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Abstract—A brief review of ellipsoidally symmetric density functions is done. For the case of mono-
tonic functional forms and distributions with common covariance matrices, a lower bound on the
probability of correct classification is calculated in terms of either an incomplete beta or gamma
integral, for a class of common functional forms. The lower bound is a monotonically increasing
{unction of the Mahalanobis distance for all monotonic ellipsoidally symmetric forms.
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INTRODUCTION

Parametric decision rules based on a multivariate
normal density function have been most popular in
pattern recognition. It is well known that the normal
assumption leads to quadratic discriminant functions.
Also known is the fact that quadratic discriminant
functions are optimal for the general class of ellipsoi-
dally symmetric density functions.”” In this note, we
review the case of common covariance matrices and
linear discriminant functions."*” We briefly discuss
the class of ellipsoidally symmetric density functions
and provide a lower bound for the correct identifi-
cation probability. This lower bound is expressible
in terms of the incomplete beta or gamma integral
for a common class of monotonic ellipsoidally sym-
metric forms.

Our first task is to define an ellipsoidally symmetric
density function. Let f be a non-negative real-valued
function defined on R, a subset of (0, 0). Let N be
the dimension of the Euclidean space on which we
wish to define an ellipsoidally symmetric density func-
tion. We assume that f satisfies '

J. x"f(x)dx < wo,m < N + 1.
xeR

Let 4 be an NxN symmetric positive definite matrix
and x an Nx! vector. An ellipsoidally symmetric func-
tion with zero mean is any function of the form

J/x Ax).
Proper normalization of any function of this form
determines an ellipsoidally symmetric density function.

NORMALIZATION CONSTANT
The normalization constant ¢ is given by

o f’__f_'ff(\’ xAx)dx, ... dxy

) :4 xeR
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Statistical pattern dis-

To determine the value of the integral we will first
make a transformation which rotates and then scales.
Let T be an orthonormal matrix satisfying

T'AT = D,

where D is a diagonal matrix with no non-positive
diagonal entries. We make the change of variables

x=TDh g

The Jacobian of this transformation is | 4|~ /? which
is positive since A is positive definite. Hence,

f...ff(\, X' Ax)dxy,...,dxy = |A|71?

5 vAxeR
f...ff(z’z)dzl ... dzy.

\ Z7eR

The next step is to change to an N-dimensional
spherical coordinate system. Let

z; =rcosficosf,...cosly_,cosby_,

z; =rcosf;cosf;,...cos0y_;sinby_,

z3 =rcost); cosf,...cosly_5sinfy._,
z;=7rcosb...cosfy_;sinOy_;.,
Zy = rsin 6.

The Jacobian of this transformation is

(=DM cos ¥~ 2cos® 2 0,...cos0y_,.
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Hence,

J-...j_f(\ AR %o iy

XAxeR

2 w2 2n
- rAlillz\I' J o hr J‘
reR v, =(-m)/2 vly-2=(—m)/2 vlix-,=0

x f(r¥ Vcos" 20, cosV 20, .cosly_,

x drdf, ...doy_,.

N

Since

n+1
r( . )r&)
j cos"0df =
/]

=(—-n)2 I‘(” + 2) ’
2

the 8 integrals are readily evaluated and there results

)2

12 N
)

For example, for [ functions of the form ¢
and (1 + »?)™™ defined on the non-negative real line,
we obtain the well known forms for the multivariate
normal and the multivariate Pearson Type VII:

j"'ff(\'mmxi...dxﬁ=

v XAxeR

xJ;ER 7L fir)dr.

flw) = e implies  f(,,/X'Ax)
{

= ; —x'Ax/2 1
(zn)NQ'A'l—lzZe ( )
Sy = (1 +u*)™™ implies f(y x"Ax)
= 1/2 N
A I—(ML(I + X'Ax)"™ m > T (2)

Ni2 _ N
s F(n 5

COVARIANCE MATRIX

The covariance matrix is also easily calculated for
the ellipsoidally symmetric density function and we
obtain the not so surprising result that the covariance
matrix ¥ is proportional to 4~ '. Assuming the mean
to be zero. we have

$ = E[x¥x] = cf . .fx'xj'(\ X Ax)dx,,...,dxy,
x'AER

where ¢ is the normalizing constant. Letting T be an
orthonormal matrix satisfying

T'AT = D,

where D is a diagonal matrix, we may use the trans-
formation
x=TD 2;

to simplify the integral.

—u2/2

=clA|""rTD 12 (...
3
C TR

5% 2, Z2)dzy,....dzyD 12T

Notice that the (i, /)" term of the matrix defined by
the integral is 0.

J‘r...Jv:,-zjf(\ ':_':)dzl wnnllEy= 0.

\/T'zeR

This happens because the integration is carried out
for an odd [unction over even limits. The diagonal
terms of the matrix defined by the integral are all
equal from symmetry consideration. We can evaluate

‘J-.;.jz-zf(\_ ;} dz;...dzy,
\ ZeeR

by changing to spherical coordinates. After evaluating
the integrals we find

f. ..f:?f(\ Z2)dzy .. doy

w-2'2eR

27,[&:2

2 [
Nf(—) reR
2

Substituting this back in and using the correct value
for the normalizing constant ¢, there results

A1 ML f(rydr

$ - reR
N j ’J\'— l}z()) dr
reR

For example for f functions of the form e~ and
(1 + u?*)~™, defined on the non-negative real line, we
obtain the well known relation between ¥ and A for
the multivariate normal and multivariate Pearson
Type VII density functions:

(1) f(w)=e"*? implies % =4""
(2) f(w) = (1 + «*)™™ implies

1
= ——x
= —
(H! 2 )

Table 1 lists the common forms for f functions, their
normalizing constants and the relationship between
Aand X.

w2

A L m i + 1.
2

CORRECT CLASSIFICATION BOUND

The general ellipsoidally symmetric density function
with mean u can be written as

[A]~17? r(%) 7
s

(x — ) A(x — u).
202 [ A f ) dr
reR
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Table 1. Lists normalizing constants and covariance matrices for common ellipsoidally symmetric forms

Ellipsoidally symmetric functional forms cf(x'4x)

Functional Form f

Normalizing constant ¢

Relationship between 2 and 4

()

[ rose

f(u), ueR c= |42 A= 31
2(;:)”2f PN ) dr Nf =L
reR FER
—u?'2 5 1 152 -
¢ ,u>0 C=(ZT)NEJA' s
4 , [
(1+u)™ u>0o, c=——£ﬂ)—\Ar‘»2 o g
Ni2 N 2m— N =2
mz N2+ 1 e F ==
N
) S iy
wle vy 0 =l |4} A=( m )( +m - }3:_1
Amy* 2NN +m—1) N
N
F(m+5+]) 1
1= wym u? < 1 ~ % & ] e R T
( u*Y" u ¢ 2 [im + 1) [A| 2m+N+]$

Let u; and u, be the mean vectors for categories
I and 2 and let 4; and A, be positive definite
matrices proportional to the inverse covariance matrix
for categories 1 and 2. If f is a monotonically de-
creasing function and the covariance matrices for
categories 1 and 2 have the same determinant, then a
maximum likelihood rule will determine a quadratic
discriminant function and assign the vector x to
category 1 when

(¥ = uy) Ap(x — 1)

(Y*ux Ax —uy)

Anderson and Bahadur® have discussed error pro-
babilities in this case for the normal distribution.

This inequality can be further simplified when the
categories share a common covariance matrix. The
decision region R, containing all vectors assigned to
category 1 is then defined by

R, = {x|(u2 - ul)’A(.\c — Hl%) < 0}.

The discriminant function has changed from quadratic
to linear. Anderson'" discusses this case for a normal
distribution assumption and determined the correct
classification probability for category 1 to be

12rp 1
f —
—x N 2m

ré = (uy — uy ) Az — uy).

i

where

This result follows from the fact that if x has a
N(u,,A™") distribution, then (u, — u;)Ax has a
N((u, —~ ul)Aul.(u2 —uy Y A(u, — uy)) distribution.
Integration of this density function over the region R,
yields the correct classification probability.

For the general ellipsoidally symmetric density
function it is easy to calculate the mean and variance
of (u; — uy)Ax. But the distribution for (u, — u, )Ax
is not normal and, in general, may be difficult to
determine. It is for this general case that we compute
a lower bound on the probability of correct identi-
fication.

Let T be an orthonormal matrix satisfying
T'AT = D, where D is a diagonal matrix. The region
R, can be rewritten as

R, = {xl(u2 —up Y Ax < (uy — ul)’A(u)}.

2

The fraction p, of category 1 correctly identified
by the maximum likelihood rule can be computed as

e[ [OE—aTAR T dx sy,
xR,

where c is the normalizing constant. Making the trans-
formation y = D'? T"(x — u,), there results

6

2(7[)N‘ZJ LG Ar v+ T er,
reR

o=

x SV dy; ... dyy
r(N)
=2(7r]’m'[: B N1 () diuJ: u!

x f(yy)dy;...dyy,
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where

Uy, — U
= DT 2 —).
. (%3

Now by the Schwarz inequality,
[wyl? < wwy'y.

Hence {y|w'y <0} L {y[y'y < ww} < {ylw'y < ww}.

By integrating the non-negative function over two

smaller non-overlapping areas consisting of a half
space and half of an ellipsoid, we can obtain a lower

bound for p; .
G)
r

2
2(E)N12 f
reR

\71+1
P1 3

J -]

L e dr e

x £y dy; ... dyy.

This integral is easier to evaluate because instead of
having to integrate an ellipsoidally symmetric function
over all points to one side of a hyperplane, we just
have to integrate over an ellipsoid. The integration
can be done by a transformation to a spherical co-
ordinate system.

r N
1 2
2 -
2 [ P
reR
2 /2
er"lf(r)drj f
Or=(—n)/2 by _2=(-n)/2

2n
Xf
[}

N-1=0

X 691...dGN,1,

(ro}/2

cos® 20, cosN38,...cosly_,

where

rg = (uy — ug ) Ay — uy).

The cosine integrals are readily evaluated since

n+1 1
(3G
f cos§df = ———~L
0=(=m)/2 il %
2

Hence, there results

1 1 1
P1 :\"*+24L—
f A f(r)dr
reR

(ro)/2

Al d

Since the lower bound is a monotonically increasing
function of ry, the Mahalanobis distance, we have
shown that ro, can be the basis of a good feature
selection procedure in the general ellipsoidally sym-
metric case.

For the special case of f(u) = e~"% and where the
domain of f is taken to be the non-negative numbers,

(ro)/2
1 f }.N—l e—l;‘]‘.r2 dr

R =

1
2' 2 J‘mf\' -1 ,=1;2r2 dr 2

€
0

1 1

r3/8
Jr._—
L
)

Ni2-1t

e "du.

Recognizing the integral as the incomplete gamma

integral,
R A,
Py + EP (A.\' >

where y% is a chi-squared random variable with N
degrees of freedom. Pearson and Hartley® is one
place where tables may be found for this probability
distribution. Wilson and Hilferty*® provide the follow-
ing approximation in terms of the normal integral.

e o)1+

where
o= °

N 2

For the special case f{u) = (1 + «?)™™ and where
the domain of f is taken to be the non-negative

numbers,
nld
1 J i

_1
P23 ; o
f N 1(1+f ] m qp
0

r%l4+r%
N'2-1 1
1 fo “ (
2 N
F(E) I'(m)
r N+
—+m
2

The integral is the incomplete beta integral. By
successive integration by parts we can establish the
correspondence between it and the binomial distri-
bution. Hence,

— yynN2-lqy

-+

Tables for the binomial distribution are numerous.
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Table 2. Lists the relationship between some common functional forms for ellipsoidally symmetric functions and a
lower bound for the probability of correct classification. rj = (uy — u; ) A(u; — uy)

Function form of f

Lower bound of probability of correct classification

f{u), ueR

(1 +u?y u>=0 I

P>

1

roi2
j o () dr
2

P
‘f P=LE)dr
reR

r3/8 yNi2=1 e gy
lf

rgfd+r} )
f aN,Z*l (l _ u)m*N\.‘Z*l d.i}i
1 1 0

~+
7 g N
=\
(2) (m)
Af
re2
{N‘+k—1)—1 _,—u
‘1+1J‘0 U e “du
b T TN+ k=)

w54
J FalCIat N § w)m* 0=1 g
1 1Jo

— F 7
(E)F(m =+ 1)

+
22
I"N+ +1
—+m
2

The Harvard University Press in 1955 printed a
volume called Tables of the Cumulative Binomial
Probability Distribution. Bahadur® obtained the
following bounds for the cumulative distribution of a
random variable x having the binomial distribution
with parameter (N, p).

1+Nm—m-1u—mm+n
(k—Np?| k+1—(N+1p
Px>k _ (A-pk+1

TN T+ 1) —(N+DP
(Iz)p“u—p)“’-* FEL =R

Tables for the incomplete beta function itself can be
found in Pearson and Hartley.®

Table 2 summarizes the relationship between com-
mon functional forms for ellipsoidally symmetric
functions and lower bounds on the probability of
correct classification. Notice that for these common
forms, the lower bounds can be expressed either in
terms of the incomplete gamma integral or the
incomplete beta integral.

CONCLUSION

We have reviewed the ellipsoidally symmetric
density function. We have indicated that when the

functional forms on which they are based are mono-
ionic and when the distributions have covariance
matrix with same determinant then the quadratic form
is the optimal discriminant function. In case the
covariance matrices are the same, the optimal discrimi-
nant function becomes a linear one. For this case
we computed a lower bound on the probability of
correct identification. For all ellipsoidally symmetric
forms this bound is a monotically increasing function
of the Mahalanobis distance between the distributions.
For a common class of functional forms the bound
is expressible as an incomplete beta or gamma
integral.
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