and 
the u-axis. The focal length is set to one. Then, the unit 
normal vector of the interpretation plane is 

( cos~) a= h sin~ 
1 +d2 

d 

(3.2) 

Noise may affect the values of both ~ and d. As a 
result, the observed unit normal vector a• may deviate 
from the unit normal vector a, as shown in Fig. 2, in 
any direction depending on how both ~ and d are 
changed. We can see that the observed unit normal 
vector a• most likely appears in a conical region 

~ 

RN 

Fig. 3. Distribution of the perturbed a is most likely in a cone with the 
true unit normal vector a as the axis. 
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along the true unit normal vector as axis with solid 
angle 88 as shown in Fig. 3, which illustrates the 
observed normal a*, the solid angle, and a 2D line 
in the image plane and its corresponding interpreta­
tion plane. We expect that the probability density is 
high when the solid angle is small and is low when the 
solid angle is large. 

Based on the above discussion, and the nature of a 
unit normal vector which is directional data, we 
make the assumption that the underlying noise 
model is the Fisher distribution for line-to-line 
correspondence. 

The Fisher distribution is one kind of spherical 
distribution. The density function of the Fisher 
distribution with mean direction along an arbitrary 
vector (>., Jl., v) in spherical coordinates is expressed 
as 

(3.3) 

where(/, m, n) is defined on the surface of the sphere with 
unit radius and center at the origin and c(kc) = 
kc/27r(2 sin hkc)· The parameter kc is called as the 
'concentration' parameter. For large kc the distribution 
is clustered around the mean direction. If the vector 
(>., Jl., v) is the polar axis we have 

0 < ¢ < 27r, kc > 0 (3.4) 

Let colatitude angle e and latitude angle ¢ be random 
variables on the surface of the unit sphere and 

( 

l ) ( sine cos ¢) 
m = sinBsin¢ 

n cose 

Because the differential element of integration on the unit 
sphere is sin BdBd¢, we can rewrite the probability 
density function with the differential element for the 
Fisher distribution as follows: 

Pr(e < 81 < e + 88,¢ <¢I < ¢ + 8¢) 

Taking the dOd¢ as the probability measure, the 
probability density for the e and ¢ is 

g(B, ¢) = c(kc)ek,cosO sinO, 

0 < e < 7r, 0 < ¢ < 27r, kc > 0 (3.5) 

The density function described by the above equation for 
different values of kc is shown in Fig. 4. 

.~ 

40.0 
:\ 
i 1 
! \ 

\ -- k-.lOO 

! ke500 
JO.O ! 

! k=tOOO 

l k-5000 
i 
\ 

20.0 I 

tO.O 

0.0 L_ _ ___:.. __ ...::t::.-=-.;:=-..1.---'-----' 
0.00 0.10 0.20 

thetA! 11 "'diana 

Fig. 4. The probability density of () for the Fisher distribution for 
k, = 300, 500, 1000 and 5000. 

3.2. Posterior distribution 

In this subsection we derive a posterior distribution for 
the unknown parameters. Let 

w 

¢ 

k 
.P= 

tx 

ty 

tz 

be the unknown parameter vector. Now, given the 
observations {atli= 1,2, ... ,n}, whose relation with 
2D lines are expressed in Eq. (3.1), and the 3D lines 
{l;li = 1,2, ... ,n}. We wish to find the most probable 
value of .P, 

P( <Plat, a2*, ... , a;, /1 ,/2, ... , ln) 

P(at,a2*, ... ,an*I.P,lh/2, ... ,ln)P(.P,IJ,l2, ... ,In) 
P( at, a2*, ... , an•, /1, /2, •.. , ln) 

Because ats are conditionally independent on .P and 
l[ s, and .P is also conditionally independent on l[ s, we 
have 

(3.6) 

where P( .P) is the prior distribution. Though the 
calculation of the exact value is very complicated, it is 
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a constant which does not depend on II>. Thus we may 
rewrite equation (3.6) as 

P(ll>la'j, liz*, ... , lin*, 1,, lz, ... , ln) = c [If P(a'/111>, /;)] P(ll>) 

where c is the constant. 

3.3. Estimating the unknown parameter 

After the posterior distribution obtained, we want to 
choose II> to maximize the distribution, i.e. maximize a 
posterior, 

Maximize P( ~~>I lit, liz*, ... , an*, l,, lz, ... , ln)P( II>) (3. 7) 

or 

II P(at 1~~>, t,.)P( ~~>) (3.8) 

As stated earlier, our underlying noise model is the 
Fisher distribution. Therefore, 

P(a'/lll>, l;) = c(kc)ek,cosbO;, i = 1, 2, ... , n 

0 < {j()i < 1r,O < IJ> < 21r,kc > 0 (3.9) 

Using the relationships of trigonometric functions, Eq. 
(3.9) becomes 

P(a'/lll>,l;) = c(kc)ek,(l-Zsin2~l, 

0 < {j()i < 1r,O < cjJ < 21r,kc > 0 

From Fig. 3 we have 

. 80,. 1 11-* -II sm 2 = 2 a,. -a 

Substituting Eq. (3.11) into Eq. (3.10), it becomes 

P(a'/111>, l;) = c(kc)ek,(l-!115;'-5;112) 

Now we can rewrite Eq. (3.8) as 

II P(a'/lll>,l,.)P(Il>) =II c(kc)ek,(l-!115;'-5;112)p(IJ>) 
i i 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

Upon taking logarithms of the above equation there 
results 

n 

ln II P(a'/lll>,l;) = L 
i=l 

(3.14) 

Since the prior distribution plays an important role in 
the estimation, we would like to give a reasonable 
assumption. In the exterior orientation problem the 
domain of unknown parameter vector, II> is in 

[0, 21r] x [0, 21r] x [0, 1r] x R 3
• Usually we translate the 

object within a finite space. Hence, we can assume that 
the domain of II> is in [0, 21r] x [0, 21r] x [0, 1r] x [-x, x] x 
[-y,y] x [-z,z]; here x, y and z are arbitrary values. 
Without any preference, II> should be uniformly 
distributed over the domain. Hence, we can always 
assume the prior distribution P( II>) is a constant. Thus, 
maximizing Eq. (3.14) is equivalent to determining II> to 
minimize 

ti 115/- a,.(~~>)llz 
i=l 

(3.15) 

Eq. (3.15) is quite different from Eq. (2.2) both in 
concept and formula. The object function in Eq. (2.2) 
minimizes the error of the dot product between the 
observed unit normal vector and the direction cosines 
of 3D line. However, the objective function in Eq. (3.15) 
is to minimize the norm distance between the observed 
unit normal vector and the true unit normal vector of the 
plane by which the 3D line lies. The objective function 
used in Eq. (2.2) just considers the rotation parameters 
only, and cannot give an optimal solution. On the 
contrary, the objective function in Eq. (3.15) solves the 
six parameters simultaneously and will give a global 
optimal solution. 

To obtain the maximum likelihood estimation, we 
take the partial derivative of Eq. (3.15) with respect to 
II>. This results in 

n 3 k .• . oai L L ; (a( - a() oil> = 0 
z=l J=l 

(3.16) 

where a( is the jth component of a,. and is a function of 
II>. We again apply a linearization procedure to linearize 
a( ( IJ>h +Doll>) and omit the higher order terms; we obtain 

n 3 k L L; (a('- a((ll>h)- a((~~>htD-~~>)a/(ll>h)' = 0 
i=l }=! 

(3.17) 

where h denotes the hth iteration. 
In matrix notation, Eq. (3.17) can be rewritten as 

(3.18) 

where M is a 3n by 6 matrix and E is a 3n by 1 matrix, 
and each of the elements in two matrices is represented as 
follows: 

oal(<J>h) oal(<J>h) oal(<J>h) oal(<J>h) oal(<J>h) oal(<J>h) 
~ ~ il¢ Olx ~ Olz 

oai(<J>h) oai(<J>h) oai(<J>h) oai(<J>h) oai(<J>h) oai(<J>h) 

M= ~ or;. ~ Olx illy Olz 

oa~(<J>h) oa~(<J>h) oa~(<J>h) oa~(<J>h) oa~(<J>h) oa~(<J>h) 
ow or;. il¢ Olx ilty 015 
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E= 

I' I a1 -a1 
2' 2 a1 -a1 
3' 3 a1 -a1 
I' I 

a2 - a2 

We calculate the incremental value ~1>, and update 
cph+ 1 = cph + ~1> until the criterion is satisfied. 

4. Experimental protocol 

4.1. Generation of simulated data 

To evaluate the algorithms, we arbitrarily generate the 
corresponding 30 and 20 line segments by giving 
segment midpoints, orientations and lengths uniformly 
over the image. If the length of each image side is s, the 
lengths are uniform over the range [s/50,s/10]. The 
orientation is uniform over the range [0, 21r]. 

Each of the line segments backprojects to an infinite 
triangle in 30. To determine the corresponding 30 line 
segment, we backproject the end points of image line 
segment. We randomly choose a magnitude between 30 
and 70. The end point of the 30 line is obtained by 
multiplying the unit vector that is passing the center of 
perspectivity and the end point of image line segment by 
the magnitude. The focal length is taken to be one. Two 
end points determine the 30 line segment in the camera 
coordinates. To determine the line segments in the 30 
object coordinate system, we generate a random rotation 
and translation (6 degrees of freedom). The range of ci> is 
in [15°, 45°] X [30°, 60°] X [45°, 75°] X [-20, 20] X 

[-20, 20] x [-20, 20] for the simulated data. The unit for 
the translation vector is the same as focal length. Then, we 
use the ci> to transform the 30 lines from the 30 camera 
coordinate system to the world coordinate system. 

The noise is generated by using the transformation 
method [24] to obtain the Fisher distribution from a 
uniform distribution in [0,1]. We verify the correctness 
of the noise generator by plotting the probability density 
of the 100,000 generated data of(} for different kc from the 
noise generator. The density of the simulated data, which is 
almost the replication of the theoretical density in Fig. 4, is 
shown in Fig. 5. The quantitative test gives the same result. 

The procedure for the data generation is: 

1. Generate corresponding image and world line segments. 
2. Add noise to the image lip.e segments by adding a 

small perturbation to the true unit normal vector. 

4.2. Performance characterization 

To evaluate the performance of the least squares 

-- k-300 

JO.O 
••••••••• 1<-500 

----- katOOO 

--------- k-5000 

20.0 

~oL---~----~--~~~~----~--~ 
~00 ~to ~20 

lheta lr1 radlono 

Fig. 5. The probability density of generated data of e for the Fisher 
distribution for kc = 300, 500, 1000 and 5000. 

solution and our algorithm, we run one thousand trials 
based on the two controlled parameters as follows: 

1. The number of corresponding line pairs n. The 
number n is assigned values of 3, 6, 10, 15 and 30. 

2. The concentration parameter kc. The level of kc is 
changed based on 100,000, 50,000, 10,000, 5000, 
1000, 500 and 300. The larger value of kc corresponds 
to the smaller noise level. The correspondences 
between the value of kc and the estimated mean and 
variance have been shown in Table 1. 

We define the error for the six transformation 
parameters of ci> as follows: 

errorw = min{27r x n + (W- w)l: n E Z} 

errorq, = min{27r x n + (<}- ¢)1: n E Z} 

errork = min{27r x n + (k- K)l: n E Z} 

errorlx = lix- txl 

error1y = [iy- ty[ 

error1, = liz- tzl 

and the average absolute error is defined as follows. 

avg_ error _rot=~ (error w + error;p +error ,.J 
avg_error _t = ~ (error1, + error1y + error1J 

Table I 
The correspondences between the value of kc and the estimated mean 
and variance value of e in degrees 

Mean 
Variance 

300 

4.16 
4.74 

500 

3.21 
2.85 

1000 5000 

2.28 
1.42 

1.016 
0.285 

10,000 

0.720 
0.141 

50,000 

0.322 
0.028 
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The initial guess is generated within 20% of the true 
value. For example, the value of w is generated from 
[15°,45°] and the initial value, for w; is generated from 
a uniform distribution satisfying lw;- wl < 0.2lwl. 

The estimation procedures are as follows. 

1. Get the initial value for ci>. 
2. Use Eq. (3.18). 
3. Calculate the incremental ~ci> and then update the <T> . 

4. Use the following performance criteria. 
Let <T> be an estimate for the unknown parameters. We 
assume that the user desires that l~ci>I < t 1, be a fixed 
threshold. For instance, t 1 = 10- 7

. Sometimes, due 
to the noise, the algorithm may not able to con­
verge to the required accuracy t 1 after 25 iterations. 
Experiments show that if there is convergence, the 
magnitude of ~ci> is usually less than 10- 7 after five 
iterations. When the magnitude of ~ci> fails to reach 
t 1, the error is usually very large in estimation. Hence, 
we define a rejection criterion by checking the 
magnitude of ~ci> at the maximum number of 
iterations allowed. If the magnitude of ~ci> is still 
larger than td = 10- 4 > t 1 after 25 iterations, it will 
indicate that a large error is detected and the trial is 
rejected. 

The same procedure is applied to Eq. (2.4) to obtain w 
and T of the decoupled least squares approach. 

Sometimes, the incremental value of ~ci> may be too 
big and overshoot, because of the translation vector · 
component. To solve this problem we may multiply 
~ci> by a constant which is determined by searching a 
value in [0, 1] to minimize the objective function for 
each iteration. The search steps are ten, i.e. the step 
value is 0.1. By doing this it can prevent the divergence 
due to the overshoot of the translation vector com­
ponent. In the decoupled least squares algorithm, the 
Euler angie in the rotation matrix is a periodical variable 
and is solved first. Therefore, the overshoot doesn't cause 
the problem. 

Fig. 6. The hallway image. The origin of the image plane is assumed to 
be at (242, 256). 

Fig. 7. The segmentation results of the hallway image. 

4.3. Real image experiment 

We apply the new algorithm to the hallway image 
obtained from the image library of the VISIONS group 
at the University of Massachusetts. The image and 
model parameters are described in [10]. We quote as 
follows. "The 3D model was built by measuring distance 
with a tape measure and is accurate to about 0.1 feet. The 
image was acquired using a SONY B/W camera 
mounted on a Denning Mobil Robotics vehicle tethered 
to GOULD frame grabber. 512 by 484 images are 
obtained, with a field of view of 24.0 degree by 23.0 
degree." The focal length can be calculated from the 
field of view. One of the images used in this experiment 
is shown in Fig. 6. The segmentation image is shown in 
Fig. 7. We take nine line segments for the exterior 
orientation is shown in Fig. 8. 

5. Results and discussions 

In the first experiment we study the numerical stability 
of the new algorithm and the decoupled least squares 

Fig. 8. The line segments used for the exterior orientation. 
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Table 2 
The results of unperturbed observation with initial guess within 20% of the true value. The number of correspondences N changes based on 6, I 0, 15 
and 30 

N Method Mean absolute error 

w <I> K. 

6 LS 0.0 0.0 0.0 
New 0.0 0.0 0.0 

10 LS 0.0 0.0 0.0 
New 0.0 0.0 0.0 

15 LS 0.0 0.0 0.0 
New 0.0 0.0 0.0 

30 LS 0.0 0.0 0.0 
New 0.0 0.0 0.0 

algorithm by applying both algorithms on the 
unperturbed observations. The initial guess is within 
20% of the true value. The number of line cor­
respondences is controlled to take one of the value 
based on 6, 10, 156 and 30. The results of the study are 
shown in Table 2. The computation resolution is 12 
digits, that means the error for <I> in the new algorithm 
and W' (three Euler angles) in the decoupled least squares 
algorithm is less than 10-12

. However, the unnoticeable 
error in the Euler angles is propagated to the translation 
vector when the decoupled calculation is used. As a 
result, all three components in the translation vector 
have an error around 10-6

. This explains why we should 
estimate the six parameters simultaneously in order to 
obtain the optimal solution.· 

Because the initial guess usually affects the con­
vergence of optimization, we study how the initial 
guess affects on both algorithms in the second 
experiment. In the experiment we use six line cor­
respondences and kc = 1000. The initial guess can be 
within 10%, 15%, 20% and 30% of the true values. 
The results are shown in Fig. 9. The results show that 
both the new algorithm and the decoupled least squares 
algorithm are not sensitive to the initial guess at that 
range. A slight change in rotation angles of the new 
algorithm may result from the local minima. Generally 
speaking, the decoupled least square approach is more 
stable to large initial guess errors due to the fact that its 
rotation parameters are periodical variables. The mean 
absolute error of the avg_error _rot for the new and the 
decoupled least squares approaches are 0.039 and 0.042 
radians and that of avg_error _rot for the new and the 
decoupled least squares approaches are 2.161 and 2.516. 
In accuracy, the new algorithm is about 8% better for the 
rotation parameters and 16.4% better for the translation 
vector than the decoupled least squares approach. 

In the third experiment we study how the number 
of line correspondences affects the accuracy of the 
estimation. The concentration parameter kc is fixed 
at 1000 and the initial guess is within 20% of the 

No. of 
lx ly lz Rejects 

6.8 X 10-7 1.6 X 10-6 6.1 X 10-7 0 
0.0 0.0 0.0 0 

7.2 X 10-7 J.3 X 10-6 2.1 X 10-7 0 
0.0 0.0 0.0 0 

1.2 X 10-6 2.1 X 10-6 2.8 X 10-7 0 
0.0 0.0 0.0 0 

7.1 X 10-7 J.2 X 10-6 2.9 X 10-7 0 
0.0 0.0 0.0 0 

true value. The number of line correspondences can 
be 6, 10, 20 and 30. As shown in Fig. 10, the 
increase of the number of line correspondences surely 
improves the estimation results for both techniques. 
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Fig. 9. The study of the initial guess affects on the estimation. The 
number of corresponding lines is six and kc = 1000. ---- new; 
-- least squares. 
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Fig. 10. The study of the number of corresponding lines affects on the 
estimation. The initial guess is within 20% of the true value and 
kc = 1000. ---- new; -- least squares. 

The mean absolute error of translation vector is inversely 
proportional to the number of line correspondences. The 
mean absolute error of the three Euler angles is improved 
too. 

Table 3 

Fig. II. The backprojection of the 30 object model lines onto the 20 
image. 

Sometimes the mean absolute error of thousand trials 
may not give a fair look at the algorithms, because a few 
large error may bring up the mean. Hence, we show in 
brief from the histogram of the average absolute error of 
rotation components and the average absolute error of 
the translation for the six line correspondences and 
kc = 50000 in Table 3. 

In the hallway image we list the results in Table 4. The 
results show that the estimation is very close to the 
ground truth in x and z components and about 7% 
difference in they component. The error in they com­
ponent may be caused by the bias along the horizontal 
axis of the image center. Since the true rotation is 
unknown, we backproject the 3D model lines onto the 
image in Fig. 6 by the estimated transformation. The 
result is shown in Fig. 11. 

Though the new algorithm is better in accuracy, 
it pays a price in computing cost due to more 

The mean absolute error histogram of the three Euler angles and the translation vector 

Mean absolute error < 0.001 [0.001, 0.01) [0.01, 0.1) [0.1, I) [1, 10) 

Euler angler LS 25 845 135 0 0 
B 32 871 97 0 0 

Translation vector LS 0 0 59 918 23 
B 0 2 100 881 17 

Table 4 
The estimation of six unknown parameters and the ground truth for the hallway image. NA means that data are not available. The translation x 
direction is parallel to hallway, they direction is the horizontal direction, and the z-direction is the vertical direction 

Parameter 

True 
Estimation 

w 

NA 
0.00318 

NA 
0.01207 

NA 
-0.01047 

l x (ft.) 

34.792 
34.533 

ly (ft.) 

4.033 
3.740 

t, (ft.) 

3.6 
3.545 
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complicated derivation of the unit normal vector a. 
However, the number of iterations is about the same 
for both methods. More detailed results can be found 
in Ref. [25]. 

6. Summary 

We conclude this paper by summarizing the results. We 
have developed a new algorithm for statistical estimation 
to estimate six unknown parameters simultaneously 
from which the optimal solution is achieved. The 
experiments verify that the new algorithm is better than 
the decoupled least squares approach in two aspects. 
First, the new algorithm gives exact solution in all six 
parameters when there is no noise. However, the 
decoupled least squares algorithm only gives the exact 
solution in three Euler angles only. This is because the 
numerical error in the rotation calculation propagates to 
the translation calculation. Second, the new algorithm 
gives about 10-20% better in accuracy than the least 
squares approach in all experiments. 
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