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The Discrimination of Winter Wheat
Using a Growth-State Signature

C. A. HLAVKA, R. M. HARALICK*, S. M. CARLYLE, AND R. YOKOYAMA!
Department of Electrical Engineering, University of Kansas, Lawrence, Kansas 66045

In this paper, we describe a multitemporal classification procedure for erops in Landsat scenes. The method involves
the creation of crop signatures which characterize multispectral observations as functions of phenological growth
states. In this approach, crop spectral reflectance is modeled explicitly as a function of maturity rather than a
function of date. This means that instead of stacking spectral vectors of one observation on another, as is usually done
for multitemporal data, we establish for each possible crop category a correspondence of time to growth state which
minimizes the difference between the given multispectral multitemporal vector and the category mean vector
indexed by growth state. The results of applying it to winter wheat show that the method is capable of discrimination
with about the same degree of accuracy as more traditional multitemporal classifiers. It shows some potential to label

degree of maturity of the crop without crop condition information in the training set.

0.0 Literature Review: The Use of
Landsat Multitemporal Data in
Automatic Vegetation Mapping

The use of Landsat multitemporal data
for classification of vegetation is a recent
technique made possible by the capabil-
ity for doing accurate registration of data
from two or more observations of the
same area. Through the use of multitem-
poral data, it may be possible to produce
very accurate vegetation maps and crop
acreage estimates. The reasons this in-
crease in information could increase
classification accuracy are:

(1) Different sets of classes may be

separable at different times of the

year.

(2) The measurements between classes

may be more easily separable in a

higher dimensional measure space.
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This effect is due to the correlation
between measurements at different
times for the same class.

Classification of water, shrubs, and
trees in the Great Dismal Swamp using a
winter Landsat scene and a spring
Landsat scene corresponded well with a
vegetation map made from aerial in-
frared photographs (Gammon and
Carter, 1976). In the winter scene, conif-
erous vegetation and standing water
were spectrally distinct and therefore
separable, whereas in the spring scene,
the classes of deciduous vegetation were
separable.

Other investigators have experimented
with classification of crop and forest land
(Von Steen and Wigton, 1976; Megier,
1977) and have reported increases in
classification accuracy using multitem-
poral Landsat data. Von Steen and Wig-
ton reported an 88% increase in overall
classification accuracy of cotton, corn,
soybeans, and grass over the best single-
date classification accuracy of 50.8%
using three observation dates late in the
growing season.
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Some investigators have noted that the
benefits of multitemporal Landsat data
are dependent upon data acquisition
dates (Landgrebe, 1974; Kalensky and
Scherk, 1975). Landgrebe reported a de-
crease in classification accuracy of corn
and soybeans in Illinois using the best
date/band combinations from three ob-
servations: August 9, September 12, and
October 2. However, classification using
spectral data from September 12 and Oc-
tober 2, late season, and therefore, non-
optimal observation dates, was better
than classification using data from either
of these dates alone. Similarly, Kalensky
and Scherk noted that classification ac-
curacy of forest maps was not improved
significantly by multitemporal classifica-
tion, but was consistently close to the
best observation date classification. It
seems then that higher dimensionality of
multitemporal information can be used to
achieve good classification of vegetation
when optimal observation dates are not
available, such as when an agricultural
scene is obscured by cloud cover on mid-
season dates of Landsat overpasses.

Most investigators have used maximum
likelihood supervised discrimination, with
the assumption that the measurement
vectors from each class of data have a
Gaussian distribution. In the simplest
case, the covariance for each vegetation
class is assumed to be the same and the
maximum likelihood rule assigns
measurements to the class whose mean
measurement is nearest, If the a priori
probability of each class is assumed to be
the same, the measure of “nearness’” is
the Mahalanobis distance,

(x—p) 2~ H(x— ),
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where

x = measurement to be classified,
p1; =mean of the ith category,

> =the covariance matrix.

Multitemporal data has been used in the
application of nonparametric classifica-
tion techniques as well. LeToan et al.
(1977) have tested methods of supervised
nonparametric discrimination to estimate
acreages of rice fields. The best rice acre-
age estimate with multitemporal data
used barycentric distance. The bary-
centric distance between two measure-
ments x; = (x5, ...,%y) and x; =
(%91, -+.,%gy) is @ weighted Euclidean dis-
tance,

N
d¥(x, %)= 2 kj(xlj_x2j)2>

i=1

where the weights k; are chosen to opti-
mize the classification of a sample within
the agricultural scene. Kauth et al. (1977)
has developed BLOB, an unsupervised
clustering technique that incorporates
both spatial coordinates and multitem-
poral multispectral Landsat gray tones
into measurement vectors.

Methods of multitemporal discrimina-
tion using crop maturity have been de-
veloped for winter wheat. The usual shift
in the composition of spectral data from
agricultural fields as recorded by Landsat
is the initial shift from brown to green as
the crop emerges and the crop canopy
obscures the underlying soil. The subse-
quent shift is from maximum greenness,
just before the crop heads, to yellow and
brown as the canopy senesces and is
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harvested. This pattern can be observed
on Landsat scenes if one has scenes cor-
responding to the relevant stages in the
crop growth cycle. “Green” measures,
transformations of the four Landsat MSS
bands, have been developed that corre-
late well with the degree of greenness of
a crop (Kanemasu, 1974; Engvall et al.,
1977; Kauth and Thomas, 1976; Nalepka
et al., 1977, Salmon-Drexler, 1977). Some
classification methods have been devel-
oped which take advantage of the fact
that winter wheat goes through the
brown—green—brown cycle before other
crops because it is planted in the fall
(Misra and Wheeler, 1978; Kaneko, 1978;
Engvall et al, 1977; Erickson and
Nalepka, 1976). An interesting property
of these classifiers is that they compare
“oreenness” at different observation
times rather than using the absolute val-
ues of measures at the observation times.
Engvall’s “Delta Classifier” has success-
fully identified wheat proportion over
large areas with very limited ground
truth.

Other multispectral multitemporal
work includes Carlson and Aspiazu
(1975).

Multitemporal Landsat data is a valu-
able resource which is only beginning to
be evaluated and utilized for vegetation
mapping. Further research will certainly
result in improved maps, better acreage
estimates, and advances in the closely
related area of yield estimation.

1.0 Phenological
Discrimination Motivations

A fundamental problem in crop identi-
fication with Landsat data is the number
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of variables, in addition to crop type that
influence observed spectral reflectance
values from a crop canopy. Among these
is the degree of crop maturity, or pheno-
logical stage, which can vary even within
a small area at a given time. For exam-
ple, Nalepka et al. (1977) has observed
significant differences in the phenological
stage of winter wheat between different
fields in Kansas LACIE Intensive Test
Sites and even between areas within the
same field. Furthermore, it is possible for
one field to be at the same stage of
maturity as a neighboring field was 18
days earlier. Differences in growth stage
are particularly significant in the later
parts of the growing season of winter
wheat due to the rapid changes in ap-
pearance that occur with maturation,
cutting, and in some cases, tilling of the
fields.

We have experimented with a crop
discrimination method that takes account
of and utilizes this growth-state factor.
Multitemporal classification is usually
carried out by simply appending the
spectral reflectance vectors observed at
one time with the spectral reflectance
vectors observed at another time. Then
one processes the new data set as if it
were vectors, like a single observation
data set. The usual crop signature is a set
of these multitemporal and multispectral
vectors associated with the crop type.
We use a crop signature which consists
of sets of multispectral vectors associated
with crop-type growth states. Associated
with each crop is an “Mth order signa-
ture” which is a set of (M+1)-tuples
(g:;ay,...,qy) where g is a growth state
for the crop and (ay,...,a,,) is an ordered
set of gray-tone values for a subset of size
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M of the four Landsat MSS bands. We
say that a pixel is of a given crop if: (1)
Each set of observed gray tones on a
particular date is consistent with some
growth stage g described in the signature
of that area, and (2) These gs are con-
sistent with what we know about vegeta-
tion phenology: i.e., growth states at later
dates must be more mature than growth
states at earlier dates. Classification is
done by eliminating categories which do
not satisfy conditions (1) and (2). If more
than one category is left after the process
of elimination, then the pixel is unclassi-
fied.

To illustrate the meaning of this, con-
sider a two-band simple first-order exam-
ple. Suppose observations (ay,a,) and
(ajag) of a small patch of ground are
taken at times f, and £, using the bands
by, by. This can be classified by determin-
ing, for each category c, the first growth
stage g, such that (g;,a;) and (g, @) is in
the signature for ¢. If there is no such
growth state, then the category ¢ is not
consistent with the observed spectral re-
flectance and c is not a possible classifi-
cation for the pixel. If there is not a later
growth stage g;>g, of category c¢ such
that (g, ) and (g, «3) is in the signa-
ture for ¢, then ¢ is not a possible classifi-
cation for the pixel. Also note that we
may impose restrictions on the growth
states because only certain growth states
may be possible at a particular observa-
tion time. In that case, category ¢ will
not be a possible choice, if the only
growth states consistent with the ob-
served spectral reflectances are not possi-
ble for the observation times.

The implementation of this discrimina-
tion method requires two basic steps: (i)
signature creation using a training set
and (ii) classification of the multitemporal
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image using the derived signatures and
crop calendar information. We experi-
mented with using field-average vectors
and vectors of randomly chosen individ-
ual pixels within ground fields for train-
ing data. We have tested the method
using first- and second-order signatures.
The details of implementation in the first
case is described in the following sec-
tions. Haralick et al. (1980) describes
second-and higher-order signatures.

1.1 First-Order
Phenological Discrimination

First-order category signatures can be
derived from training sets with an itera-
tive procedure consisting of a step of
dynamic programming minimization
followed by averaging. This procedure is
very much in the spirit of the ISODATA
clustering technique (Ball and Hall,
1965). Let us restrict our attention to one
category for the moment. Let x(i,,7) be
the observed spectral reflectance in the
ith band, jth sample (pixel or average
over a field) of one crop type, taken at
the tth observation time. The set
{x(i,j,t)|i=l,...,I;f=l,...,];t=l,...,T}
is the training set for this crop category.

A first-order category signature will be
a function which gives for each band and
growth state, the mean spectral reflec-
tance for the category. Let u be a cate-
gory signature. Then, u(g, ) is the mean
ith band reflectance of a small-area
ground patch of that category in the gth
growth state. The iterative procedure be-
gins with a spectral signature for the
category and successively improves it.

We take for the initial mean signature
the average of the training vectors whose
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time components have been simply inter-
polated over time to describe inter-
mediate growth states. For example, say
we have 5 observations, 15 growth states,
and a;(1) and @,(2) are the average re-
flectances in the first band at the first
and second observation times. Then
[ aD)], {2 &(1) + 3[a@)—ad)])
(3:+ 2[@,(2) ~ &(D)]), and [4;,(2)] are
in the initial signature u for the crop. On
each iteration we find a monotonic map-
ping called m,(j,¢) T—n>g, which mini-
mizes

3 maxfalic, ) ulm(. 1)

for every sample j using a dynamic pro-
gramming procedure. Note that this
allows samples at different observation
times to map into the same growth state.

At the end of each iteration the mean
signature is updated. Define a set A, as
the set of all sample observation time
pairs which are mapped to growth state
g. The updated mean signature u’ is de-
fined as

wigi)= 3 xﬁj;”.

(1) EA,

The procedure iterates until it reaches a
fixed point. Figure 1 shows the final
mean signature created by this proce-
dure.

The standard deviation by band and
growth state are listed in Table 1 for the
samples mapped into the 20 growth
states shown in Fig, 1. The average
standard deviation is 1.42 (by equally
weighted average). This compares with
the average sample standard deviation by
band date of 2.88. Associating spectral
reflectance with growth state instead of
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observation time has reduced the average
standard deviation by half.

We then broaden the first-order signa-
ture. In the broadening process, (g,q,) is
included in the signature if o —u(g,i)|
<w. We chose the “signature width” w
to be about twice the magnitude of the
average standard deviation of pixel re-
flectance within the growth stage. Then
for each band «; and growth state g,
there is an interval of length 2w centered
on u(g,i) of gray-tone values in the
signature, as shown in Fig. 1. We note
that, given the degree of variation in
sample standard deviation for the
growth-state bands, a single width for all
bands and growth states is probably not
best, but is chosen for simplicity.

In the discrimination process, one
chooses which bands in the signature to
use. Observed gray-tone values for a
pixel in these bands must fall within
these intervals in order for the pixel to be
identified as in growth stage g. In the
case where more than one growth-state
identification is possible, the -earliest
growth state is selected. In order for a
pixel to be identified as crop ¢, each
observation must be identified as being
in a growth stage for crop ¢ and the
growth stages must be chronologically
ordered, as mentioned before. One also
has the option of using crop calendar
information. This limits the growth stages
to a specified range for each observation
time.

1.2 Bayesian Perspective
of Phenological Discrimination

In a Bayesian framework for pheno-
logical classification of vegetation, we
initially assume that spectral reflectance
is a function of vegetation category,
growth stage, and calendar time. We ne-
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TABLE 1 The averages (which constitute mean signature) and standard deviations by growth state and MSS
band of subsamples of a 120 wheat pixel sample of the Morton County Intensive Test Site. The first row of
numbers are band means and the second row of numbers are band standard deviations.

Growth state 1 with 41 samples

19.07 21.66 11.88 20.41
1.97 1.39 2.45 1.74
Growth state 2 with 31 samples
15.68 18.45 11.65 22.48
1.53 113 0.48 1.34
Growth state 3 with 33 samples
15.21 18.61 10.76 17.82
1.79 1.32 0.49 1.40
Growth state 4 with 16 samples
11.75 16.50 9.00 10.37
2,30 2.60 0.54 2.64
Growth state 5 with 52 samples
6.85 8.02 9.37 12.46
0.86 0.8 0.90 0.99
Growth state 6 with 37 samples
4.49 443 7.95 12.54
1.39 1.64 1.21 0.95
Growth state 7 with 19 samples
3.84 3.84 13.74 13.68
1.39 1.72 121 1.89
Growth state 8 with 10 samples
6.90 7.20 11.90 17.50
151 0.98 2.02 1.63
Growth state 9 with 31 samples
8.87 10.32 10.58 12,55
113 1.03 1.16 0.94
Growth state 10 with 30 samples
7.77 9.10 15.87 14.70
0.99 0.91 0.62 1.29

Growth state 11 with 48 samples

971 10.90 17.69 16.02
112 110 0.85 127
Growth state 12 with 24 samples
12.04 13.33 18.04 17.75
1.34 1.46 1.24 1.33
Growth state 13 with 21 samples
9.38 10.62 13.38 15.76
113 1.46 1.17 1.11
Growth state 14 with 29 samples
11.41 12.83 15.24 18.14
125 1.56 1.16 1.63
Growth state 15 with 21 samples
17.29 17.24 19.71 19.76
193 177 2.07 1.41
Growth state 16 with 46 samples
14.83 15.46 16.59 17.74
L77 1.47 1.57 1.99
Growth state 17 with 18 samples
11.33 12.94 9.00 9.06
1.80 1.78 1.94 2.25
Growth state 18 with 20 samples
14.50 15.40 18.85 20.85
112 1.07 1.08 0.85
Growth state 19 with 26 samples
17.88 17.58 20.69 21.58
1.55 0.84 141 1.69
Growth state 20 with 47 samples
21.02 19.70 2291 22.91
1.67 161 151 2.14

glect the effects of atmospheric haze,
geomorphologic soil, and moisture varia-
tions, as well as climatic catastrophies.
Let G be the set of possible growth
stages. The growth states depend on ma-
turity, biomass, percent cover, and height
of vegetation. We will assume that the
growth stages of G are ordered according
to the natural maturing cycle which the
vegetation undergoes. Let {t,,...,ty} be
the set of observation times. The times in
the set T are naturally ordered by the
relation earlier than or later than. Let R

be the set of possible reflectance values
and B={1,2,...,M} be the set of M
wavelengths bands of spectral reflec-
tance that can be observed by the sensor.

Let x be a spectral reflectance vector
of vegetation category ¢ in phenological
growth stage g at calendar time. We
denote the probability of observing
(x,c,g) at a given calendar time t by
P(x,c,glt).

For multitemporal multispectral data,
the probability function of spectral re-
flectance vectors x,,...,xy coming from a
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FIGURE 1. Final mean wheat signature for Morton County test site with tolerance set.
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small area ground patch of categories
.»¢y in phenological growth stages

gy,..+,&y at calendar times #,,...,%y, re-
spectively, is denoted by
B 00 v O B oo g v s i s s
To determine a Bayes rule, the probabil-
ity Pl Kips G Gl Bis i s lg)  FBSE
be computed. Now
Pl&5 0.0 s N5 mnn sG5| By womnsbie)
&1 v
R Py v B g B s B} B pmmn i
& v
3 Pl ves Bl G o5 Bns Bsnnn s s B By
K PLC s 0nr0Chs By wroes B Biyomes B e

We assume that the reflectance x de-
pends only on crop type ¢ and growth
stage g so that the probability for ob-
served categories and multispectral re-
flectances is

Pl e ty)

= ; P(x1|cl,g1)P( g1|cl,t1)

s s v G| By

XE P(x5]Co, o) P( 85| €1 o 810 1, )

: g P(xyen, gy)

X P(gyley—1,Cn En—1 -1 )
XP(Cy,.. . 0lty s ty) L)
In theory, the formula just derived
could be used to determine a Bayes rule
in the usual way. In practice, there are
too many distributions to estimate and

)

)-
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too many calculations to do to calculate
the required probabilities. However, be-
cause the required probability has the
form of a product, if any probability in
the product is zero, then the product
must be zero. And a Bayes rule would
never make an assignment to a category
with a zero probability. This fact can be
utilized to make an efficient table look-
up rule which uses vegetation phenology
just by storing in the table(s) those re-
gions in measurement space having non-
zero probability.

The astute reader will undoubtedly
wonder why such a decision scheme has
any chance of working at all. Why can’t
it be that any spectral observation vector
is possible for many growth states for
most categories? The reason that this is
not possible is empirical. The probability
distributions are conditioned by crop
growth state, so that the resulting condi-
tioned probability distributions are ex-
pected to have much smaller variances
than the usual unconditioned ones. The
conditioned ones, are therefore, much
more peaked.

2.0 A Mathematical Description
of Classification Using
Phenological Vegetation Signatures
and Prior Constraints

In the previous section, we derived a
formula for the probability of a small
ground patch having corresponding
vegetation types c,,...,cy with respective
spectral reflectance vectors Xy,...,%y at
observation times ty,..., ty. In this section
we will show how this kind of repre-
sentation for the probability can be used
to define vegetation signatures and a
classification method which can then be
used to recognize vegetation type and
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growth state in a structural pattern re-
cognition manner which is implement-
able as a table look-up rule.

For simplicity of discussion, we will
assume that for the observation times
t1,..., 1y, the small ground patch being
observed does not change vegetation
type and that the vegetation itself ma-
tures in a normal manner. We will also
allow for the possible use of prior infor-
mation which would indicate that at
given observation times only certain
growth stages for the vegetation category
are reasonable ones. Such prior con-
straints can come from historical crop
calendar information, perhaps combined
with a vegetation growth model that uses
local weather, temperature, and moisture
information.

Before we define prior constraints for
a vegetation signature, we need to review
our notational conventions. Let G be the
set of possible growth states for the
vegetation category. The growth states
will depend on the maturity, biomass,
percent cover, and height of the vegeta-
tion. We will assume that the growth
states of GG are ordered according to the
natural maturing cycle which the vegeta-
tion undergoes. Let T be the set of ob-
servation times. The times in the set T
are naturally ordered by the relation
earlier than or later than. Let R be the
set of possible reflectance values and B=
{1,2,...,M} be the set of M wavelengths
bands of spectral reflectance that can be
observed by the sensor. Each spectral
return vector x is a member of the set
RM™. The mth component of x is the
spectral return using the mth wavelength
band of B.

If the vegetation category does not
change over the period of observation so
that ¢g=c¢ for i=1,2,...,N, then the

285

probability (*) derived in the last section
is

P(xy,.. s Xy, €|ty e e ty) =
N
X { II [ > Px,lc.g,)
n=1 N

P(gnlc?gnkl!tnl’tn)] }‘P(C)-
(**)

A necessary condition for a Bayes rule
to assign the multitemporal, multispectral
vectors x,...,x%y to category c¢ is for
P(xy, ... %0: €t .0 05ty) to be nonzero.
Since this joint probability is a product, if
the joint probability is nonzero, then ev-
ery term of the product must be greater
than zero. This means that for each n,

gz Plxosgad P Bule gt b 20,

The product in each term of the above
sum is nonzero if and only if P(x,|c,g,)
and P(g.|c.g,_1,t.t,_,) are both non-
zero. The term P(x,|c,g,) is nonzero if
and only if the spectral reflectance vec-
tor x, is possible for vegetation category
¢ in growth state g,. The term
P(g.lc,g2n—1.ta-1>t,) is nonzero if and
only if the cultivation practices of the
region being observed allow vegetation
of category ¢ to be in growth state g, at
time ¢, and the rate of growth of vegeta-
tion type c is such that growth g, can be
reached from state g, _; in the time
period from ¢,_, to .

The set S is called a signature for a
category if it contains those data vectors
whose components are spectral reflec-
tances having nonzero probability for a
growth state of a category. Let M specify
number of observed band wavelengths.
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Let x=(a,...,0y) ER™ be a full set of
M observed reflectances and let B’ be a
subset of the possible bands in B. The
first-order signature is defined with re-
spect to only those bands in B’. The
first-order signature S, of a category c,
S. € G X R X B, consists of all 3-tuples of
growth state, reflectance, and band
whose conditional probability is greater
than zero,

S:={(gr.b)G xXrxB|
X for some b€EB’,P,(r|g,c) >0},

where the pair (r,b) denotes reflectance
value and corresponding band wave-
length so that r=q,,.

In an analogous way, a first-order ob-
servation relation 8, # CT X R X B, con-
sists of all those 3-tuples of observation
time, reflectance, and band which have
been measured.

0= {(t,r,b)ET X R X B|for some bE
B’ and for some n,t=1¢, and ob-
served reflectance was r on band

b).

At each observation time, one reflectance
value is measured for each band. (There
may be none if there is missing data).

The set C of prior constraints relating
growth states to observation times and
growth states at earlier times is

C= {(tl,gl,to,gO)E(TX G)z’P( &t t. o)
> 0 aﬂd t1> to}-

To determine if an observation 8 re-
quires us to reject a vegetation category
[that is, determine if (**) is nonzero], we
will determine if for every n, (1) there
exists a growth state g, such that
P(x,|c,g,) is nonzero, and (2) if the g, is
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such that P(g,|c,g,_,t,_1,t,) is non-
zero. To do so, we will need to associate
observation times to growth states.

Let H be a subset of T X G so that H
associates observation times with growth
states. We define the relation composi-

tion of # with H, written §-H by

6-H={(g,r,b) in G XR X B|
X for some tE T
X (t,r,b)€0 and (t,g) € H}.

If 8-H is not a subset of S, then (1) is
not satisfied. If #-H is a subset of S, and
K=M, and H is defined everywhere on
T, then (1) is satisfied. If HXH is a
subset of C, and H is defined everywhere
on T, then (2) is satisfied.

Given # and S, let us find H so that
0-H is a subset of S, and HXH is a
subset of C, in the case where

C= {(tlagl’tﬂ’go) (T X G)2|
t; >t, implies

g1>go and (¢, g,) and (¢, g,) in C’},

where

C'={(g.1)|P(glt)>0).

That is, growth states are constrained to
be chronologically ordered in time and
consistent with observation times.

The table look-up implementation for
finding H is as follows. For each band b
in B’ there is a table T(b), which gives
lists of possible growth states for values
of reflectances in band b. These tables
together comprise the first-order signa-
ture S. There is a table C’ listing possible
growth states for given observation times.
The implementation works as follows.
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Given # CT X R X B, the existence of
a function satisfying (1) and (2) is an easy
matter to ascertain. Define F(b) by

F(b)={(t,g) € C’| for some r in R,
X (t,r,b) €0 and (g,r,b) ES}.

Then with the properties of # already
mentioned, it can be proved that any
H CC’ satisfying §-H CS must be con-
tained in N,cp F(b) and furthermore,
the composition #- M ,cp F(b) must be
contained in S.

This implies that we can determine the
existence of a function satisfying (1) and
(2) by construction. First construct the
relation W in C’ defined by

W= (O Fb).

beB’

Then construct a monotonic part H of
W. If this H associates a growth state for
each observation time, then H is a func-
tion satisfying (1) and (2).

Suppose t, is the first observation time.
Using the table C’ we retrieve a set of
possible growth states G; and we check
growth states in G, against observed re-
flectances until we find the earliest
growth state consistent with the observed
reflectances. We check a growth state in
G, as follows: For each band b in B’ we
enter the corresponding observed reflec-
tances at ¢, into the table T(b) and get
back a set of growth states. If each such
set contains the growth state we are con-
sidering, the growth state is consistent
with the observed reflectances. At time
t;, we retrieve a set of possible growth
states and intersect with the set of possi-
ble growth states later than the earliest
consistent growth state for ¢, to get G,.
Then find the earliest growth state in G,
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which is consistent with the observed
reflectances at time Basanms 9785 and so on
for each observation time.

2.1 Table Look-Up Rule Implementation.
(First-Order and No Prior Constraints)

In this section, we specialize the im-
plementation discussed in Sec. 2.0 for the
first-order signature case with no prior
constraints on growth states. A sufficient
condition for

gz p(xnlcm gn)pf,,( gnlcn)

to be zero is for p(x,|c,.g,)=0 for all
values of g,. Let x be a K-dimensional
spectral reflectance observation. A
sufficient condition for p(x|c,g)=0 for all
growth values of g is for there to be no
phenological growth stage g which gives
a positive marginal conditional probabil-
ity for each component of the observed
reflectance x. Let P x(a),...,0xlc,g)
be the probability of observing the K
spectral band reflectance (ay,...,a)
from a vegetation of type c¢ in growth
state g. Let P(e|c,g) be the marginal
probability of observing spectral reflec-
tance ax from band K given vegetation
type ¢ and growth state g. Then a
sufficient condition for P, g
(ay,...,ag|c,g)=0 is for Poy/c,g)=0
for some spectral band k. If there is no
phenological growth state which gives a
positive marginal conditional probability
for each component of the observed
spectral reflectance (ay,...,ag), then

K
N {glPlale.g)>0}=2.

This leads to the following criteria for
eliminating category assignments which a
Bayes rule would also eliminate.
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For a given € >0, define the table by
R(k, a, c) = { g| (e, g) > €}. Suppose
multitemporal multispectral returns of

(@115 @g)s (Qgpseees @og),.nn,
(Qygs e v Oyge)
are observed for calendar times ¢,,...,%.

Then if
K
ﬂ R(k, ank, C) =g
k=1

for some n, a Bayes rule could not make
the assignment to category c. If

DL

R(k [0 SN o4 ):/:@
k

I
i

for all n, and for every c#c”,
K
m R(k, ank,c)=®
E=1

for some n, then a Bayes rule must make
the assignment to the unique category ¢”.

Table look-ups are the most efficient
way to do classification of a large data
volume. It is significant that this tech-
nique submits to such an implementa-
tion. Reviews of more standard table
look-up techniques can be found in
Haralick (1976).

2.2 Example

An example easily illustrates the first-
order table look-up idea graphically. Fig-
ure 2 shows graphs for the tables
R(k,a,c). A square blacked in for coordi-
nates (g,a) means that for the corre-
sponding spectral value «, the phenologi-
cal growth-stage g belongs to the table R.
Suppose that there are two spectral
wavelengths, band 1 and band 2, two
categories, and two times at which ob-
servations are taken. Let the spectral ob-
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servation for time 1 be (9,10) and the
spectral observation for time 2 be (3,6).
Examining the tables for category 1, we
have

R(19.1)=(3,5,6,7),
R(2,10,1)={0,1,2,3,17,18,19},
R(1,9,1) N R(2,10,1)= {3}.

This means that the only time observa-
tion (9, 10) could occur from category 1 is
during phenological growth-stage 3. Ex-
amining the tables for category 2, we
have

R(1,9,2)={5,6,7,13,14},
R(2,10,2)={0,1,7,8,18,19},
R(1,9,2)N R(2,10,7)={7).

This means that the only time the ob-
servation (9,10) could occur from cate-
gory 2 is during phenological growth-
stage 7. So after the first spectral ob-
servation, both categories are still possi-
ble.

Now consider the second observation
(3,6). By the tables,

R(1,3,1)={13,14},
R(2,6,1)=(6,7,8,9,13,14},
R(1,3,1)NR(2,6,1)={13,14).

This means that spectral observation
(3,6) is possible for category 1 only
during phenological growth-stages 13 and
14.

By the tables,

R(1,3,2)={0,1},
R(2,6,2)={11,12},
R(1,3,2)N R(2,6,2)=4.
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- <

20 BAND 1
CATEGORY 1
10 R(1,a,1)
0 | - g
0 10 20
b
20 BAND |
CATEGORY 2
R(1,a0,2)
10
0 | | B g
0 10 20
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T 2

20 BAND 2
CATEGORY 1
10
R(2,a,1)
0 i I - g
0 10 20
o
20 BAND 2
CATEGORY 2
10
R(2,ua,2)
0 1 L == g
0 10 20

FIGURE 2. Figure 2 shows graphically the tables R(b,a,c). A square blacked in for coordinates ( g, o) means that for
the corresponding a, the phenological growth stage g belongs to the table R. A growth stage g € R(b,a,¢) if and only

if P, (a|g,c) >€>0 for some specified value of G.

This means that there is no phenological
growth stage for category 2 which yields
the spectral observation (3,6). The con-
clusion, therefore, is that the small
ground patch having early spectral return
of (9,10) and later spectral return of (3, 6)
must be an area of category 1 vegetation
observed during its 3 and 13 or 14 pheno-
logical growth stages.

If instead of the intersection R(l,3,2)
NRE,6,2)=&, we had R(1,3,2)N
R(2,6,2)={4,6}, category 2 would be
eliminated because the spectral reflec-
tance it has at a late calendar time match

a possible spectral reflectance for cate-
gory 2 only at early phenological
growth-states 4 or 6. Later calendar
times must correspond to later pheno-
logical growth states.

3.0 Identification of Wheat
in Morton County Using
Phenological Discrimination Methods

An extensive investigation of the use of
phenological discrimination was carried
out using the Morton County image. Our
results indicate that the method is capa-
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ble of discriminating wheat with about
the same degree of accuracy as the tradi-
tional approaches. However, the method
does work with missing data and pro-
vides additional information on crop ma-
turity. In this section, we discuss our
results as well as the effects of the signa-
ture width and band choices on the qual-
ity of classification. Also, the validity of
our dynamic programming method for
creation of first-order mean signatures is
illustrated.

3.1 A Discussion
of First-Order Phenological Results

Consider the two steps in the first-
order discrimination procedure. In the
first step the user chooses an input sam-
ple to train the signature and the number
of growth states to be characterized in
the signature. In the identification step,
the user chooses the “signature width”
and which MSS band /observation date
combinations to use. The choice of signa-
ture width is critical, especially when one
is identifying only one crop class. The
larger the signature width, the larger the
number of pixels that will be identified as
in the crop class. The percent correct
identification will increase with width
but at the cost of increased false identifi-
cation. In the second step, the identifica-
tion step, the user also has the option of
specifying a range of allowed growth
states for each observation time. A good
choice of these growth state restrictions
effectively cuts down on the number of
false classifications, without much reduc-
tion in the rate of correct classification.

Sample adequacy was investigated by
comparing the discrimination results with
no growth-state restrictions using a sam-
ple of 35 wheat field averages and
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several random samples of individual
pixels. It seems that a sample of around
100 pixels (about 2.5% of the ground-
truth wheat) is of adequate size as dis-
crimination was not significantly better
with a sample of twice that size or with
the field average samples.

We have performed four identifica-
tions of wheat with signatures having 5,
10, 20, and 36 growth states, respec-
tively. This is a range of one to seven
growth states per observation time, since
we have five observations of the Morton
County test site. The general shape of
the mean signatures with differing num-
bers of growth states is the same. Qur
best discrimination was with a 36-
growth-state signature with a width of
3.25. Using this signature and all observa-
tion dates, the results were 83% correct
identification of ground-truth wheat and
4% false identification. With a 5-growth-
state signature and a width of 6.0, the
corresponding figures were T79% and
13%. The improved discrimination shows
the usefulness of modeling several
growth states per observation time.

The number of MSS bands needed for
accurate identification was investigated.
Most of our testing of the first-order dis-
crimination procedure has been done
using MSS bands 4, 5, and 6. However, it
has been found that MSS bands 4 and 5
are sufficient for good wheat identifica-
tion, Adding MSS band 7 reduced cor-
rect classification significantly. Before
testing, it was thought that perhaps MSS
bands 5 and 7 would be very useful for
phenological discrimination of wheat, be-
cause they have often been most useful
in other agricultural classification tech-
niques. However, the identification of
wheat with MSS bands 5 and 7 using the
first-order phenological method turned
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out to be not as good as with MSS bands
4 and 5.
The possibility of accurate wheat

identification with a single channel of
information per observation time was in-
vestigated. Since the phenological
method of discrimination is a growth-
stage identification process, it seemed
likely that a single measure, indicating
greenness of the pixel at the observation
times, would be sufficient for identifica-
tion of the crop. The four MSS band
values for each observation date were
transformed into Kauth greenness (KG)
(Kauth, 1976), a linear combination of
the band values scaled to fit in the 0-31
integer value range.

KG=0.514(—0.290 MSS 4—0.562 MSS 5
+0.600 MSS 6+ 0.491 MSS 7)+ 13.6.

Wheat identification with this measure
was not as good as identification with
two or three MSS bands.

Good wheat identification depends on
the proper choice of growth-state restric-
tions, especially if a subset of observation
times is used. A description of a run
using only two observation times will
illustrate this. In this run, possible growth
states were restricted to states 1-5 for
observation time 1 and states 10-12 for
observation time 2. The small number of
growth states allowed for the second ob-
servation time, May 9, is important be-
cause winter wheat is distinguished from
other crop types principally because it is
green on the May 9 date. Growth states
10-12 in the signature had low gray-tone
values in MSS band 5, which shows that
they correspond to green states. Given
the preceding growth-state restrictions,
81% of the ground-truth wheat was cor-
rectly identified with 5% of the non-
wheat cells incorrectly identified.
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The best choice of observation times
was October 23 and May 9 for first-order
discrimination of wheat. The best single
observation time turned out to be May 9,
as expected. The October 23 observation
turned out to be the best addition to the
May 9 observation. A third observation
improved results significantly only when
wheat was broken into two categories,
quickly maturing wheat and slowly ma-
turing wheat. The same 36-growth-state
signature was used to identify both sub-
categories of wheat, but with two sets of
growth state restrictions. This discrimina-
tion resulted in a total of 83% of the
wheat being identified, with only 4%
false classification.

3.2 Testing the Validity of
Dynamic Programming in First-Order
Mean Signature Generation

Recall that different observation times
map into the same growth state in the
construction of the first-order mean
signature. In order to test whether it is
good to allow observations from different
times to be used in the construction of
growth state, an alternate procedure was
tested. Let us say we have G, as the
number of growth states per observation
time. In each iteration we define a map-
ping m: (f,t)—G which minimizes

3 g x{i. )= ulm, )

for each sample j with the additional
restriction that the pair (j,f) must map
into one of the growth states in the set
{(t—1)Gy+ 1L (t—1)Gy+2,...,Gyt}. Be-
cause these sets are not overlapping, the
method for finding the mapping turns
out to be a simple minimization.
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A few phenological discrimination runs
using five observation dates were made
using mean signatures generated by sim-
ple minimization. Discrimination was not
quite as good as with similar runs using
dynamic programming. The average
standard deviation by band and growth
state for the samples mapped into 20
growth states was higher with this simple
minimization. This demonstrates the
validity of combining observations with
different dates in characterizing a signa-
ture growth state.

3.3 An Experiment with Use
of Two Signatures for Wheat

First-order discrimination with a fairly
small signature width results in about
half the wheat being identified with a
very small amount of false identification,
when appropriate growth state restric-
tions are used. It was thought that per-
haps wheat is better characterized by
two or three signatures with small
widths, Our experimentation did not lead
to improved classification, but provides
insight into the properties of the growth
states in the signature.

A sequential procedure was used.
Areas of wheat which were poorly
identified by phenological discrimination
were examined. It seemed that there
were two types of wheat not being
identified. One type was wheat with re-
flectances generally higher than average
for all MSS bands on all observations.
The other type was wheat with generally
lower than average reflectances, espe-
cially for MSS bands 4 and 5 on the May
9 observation date. In order to try to
identify these problem areas of “high”
and “low” wheat, signatures were
created from samples of wheat not yet
identified. A “high” signature was
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created from pixels in the sample whose
quantized values in MSS bands 4 and 5
on the May 9 observation date was below
a threshold of 6. A “low” signature was
created from pixels whose values in MSS
bands 4 and 5 on the May 9 observation
date was above 8. High and low wheat
were classified with these signatures.
Areas identified as high and low wheat
were quite distinct.

In an attempt to determine the iden-
tity of these areas, aerial photographs of
Morton County were examined. It was
noted that small low wheat areas within
fields were often near field borders, and
were probably weedy areas. Areas classi-
fied as high wheat were often found in
field locations that appeared to be on
high ground or were composed of light-
colored poor soil.

We also investigated the high and low
wheat by looking at field mean of Kauth
greenness (KG) and Kauth soil brightness
(KSB). Kauth soil brightness is a linear
combination of the MSS band which we
rescaled to fit in the 0-31 value range

KSB=0.522(0.433 MSS 4 +0.632 MSS 5
+0.568 MSS 6+0.264 MSS 7)

Those fields that were classified pri-
marily as high wheat were areas of high
KSB and about as much KG as fields
with predominantly low wheat, except
on the May 9 date when they were
“greener”.

We investigated further by examining
the samples for the high and low signa-
ture. We looked at a 36-growth-stage
signature created from a random sample
of ground-truth wheat and found which
growth states each observation of the
sample mapped to. Low samples are
mapped into relatively earlier growth
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states compared to the high reflectance
samples, except for the October 23 ob-
servation.

The explanation which seems most
consistent in explaining the high and low
areas is that high areas are poor quality
stands of wheat, which were adversely
affected either by the dry weather in
Morton County in 1974 or by poor soil.
The low areas are vigorous stands of
wheat, or areas with a lot of weeds.
Vigorous stands of wheat mature more
slowly than stands maturing in less than
optimal conditions. The dryer fields will
be the first to head, and therefore, look
less green on May 9.

4.0 Conclusion

The phenological growth state proce-
dure seems to be able to discriminate
wheat about as well as some more stan-
dard procedures and label degree of ma-
turity as well.

It has the advantage of a table look-up
implementation as well as being able to
handle missing observation data (e.g.,
missing due to clouds) and being able to
naturally use crop calendar constraint in-
formation. The experiments reported
here need to be repeated with other
crops and natural vegetation to assess its
efficacy and validity.
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