T-AS, 37, 12/;,31287

The Digital Morphological Sampling Theorem

Robert M. Haralick
Xinhua Zhuang
Charlotte Lin
James S. J. Lee

Reprinted from
IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING
Vol. 37, No. 12, December 1989



[EEE TRANSACTIONS ON ACQUSTICS. ‘SPEECH. AND SIGNAL PROCESSING. VOL, 37, NO. 12, DECEMBER 1989

2067

The Digital Morphological Sampling Theorem

ROBERT M. HARALICK, reLiow, 1ge, XINHUA ZHUANG, CHARLOTTE LIN, anp JAMES S. J. LEE

Abstract—There are potential industrial applications for any meth-
odology which inherently reduces processing time and cost and yet pro-
duces results sufficiently close to the result of full processing. It is for
this reason that a morphological sampling theorem is importan.

The morphological sampling theorem described in this paper states:
1) how a digital image must be morphologically filtered before sam-
pling in order to preserve the relevant information after sampling; 2)
to what precision an appropriately morphologically filtered image can
be reconstructed after sampling; and 3) the relationship between mor-
photogically operating before sampling and the more computationally
efficient scheme of morphologically operating on the sampled image
with a sampled structuring element.

The digital sampling theorem is developed first for the case of binary
morphology, and then it is extended to grayscate morphology through
the use of the uinbra homomorphism theorems.

I. INTRODUCTION

ORPHOLOGICAL operations on images have rel-

evance to conditioning, labeling, grouping, extract-
ing, and matching image processing operations. Thus,
from low level to intermediate to high level vision, mor-
phological techniques are important. Indeed, many suc-
cessful machine vision algorithms employed in industry
on the factory fioor, processing thousands of images per
day in each application, are based on morphological tech-
niques. Among the recent research papers on morphology
are [3], [6], [8], [12], and [13]. Reference [21] is com-
prehensive.

Many well-known relationships worked out in the clas-
sical context of the convolution operation have morpho-
logical analogs. In this paper, we introduce the digital
morphological sampling theorem. which relates to mor
phology as the standard sampling theorem relates to sig-
nal processing and communications. The sampling theo-
rem permits the development of a precise multiresolution
approach to morphological processing.

Multiresolution techniques [1], [9], [18], [19] have been
useful for at least two fundamental reasons: 1) the repre-
sentation they provide naturally permits a computational
mechanism to focus on objects or features likely to be at
least a given specified size [4], [15], [16]. [20]; and 2)
the computational mechanism can operate on only those
resolution levels which just suffice for the detection and
localization of objects or features of specified size while
significantly reducing the number of operations per-
formed [2], [5], [11].
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The usual resolution hierarchy, called a pyramid, is
produced by low-pass filtering and then sampling to gen-
erate the next lower resolution level of the hierarchy. The
basis for a morphological pyramid requires a morpho-
logical sampling theorem which explains how an appro-
priately morphologically filtered and sampled image re-
lates to the unsampled image. It must explain what kinds
of shapes are preserved and what kinds are suppressed or
climinated. It must explain the relationship between per-
forming a less costly morphological filtering operation on
the sampled image, and performing the more costly
equivalent morphological filtering operations on the orig-
inal image. It is just these issues which we address in this
paper.

We analyze the constraints on sampling and on image
objects in order to speed up morphological operations
without sacrificing accurate shape analysis. The following
results are shown to be true under reasonable morpho-
logical sampling conditions. Before sets are sampled, they
must be morphologically simplified by an opening or a
closing. Such sampled sets can be reconstructed in two
ways, by either a closing or dilation. In both reconstruc-
tions, the sampled reconstructed sets are equal to the sam-
pled sets. A set contains its reconstruction by closing, and
Is contained in its reconstruction by dilation; indeed, these
are extremal bounding sets. That is, the largest set which
downsamples to a given set is its reconstruction by dila-
tion; the smallest is its reconstruction by closing. Fur-
thermore, the distance from the maximal reconstruction
to the minimal reconstruction is no more than the diameter
of the reconstruction structuring element. Morphological
sampling thus provides reconstructions positioned only to
within some spatial tolerance which depends on the sam-
pling interval. This spatial limitation contrasts with the
sampling reconstruction process in signal processing from
which only those frequencies below the Nyquist fre-
quency can be reconstructed.

A number of relationships follow from the morpho-
logical sampling theorem. These relationships govern the
commutivity between sampling and then performing mor-
phological operations in the sampled domain versus first
performing the morphological operations and then sam-
pling. We find that sampling a minimal reconstruction
which has been dilated is identical to dilating the sample
set with a sampled structuring element. Sampling a max-
imal reconstruction which has been croded is identical to
eroding the sampled set with a sampled structuring ele-
ment. These results establish bounds which can be used
to determine the difference between morphological oper-
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ations in the sampled domains and operations in the orig-
inal domain followed by sampling.

All set morphological relationships are immediately
generalizable to grayscale morphology via the umbra
homomorphism theorems. For grayscale images, the
bounds which the reconstruction establishes are bounds in
a spatial sense.

In Section II, we review the basic definitions and prop-
erties for binary morphology operations. In Section III,
we develop the morphological sampling theorem for bi-
nary morphology. In Section IV, we derive the relation-
ship between morphologically operating in the original
domain and operating in the sampled domain. The ho-
momorphism theorem between binary and grayscale mor-
phology implies that each result in binary morphology has
a corresponding result in grayscale morphology. Section
V develops these grayscale generalizations. Section Vi
discusses the computational advantages of operating on
morphologically sampled images and shows how succes-
sively sampled images can be operated on in a resolution
hierarchy called a pyramid. The final section summarizes
the key points and contains conclusions.

II. PRELIMINARIES

Let E denote the set of numbers used to index a row or
column position on a binary image. We assume that the
addition and subtraction operations are defined on E. The
binary image itself can then be thought of as a subset of
E x E. Pixels are in this subset if and only if they have
the binary value one on the image. This correspondence
permits us to work with sets rather than with image func-
tions, indeed, with sets in EV. The first two operations of
mathematical morphology are the dual operations of di-
lation and erosion. The dilation of a set A € E” with a
set B © E" is defined by

A ® B={x|forsomeaeAdandbe B,
x=a+b}

The erosion of A by B is defined by
Ao B={x|foreverybeB, x+bed}

The careful reader should beware that the symbol © used
by Serra [17] does not designate erosion. Rather, it des-
ignates Minkowski subtraction.

Forany setd & £ Nand x € EV, let A, denote the trans-
lfation of 4 by x

A, = {y|forsomeaed, y=a+t x}.

Forany set A € E", let A denote the reflection of A about
the origin

A - {x|forsomeagd, x= —a}.
Relationships satisfied by dilation and erosion include the
following:

AeB=BeA
(AEBB)@C'—AGB(B@C)
(AeB)eC-Ae(B@C)
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(AUB)eC:(A@C)U(BeeC)
(AﬂB)eC:(AeC)ﬂ(BeC)

A@B:UAb
beB
AeB=MN 4,
heB

AcB=A8eCcBeC
AcB=A4AeCcBeC

(AﬂB}ng(A@C}ﬂ(B@C)
(AUB}eCQ(AeC)U(BeC)

(4e B =408
Ae(BUC)=(AeB)ﬂ(A9C}.

In practice, dilations and erosions are usually employed
in pairs; either dilation of an image followed by the ero-
sion of the dilated result, or image erosion followed by
dilation. In either case, the result of iteratively applied
dilations and erosions is an elimination of specific image
detail smaller than the structuring element without the
global geometric distortion of unsuppressed features. For
example. opening an image with a disk structuring ele-
ment smooths the contour, breaks narrow isthmuses, and
eliminates small islands and sharp peaks or capes. Clos-
ing an image with a disk structuring element smooths the
contours, fuses narrow breaks and long thin gulfs, elimi-
nates small holes, and fills gaps on the contours.

Of particular significance is the fact that image trans-
formations employing iteratively applied dilations and
erosions are idempotent, that is, their reapplication effects
no further changes to the previously transformed result.
The practical importance of idempotent transformations is
that they comprise complete and closed stages of image
analysis algorithms because shapes can be naturally de-
scribed in terms of under what structuring elements they
can be opened or can be closed and yet remain the same.
Their functionality corresponds closely to the specifica-
tion of a signal by its bandwidth. Morphologically filter-
ing an image by an opening or closing operation corre-
sponds to the ideal nonrealizable bandpass filters of
conventional linear filtering. Once an image is ideal band-
passed filtered, further ideal bandpass filtering does not
alter the result.

These properties motivate the importance of opening
and closing. concepts first studied by Matheron {14] who
was interested in axiomatizing the concept of size. Both
Matheron’s definitions and Serra’s definitions for opening
and closing are identical to the ones given here, but their
formulas appear different because they use the symbol &
to mean Minkowski subtraction rather than erosion.

The morphological filtering operations of opening and
closing are made up of dilation and erosion performed in
different orders. The opening of A by B is defined by

A°B - (A e B) e B.
The closing of A by B is defined by
AeB=(4® B)e B
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Opening and closing satisfy the following basic rela-

tionships:

(AeB)eB=A°B

Ao B C A4

ACB=Ac¢cCc BoC

(A< B) =A%« B

(A*B)sB=AeB
A A*B
ASB=A°CCBeC
(49B) = Ao B,

The reason that openings and closings deal directly with
shape properties is apparent from the following represen-
tation theorem for openings.

Ao B = {x|forsomey, xeB, S A4}

A opened by B contains only those points of 4 which can
be covered by some translation B, which is, in turn, en
tirely contained inside A. Thus, x is a member of the
opening if it lies in some area inside A which entirely con-
tains a translated copy of the shape B. In this sense, A4
opened by B is the set of all points of A which can partic-
ipate in areas of A which match B. If B is a disk of di-
ameter 4, for example, then A © B would be that part of
A which in no place is narrower than d.

The duality relationship (4 © B)® = 4% ¢ B between
opening and closing implies a corresponding representa-
tion theorem for closing

A°®B = {x|xeB implies B, N A = @}

A closed by B consists of all those points x for which x
being covered by some translation B, implies that B,
“hits’’ or intersects some part of 4. A more extensive
discussion of these relationships can be found in [8].

III. THE BINARY DiGiTAL MORPHOLOGICAL SAMPLING
THEOREM

The preliminary part of this section sets the stage, dis-
cussing the appropriate morphological simplifying and fil-
tering to be done before sampling. Certain relationships
must be satisfied between the sampling set and the struc-
turing element used for reconstruction. The main body of
the section discusses two kinds of reconstructions of the
sampled images: a maximal reconstruction accomplished
by dilation and a minimal reconstruction accomplished by
closing. Fundamental set bounding relationships are
proved which show that the closing reconstruction of a set
must be contained in the set itself which, in turn, must be
contained in its dilation reconstruction. The closing re-
construction differs from the dilation reconstruction by just
a dilation by the reconstruction structuring element, so the
set bound relationships translate to geometric distance re-
lationships. The section concludes by defining a suitable
set distance function which measures the distance be-
tween the sampled set and the morphologically filtered
set. The distance between the minimal reconstruction and
the maximal reconstruction, and the distance between the
morphologically filtered set and either of its reconstruc-
tions, are all less than the sampling distance.
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The first conceptual issue which arises in developing a
morphological sampling theorem is how to remove small
objects, object protrusions, object intrusions, and holes
before sampling. It is exactly the presence of this kind of
small detail before sampling which causes the sampled
result to be unrepresentative of the original. Just as in sig-
nal processing, the presence of frequencies higher than
the Nyquist frequency causes the sampled signal to be un-
representative of the original signal. This ‘‘aliasing’’
means that signals must be low-pass filtered before sam-
pling. Likewise in morphology, the sets must be mor-
phologically filtered and simplified before sampling.
Small objects and object protrusions can be eliminated by
a suitable opening operation. Small object intrusions and
holes can be eliminated by a suitable closing. Since open-
ing and closing are duals, we develop our motivation by

Jjust considering the opening operation.

Opening a set F by a structuring element X in order to
eliminate small details of F raises, in turn, the issue of
how K should relate to the sampling set $. If the sample
points of § are too finely spaced, little will be accom-
plished by the reduction in resolution. On the other hand,
if § is too coarse relative to K, objects preserved in the
opening may be missed by the sampling. § and K can be
coordinated by demanding that there be a way to recon-
struct the opened image from the sampled opened image.
Of course, details smaller than X are removed by the
opening and cannot be reconstructed.

One natural way to reconstruct a sampled opening is by
dilation. If § and X were coordinated to make the recon-
structed image (first opened, then sampled, and then di-
lated) the same as the opened image, we would have a
morphological sampling theorem nearly identical to the
standard sampling theorem of signal processing. How-
ever, morphology cannot provide a perfect reconstruc-
tion, as is illustrated by the following one-dimensional
continuous domain example

Let the image F be the union of three topologically open
intervals

F=(3.1,7.4) U (115, 11.6) U (18.9, 19.8),

where (x, y) denotes the topologically open interval be-
tween x and y. We can remove all details of less than
length 2 by opening with the structuring element K =
(=1, 1) consisting of the topologically open interval from
—1 to 1. Then the opened image F © K = (3.1, 7.4).
What should the corresponding sample set be? Consider
a sampling set § = {x|x an integer }, with a sample spac-
ing of unity; other spacings such as 0.2, 0.5, or 0.7 could
illustrate the same sampling concept as well. The sampled
opened image (Fo K) N § = {4, 5, 6, 7}. Dilating by
K to reconstruct the image produces [(Fe K) N S] o
K = (3, 8), an interval which properly contains F ¢ K.
The dilation fills in between the sample points, but cannot
**know’’ to expand on the left end by a length of 0.9 and
yet expand by 0.4 on the right end. However, the recon-
struction is the largest one for which the sampled recon-
struction {[(F¢ K) N §] ® K} N § produces the sam-
pled opening (Fe K)Y N § = {4,5,6, 7}. This is easily
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seen in the example because substituting the closed inter-
val [3, 8] for the open interval (3, 8) produces the sam-
pled closed interval [3, 8] N § = {3,4,5,6,7, 8}
which properly contains (Fo K) N S = {4,5,6,7}.

The difficulty in reconstructing a sampled opened im-
age morphologically can be understood in terms of the
standard sampling theorem. Consider the case of a piece-
wise constant binary valued image. The required mor-
phological simplification means that details smaller than
K have been removed from all objects on the opened im-
age, but this removal does not band-limit the image. In
fact, the opened image belongs to a special class of infi-
nite bandwidth signals, wherein reconstructing the sam-
pled opened image as specified by the standard sampling
theorem cannot produce the kind of aliasing found in
moire patterns. The standard sampling theorem recon-
struction produces a band-limited signal which passes
through the sample points. Thus, the step-like patterns,
like the open intervals of F, get reconstructed with ringing
throughout and with overshoot and undershoot at step
edges. By contrast, the morphological reconstruction can-
not produce ringing, but the position of any step edge is
uncertain within the sampling interval

In the remainder of this section, we give a complete
derivation of the results illustrated in the example. First,
note that to use a structuring element X as a *‘reconstruc-
tion kernel,”” K must be large enough to ensure that the
dilation of the sampling set § by K covers the entire space
EN. For technical reasons apparent in the derivations, we
also require that X be symmetric, K = K. In the standard
sampling theorem, the period of the highest frequency
present must be sampled at least twice in order to properly
reconstruct the signal from its sampled form. In mathe-
matical morphology, there is an analogous requirement.
The sample spacing must be small enough that the diam-
eter of K is just smaller than these two sample intervals.
Hence, the diameter of X is large enough that it can con-
tain two sample points but not threc sample points. We
express this relationship by requiring that

xeK, =K NK NS+ @ and KNS={0}.

The first condition implies that the dilation of sample
points fills the whole space; that is, S& K = EN when K
is not empty. If the points in the sampling set § are spaced
no further than d apart, then the corresponding recon-
structing kernel K could be the topologically open ball of
radius 2d. In this case, x € K, = K. N K| NS =@
Notice that two points which are d apart can lie on the
diameter of d. But since the ball is topologically open, the
diameter cannot contain 3 points spaced 4 apart. Hence,
the radius of K is just smaller than the sampling interval.
Also. notice that if a sample point falls in the center of K,
K will not contain another sample point.

Why does the morphological sampling theorem we de-
velop here pertain mainly to the digital domain. Consider
the two-dimensional continuous case in which there is a
regular squarc grid sampling, with the sample interval in
each direction being of length L. To guarantee that K N
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Fig. !. Twe points can be chosen no further apart than the sample dis-
tance, yer there is no sample point which is simultaneously less distant
than the sample distance to cach of them. Take the two points to be
opposite each other each interior to one of the shaded regions. Consider
the sample points to be the corners of the square.

S = {0}, the biggest possible disk X is the open disk
having radius L.

The difficulty occurs with the condition x € K, = K, N
K, N S # . Fig. 1 shows a square whose length L side
is the sampling interval. It also shows several translates
of K. and a disk of the radius L. Select two points which
are no further from each other than distance L in the fol-
lowing way. Take one point x to be in the interior of one
shaded region of Fig. 1. Take the other point y to be op-
posite it, interior to the other shaded region. With this
selection, the distance between the two points is guaran
teed to be less than L. Yet it is apparent from the geometry
that since none of the four open disks of diameter L can
contain the two points which are distance L apart, the con-
dition x € K, = K, [ K, N § # (& cannot be satisfied.
This is because each open disk represents exactly the set
of points each having the property that, if an open disk
were centered at the point, the open disk would contain a
sample point. Hence, with the disk K being defined by the
L» norm, there can be no morphological sampling theo-
rem in the continuous case. In fact, the only norm by
which K can be defined which yields a morphological
sampling theorem in the continuous case is the L, norm.

Because the shaded region in Fig. 2 is so narrow, this
difficulty does not arise n the digital case. Suppose that
the original domain is discrete with nearest points at dis-
tance one from each other. Then the condition x € K, =
K. N K, NS # ¢ is easily satisfied for any L € 12 3,
4,5, 6,7} since in this case L(1 — v3/2) < 1. Fig. 2
illustrates the case where the sample interval L is six. No-
tice that the distance between any pair of digital points,
one from a region corresponding to one of the shaded re-
gions of Fig. 1 and the other from the region opposite it,
must be greater than L. Hence, for any two such points x
and y, it is not the case that x € K,. So the difficulty with
xeK,and K, N K, N S = & cannot arise.

We now prove some propositions which lead to the bi-
nary morphological sampling theorem. In what follows,
the set F ¢ EV, the reconstruction structuring element,
will be denoted by K & EV, and the sampling set will be
denoted by S < EV. Although not necessary for every
proposition, we assume that § and K obey the following
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Fig. 2. The conditionx e K, = K, N1 K, N § # @ can be satisfied in the
digital case where K is a circular disk. Notice that for any pair of digital
points in the regions corresponding to the shaded region of Fig. |, the
distance between them is not less than the radius of the open disk K.
Hence, the difficulty illusirated in Fig. | cannot arise.
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Fig. 3. Sampling every third pixel by row and by column. The sampling
set § is represented by atl points which are shown as e,

five conditions:

HNS=585es,
) §$=35,
4) K = K,

SYaek, =K, NK,NS# @

Fig. 3 illustrates the § associated with a 3 to 1 down-
sampling. Fig. 4 illustrates a structuring element K sat-
isfying (3), (4), and (5). Since the dilation operation is
commutative and associative, conditions 1)-3) imply that
the sampling set S with the dilation operation comprises
an abelian group with the origin being its unit element.
Thus, ifx € S, then S, = §, and also since K N § = {0},
x € §implies K, N § = {x}. Both these facts are utilized
in a number of the proofs to follow.

A. The Set Bounding Relationships

It is obvious that since 0 € X, the reconstruction of a
sampled set £ N § by dilation with K produces a superset
of the sampled set # N §. Thatis, FN S S (FN S§) @
K. The reconstruction by dilation is open so that [(F N
§)eK]oK=(FNS) e K. Morcover, as proved in
the next proposition, the erosion and dilation of the orig-
inal image F by K bounds the reconstructed sampled im-
age.

Proposition 1: Let F, K, S € E¥. Suppose S ® K =
EVandK = K ThenF e K< (FN S) @ K C Fe K.

Proof: Since FNSc F,(FNS)e KS F o K.
ToshowF e KS(FN§)e K. weshow[(FN §)

K€ (Fe kK)=F‘e K=F"o K. Letxe [(F

NS e KI=(FNS)Xek=(FNS$)ekK-=
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Fig.r_ci. A symmetric structuring element X which is a digital disk of radius
V5. For the sampling set Sof Fig. 3, K N § = {0}andx e K, implies
KNK NS+ @,

(F€ U $%) e K. Hence, K, € F€ U S€. It is not the
case that K, S S because S @ K = §€ & K = (S e
K)‘ = @. Thus, K, N FC % (¥ so there exists a k € K
such that x + ke F©, and x = (x+k)y+(—k)eFC e
K= (Fe K)". E
Proposition 1 shows that the reconstruction by dilation
cannot be too far away from F since the reconstruction is
constrained to lie between F eroded by X and F dilated by
K. Proposition 2 strengthens the closeness between F and
the dilation reconstruction (F N §) @ K. Sampling F and
sampling the dilation reconstruction of F produce identi-
cal results.
Proposition2: FN S=[(FN SYe K1N §.
Proof :

i

[(FNS)eK]NS

JXEFTS

U K,JﬁS

It

U kns

xeFN§

= U K nsg
veFNs

U (kN S)

reFNS

U {o}

reFNS

=FNS&. B

X

I

X

From this result, it rapidly follows that sampling fol-
lowed by a dilation reconstruction is an idempotent op-
eration. That is, ([(F N §) eK] N S) @ K = (F N
S) e K.

Considering sampling followed by reconstruction as an
operation, we discover that it is an increasing operation,
distributes over union but not over intersection. That is,

I) Fy € F, implies (F; N §) ® K
C(F,-NS)e K
((FFUR)NS)e K
=[(ANS)eK]U[(FK,NS) e K]
H((FFNEF/)NS)e K
c[(FNS)ys KIN[(FRNS)e K]

Proposition 3 states' that the dilation reconstruction of a
sampled F is always a superset of F opened by the recon-
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struction structuring element K. Hence, if F is open under
K, then F is contained in its dilation reconstruction.
Proposition 3: Fe K S (FN §) & K.

Proof: Letx € Fo K. Then forsome y, x€ K, € F.
Since x € K, there exists z € K, N K, N 5. Now z € K,
< Fand z € § implies z € F N §. Also, z € K, implies
that there exists k & K such that z = x + k. Thenx = g

k. Since K = K, k € K implies —k € K. Now since z €
FN Sand since ~keK,x=z—ke(FNS) e K
B

Corollary: Fo K € [(FeK)yN S] @ K.

Thus, the reconstruction of the opened sampled image
F is bounded by F © K on the low side and F ¢ K dilated
by K on the high side.

FoKc[(FeK)NSle KS (FoK) e K

If F is morphologically simplified and filtered so that F
= F o K, then the previous bounds reduce to

c(FNS)e Kc FeKk

By reconsidering our example F = (3.1, 7.4) U (11.5,
11.6) U (18.9, 19.8) which is not open under K = ( -1,
1), we can see that such an F is not necessarily a lower
bound for the reconstruction. In this case, F N § = {4,
5,6, 7, 19} and the reconstruction (F N §) & K = (3,
8) U (18, 20), which does not contain F. This suggests
that the condition that F be open under X is essential in
ordertohave FS (FMN §) & K.

We now show one last relation between the reconstruc-
tion (F N S) ® K and F. The reconstruction (F N §) &
K is the largest open set which when sampled produces F
n s.

Proposition 4: Let A € EVsatisfy AN S=FNS
and A = A° K. Then A 2 (FN §) ® K implies 4 =
(FNS) e K.

Proof: Suppose A 2 (FN S) @ Kand4 N §=F
NSandAd = Ao K. SinceANS=FNS5,(ANS) e
K=(FNS)e K Butd =A2>Kimpliesd € (4 N
SYe K=(FNS)e KNowAd S (FN §) e K
together with the supposition A 2 (F N §) & K implies
A=(FNS) e K Bl

Thus, we have established the maximality of the recon-
struction (F N §) @ K with respect to the two properties
of being open and downsampling to F' M §. What about
a minimal reconstruction? Certainly we would expect a
minimal reconstruction to be contained in the maximal
reconstruction and contain the sampled image. Since clos-
ing is extensive, we immediately have F' N § € (F N
S ) * K. Since 0 € K, erosion is an antiextensive operation.
Hence, ( FN S)* K =[(FNS)e K] e K< (FN
§) @ K. These relations suggest the possibility of a re-
construction by closing. The next proposition shows that
a closing reconstruction has set bounds similar to the di-
lation reconstruction.

Proposition 5: LetF,. K, § & EN WK ~KandxeK.
implies K, N K, N S # @andO0eKthenF o K& (F
NS)eKc (FNS)e Ks Fe K
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Proof: Letxe F & K. Then K, & F. To show x €
(FN S)e* K, we will show thatx + ke (FN S§) & K
forevery k€ K. Solet ke K. Thenx + ke K,. Butx +
k € K, implies K, N K,,, N § # @. Hence, there exists
sek, NK, NS NowseK and K, € Fimplies s €
F. Hence, s € F N §. Furthermore, s € K, , , implies there
exists k' € K such that s = x + k + k'. Rearranging s —
k'=x + k. But K = K so k'€ K implies -k’ € K. Now
seF M Sand —k'eKimpliess —k'e(FN §) o K.
Therefore, F @ K€ (FN §S)* K. Since 0 e K, (F N
SYeKc(FNS)e K. Since FNSESF,(FNS§)e
KS Fek. E

For true reconstruction, the sampled reconstruction
should be identical to the sampled image. Indeed, this is
the case.

Proposition 6: [(Fﬂ Sy K1NS=FNS.

Proof: FNSC(FNS)Y* KES (FNS5) e K.
Now taking an intersection with S, we have F (Y § € [(F
NAS)eK|NS=[(FNS)e K]NS. Bu{(FNS)
e K]NS=FNS. |

Consider our example F = (3.1, 7.4) U (11.5, 11.6)
U (18.9, 19.8), which is closed under K = (—1, 1). If
the sampling set S is the integers, then F N § = {4, 5,
6,7, 19}. Closing F N § with X can be v1suahzuﬂ vm
the openmg/ciosmg duality (FN §S)* K = ((F N 59
o k)T, Openmg the set (F N §)¢ with K K produces
(FNSYoK={x# 19§x<40r > 7}. Hence, (F
NSYsK=({FnNS) oK) ={x|x=190rd =
< 7}, and sampling produces {(F NS)=KjNS=
{4,5,6,7,19} =FNS.

From the previous proposition, it rapidly follows that
sampling followed by a reconstruction by closing is an
idempotent operation. Thatis, [(FN §)e K] N S* K
=(FMN§)e K.

A reconstruction by closing is obviously closed under
K. Moreover, it can be quickly determined that

F, € F, implies (F; N §)

[(FUFR)NS]eK
2[(FFNS)ek]U

[(FFNF)NS]ek
c [(F, N S§)eK]

sKc (F,NS)eK

[(/, NSy K]

N [(F, N 8)sK].

Furthermore, the closing reconstruction of a sampled F is
always a subset of F closed by the reconstruction struc-
turing element K. Thatis, (F N S)* K € F* K, so that
((FeK)N §)e K < Fe K. Hence, a closing recon-
struction of an image which is closed before sampling will
be a subset of the closed image.

By considering a simple example F = {0, 1}, which
is not closed under K = ( —1, 1), we can see that F is not
necessarily an upper bound for the reconstruction. In this
case, F N § = {0, 1} = Fand the reconstruction (F N
§)e® K = Fe K = [0, 1] which properly contains F. This
suggests that the condition that F be closed under K is
essential in orderto have (F N S)* K ¢ F.
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We now show one last relation between the reconstruc-
tion (F N §)* Kand F. The reconstruction (F N S) e
K is the smallest closed set which when sampled produces
Fns,

Proposition 7: Let A € EVsatisfy AN S = FN §
andA =4 K. Then4 S (FN S§)* Kimplies A = (F
nSs)ek.

Proof: Suppose A € (FN S)* K. Now AN § =
F N Simplies (AN S)*K = (FN §)e* K. Since (A4
NS)eKc A* Kand A* K = A, we obtain (F N §)
SKSCABuACS (FNS)eKandA2(FN S§)* K
imply 4 = (F 0 §)eK. L)

B. Examples

To better illustrate the bounding relationships developed
in the previous section between a set and its sample re-
constructions, we show three simple examples. The do-
main of these examples is defined as £ x E where E is
the set of integers. The sample set § is chosen as the set
of even numbers in both row and column directions. Thus,

S={(r.c)lreEandiseven; ceFEandis even }.

K is chosen as a box of size 3 X 3 whose center is defined
as the origin. The sets S, X, and the three example sets
Fy, Fy, and F; are shown in Fig. 5. The sets F,, F,, and
Fyare 3 X 3 boxes having different origins, and the con-
dition F = F o K holds for all thesc example sets.

Theresultsof F e K, FN S, (FN S)* K, (FN §)
® K, and F & K for sets F,, F», and F; are shown in
Figs. 6,.7, and 8, respectively.

1) Example 1: All the pixels contained in the vertical
boundaries of F; have even column coordinates, and those
in the horizontal boundaries of F, have even row coordi-
nates. Since the sample set S consists of pairs of even
numbers, and F; is a 3 X 3 box, the set F, N S consists
of the four corner points of F, and is contained in the
boundary set of F,. Hence, the closing reconstruction of
Fy (1 §recovers F, and the dilation reconstruction of £,
N §is equivalent to F @ K. In fact, the following two
equalities hold only when 1) the sampling is every other
row and column, 2) a set’s vertical boundaries have even
column coordinates, and 3) its horizontal boundaries have
even row coordinates

(FNS)eK=F and (FNS)e K=F o K.

The bounding relationships for F,, illustrated in Fig. 6,
are

Fre KS (F,NS)ek
=Fc(FFNS)eK=F oK.

2) Example 2: Since all pixels contained in the vertical
boundaries of F, have odd column coordinates, and those
in the horizontal boundaries of F, have odd row coordi-
nates, and F; is a small 3 X 3 box, the set F, N S does
not contain any part of the boundary of F,. Thus, the clos-
ing reconstruction of F, N Sequals F, e K, and the di-
lation reconstruction of F, N S is equivalent to F,. Sim-
ilar to the Example 1, the following equalities hold only
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Fig. 5. A sampling set §, a reconstruction structuring element K, and three
sets, Fy, Fa, and F, each of which 1s open under K.
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Fig. 6. The erosion and dilation of F, bound the minimal reconstruction
(Fy N §)* K and the maximal reconstruction (F, N §) @ K, respec
tively, which in turn bound F| because F| is both open and closed under

K.

EEREN FH
sin» 1}
3__:‘!40 ._rﬂ,
H H

F. e K
CLro TTTT
AT .
T
NS (F,0 8k
I

—Fz ® K

Fig. 7. A second example of how the crosion and dilation of £, bound the
minimal reconstruction (F. M §) ® K and the maximal reconstruction
(F2 MV §) ® K, respectively, which in turn bound F,.

when the sampling is every other row and column, and
has its odd column coordinates in its vertical boundaries
and its odd row coordinates in its horizontal boundaries.

FeK=(FNS)eK and F=(FNS) e K.
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Fig. 8. A third example of how crosion and dilation of ¥, bound {in this
case properly) the minimal reconstruction {3 N §) e K and the maximal
reconstruction (F; 0 §) @ K, respectively, which in turn bound (in this
case properly) Fi.

The bounding relationships for F;, illustrated in Fig. 7,
are

FZGKE(FZHS)'KEFQ
—(/RNS)eKESF oK

3) Example 3: The pixels containcd in the vertical
boundaries of F; have odd column coordinates, and the
pixels in the horizontal boundaries of 5 have even row
coordinates. Hence, no cqualities should exist in the
bounding relationship. This is illustrated in Fig. 8. The
bounding relationships for F are

FRe KS(FRNS)*KS Fc(FRNS)
' e KC F, @ K.

To show why the opening condition F = F'o K is needed
for the bounding relationships involving F, we show an
example set Fy which deviates from the set F3 by adding
six extra points to it (see Fig. 9). The sample and recon-
struction results of Fy, Fy 0 S, (Fy N S) ® K, and (I
N S§) @ K are exactly the same as the results for Fa.
However, no bounding relationships between F, and its
sample reconstructions are applicable. If we open Fy by
K, the bounding relationships exist because Fy © K = F;.

C. The Distance Relationships

We have established the maximality of the reconstruc-
tion (F N §) @ K with respect to the property of being
open and downsampling to F N S, and the minimality of
the reconstruction (F N §) ® K with respect to the prop-
erty of being closed and downsampling to F 11 §. We now
give a more precise characterization of how far F & K is
from F ® K, how far F o K is from F ® K, and how far
(FNS)e Kis from (F N §) ® K. This is important to
knowsince F @ KS (FN §)* K& Fwhen F == F e
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FNS

Fig. 9. A set F, which is not open under K. Its sampling Fy N § is identical
to the sampling of F, yet the maximal reconstruction (F, N §) @ K
does not constitute an upper bound for F, as in the previous examples.

KandFCS(FNS) e K< Fe KwhenF=FoK,
and (FNS)seKc FS(FNS)e K when F = Fro
K = F e K. Notice that in all three cases, the difference
between the lower and the upper set bound is just a dila-
tion by K. This motivates us to define a distance function
to measure the distance between two sets and to work out
the relation between the distance between a set and its
dilation by K with the size of the set K. In this section,
we show that with a suitable definition of distance, all
these distances are less than the radius of K. Since K is
related to the sampling distance, all the above-mentioned
distances are less than the sampling interval.

For the size of a set B, denoted by r(B), we use the
radius of its circumscribing disk. Thus, r(B) = min,.p
max,p | x — y1l. The more mathematically correct forms
of inf for min and sup for max may be substituted when
the space E is the real line. In this case, the proofs in this
section require similar modifications. For a set 4 which
contains a set B, a natural pseudodistance from A to B is
defined by p(A. B) = max,., MiN,ep lx — yll. Propo-
sition 8 proves that 1) p(4, B) = 0,2) p(a4, By =0
implies 4 € B, and 3) p(A, C) < p(A, B) + p(B, C)
+ r(B). The asymmetric relation 2) is weaker than the
corresponding metric requirement that p (4, B) = 0ifand
only if A = B. and relation 3} is weaker than the metric
triangle inequality.

Proposition 8:

1) p(4,B)y =0
2) p(A,B) =0ifandonly if4 = B
3) p(A, C) = p(4, B) + p(B, C) + r(B).

Proof:

1) p(A, B) = 0 since p(A4, B) = max e  Min yep
lx — vyl and x — yll = 0. '

2) Suppose p(A, B) = 0. Then max,.4 mingep
la — bll = 0. Since {la = bl = 0, max,es MiNyep
la — bll = 0 implies for every a € 4, min,cp lla — bl
= 0. But |la — & = 0if and only if a = b. Hence, for
every a € A, there exists a b € B satisfying a = b, i.e., A
C B. Suppose A € B. Then for each a € A, min, 5 la
—~ b|l = 0. Hence, max,, 4 min,.glla — &l = 0.
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3)

p(A, C) = max min |la — ¢
agd ceC

< max min |a — b}| + [[& ~ ¢|
aed (el
forevery b € B

< max {[la — b} + min |6 - ]}

forevery be B

= max { o — B ax il 7 — o

forevery b e B
< p(B,C) + max |la — b]| for every b € B.

But max [ja — b|
aed

It

max fl@ = b' + b’ — b| forevery b, b' € B

a€eA

IA

max ||@a ~ &'|| + ||b' — b]| forevery b, b’ € B.
ac A4
Finally max ||a — &]|
acA
< |6’ — b]| + max ||a — &'| for every b, b’ € B.
a€A

Thus, max ||a ~ b
‘aed

1A

max [|b’ ~ b| + min max |a — b'|
b'eB b'eB aeA

forevery be B
max 6" — b| + p(4, B).
b'eB

IA

Finally p(4, C)

< p(B,C) + max ||b" — b forevery b€ B
b'eB
< o(4, B) + p (B, C) + min max {[5' ~ b]|
beB b'eB
=

p(A4, B) + p(B, C) + r(B).

The pseudodistance p has a very direct interpretation.
0(A, B} is the radius of the smallest disk which when
used as a structuring element to dilate B produces a result
which containg A.

Proposition 9: Let disk (r) = {x| | x| = r} and A4,
B < F". Then max,., min, 5 la — b| = inf{r|4 €
B @ disk(r)}.

Proof: Let py = max,., min, 5z la — b and r, =
inf{riA € B ® disk(r)}. Leta € A be given. Let b, &
B satisfy lla ~ byll = min,ep la — b]. Now, py =
MaXceq Minyep [|¥ = yl| = min, g la — &l Hence, py
= lla — bl so that @ — by € disk ( py). Now, by € B and
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a — by € disk(po) impliesa = by + (@ — by) e B ®
disk( po). Hence, A € B @ disk( py). Since ry = inf {r|A
€ B o disk(r)}, ro < po. Suppose 4 € B o disk(ry).

Then max,c, MiNye g o gisk(ro) la — b|l = 0. Hence,
MaX,eq Millyey Milyegny 1@ — & — yl| = 0. But
Ia'=5) =yl = ['a'~ bl ~ || yll. Therefore,
0 =2 max min min fa - &) - ||y
acd beB yedisk(rg)
z maxmin [a — [ + min - |y
u€d beB yedisk(ro)
= max min @ — b|| -~ max ;
aed beB “ ” vedisk(rg) Hy”
Now py = max,, minyez fla — bl and r, =
MaXy e disk( rp) H y” lmplles 0= Lo — Iy 8O that g = po.
Finally, ro < pp and ry = pg implies ry = po. i

The pseudodistance p can be used as the basis for a true
set metric by making it symmetric. We define the set met-
ric oy (A, B) = max { p(4, B), p(B, A4)}, also called
the Hausdorf metric. The proof that p,, is indeed a metric
follows rapidly after noting that py (A, B) = inf {r|4 <
B o disk(r)and B € A @ disk(r)}. This happens since

pnld, B) = max {p(4, B), o(B, 4)}

= max {inf{r|A S Be disk(r}},
inf{r|B < 4 @ disk(r)}}
inf{r|4 < B @ disk(r) and
B < A e disk(r)}.

I

A strong relationship between the set distance and the
dilation of sets must be developed to translate set bound-
ing relationships to distance bounding relationships. We
show that p(A ® B, C @ D) < p(4, C) + p (B, D)
and then quickly extend the result to py,(4 @ B, C & D)
= pu(4, C) + ou(B, D).

Proposition 10:

1) o(A® B,C e D)< p(A,C) + p(B, D)
2) pu(A ® B, C ® D) < py(A, C) + py(B, D).
Proof:

1) (4 ® B, C @ D)

= max min [x — yl
xeAde B yeCe D

= max max min min ||@ + & ~ ¢ — d |
acd beB ccC deD

< max max min min {||a@ ~ c| + ||b — dl]
acA heB deD ced :

A

max max min [(min la =c|) + o — d||]
aed beB deD eC

A

max min |a — c|| + max min 6 —dj
aed ceC bel deD

IA

p(4, C} + o(B, D)
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2) pu(A ® B, C ® D)
= max {p(A @ B, Ce D),
p(C e D, 4@ B)}
max {p(4, C) + p(B, D), p(C, 4)
+ p(D, B)}
max {p(A, C)p{C, A)}
+ max { p(B, D), p(D, B)}
pu(A, C) + p,(B, D). . n

IA

A

IA

From this last result, it is apparent that dilating two sets
with the same structuring element cannot increase the dis-
tance between the sets. Dilation tends to suppress differ-
ences between sets, making them more similar. More pre-
cisely, if B=D =K, thenpy(4d @ K,C & K) < py, (A,
C). It is also apparent that py, (4, A ® K) = py(4 @
{0}, 4 @ K) < py(A, A) + py({0}, K) = py ({0},
K) = max; g llkl. Indeed, since the reconstruction
structuring element K = K and & € K, the radius of the
circumscribing disk is precisely max, x | £!. Hence, the
distance between 4 and 4 @ K is more than the radius of
the circumscribing disk of X.

Proposition 11: If K = K and 0 € K, then r(k) =

max || k[l
kek
Proof :
r(K) = min max |x — y|| = max |0 - y|
xek yek yekK

< max | y| and max | y]
vek yekK

=imax |[y—x+x+y|forxek
yek

1A

%{Tea; ly = x| + 1;1;1; l|x + yii} forxe K

1A

%{max |x = »|| + max [lx y”} forx e K
vek vek

< max ||x ~ y| forxe K
vek

< NI |
= min max [z — y| = r(K). -

Since py (A4, A ® K) < max,g |l k] and max,.x || |l
= r(K), we have py; (4, A @ K) < r(K). Also, since
Ae KD A, py(Ae K, A) = p(A* K, A). Since 0 € K,
Ae K< A e K. Hence, py(A* K, A) = p(d° K, A)
<p((A°K)® K,A) =p(A @ K, A) = r(K).

It immediately follows that the distance between the
minimal and maximal reconstructions, which differ only
by a dilation by K, is no greater than the size of the re-
construction structuring element; that is, pyu((F N §) @
K. (FNS)e Ky=sr(K). WhenF=FoK=FeKk,
(FNS)YysK<S Fc (FN S) & K. Since the distance
between the minimal and maximal reconstruction is no
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greater than r(K ), it is unsurprising that the distance be-
tween F and either of the reconstructions is no greater
than r(K).
Proposition 12: If A € B € C, then 1) py(4, B) <
pu(A, C), and 2) py(B, C) s pylAd, C).
Proof:
1) Since A © B, py(A, B) = p(B, A), then

p(B, A) = max min |6 - a
beB ac4

< max min |[c — a| since B € €
ceC aeA

IA

p(C, A) = pyu(A, C)since 4 < C.

2) The proof of (2} is similar to (1) with B taking
the role of 4 and C taking the role of B, 7

Now it immediately follows that if F = Fo K = F »
K, o(F,(FNS§)e® K) =< r(K)and py(F, (FN §)
* K) <= r(K).

These distance bounds can actually be shown under
slightly less restrictive conditions. Suppose that F = F o
K. Then it follows that FE€ (FN S) & K. Since FN §
CF(FNS)s KCFe® K Hence, FS(FNS) e
K< Feo K Butpy(F,Fe K) < r(K). Hence, py(F,
(FNS)e K)=r(K)and py,((FN S) ® K, F &
K) = r(K). It goes similarly with the closing reconstruc-
tion.

When the image F is open under K, the distance be-
tween F and its sampling F N § can be no greater than
r(K). Why? It is certainly the case that F N § € F €
(FN1§) e K. Hence, py(F,FN S§) < py(FN 8. (F
NS)e K)=riK).

If two sets are both open under the reconstruction struc-
turing element K, then the distance between the sets must
be no greater than the distance between their samplings
plus the size of K.

Proposition 13: If A = Ac Kand B = B o K, then
(A, B) < ppy (AN S, BN S) + r(K).

Proof: Consider p(A4,B). p(A,B) < p(A,BN §).
SinceA = A°K,AC (AN §) e K. Hence, p(A4, B)
=p(Ad.BNS)=p((ANS)e K, BN S) < p(4
NS, BN S)+ r(K). Similarly, since B = Bo K, p(B,
Ay =p(BN S, AN S)+ r(K).

Now

pu(A, B) = max {p(A, B), p(B, A)}
< max {p(4 NS BNS)+ rk),
p(BN S, ANS)+ r(K)}
= r(K) +max{p{A NS BNS),
p(BN S, AN S)}
= r(K) + pu(A N S, BN S). 23

From this last resuit, it is easy to see that if F is closed
under K, then the distance between F and its minimal re-
construction (F ) §) * X is no greater than r(K). Con-
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sider
pu(F, (FN S) oK)
<pu(FNS ((FNS)ek)N §) + r(K)
=pu(FN S, F 0 S) + r(K) = r(K).

These distance relationships mean that just as the standard
sampling theorem cannot produce a reconstruction with
frequencies higher than the Nyquist frequency, the mor-
phological sampling theorem cannot produce a recon-
struction whose positional accuracy is better than the ra-
dius of the circumscribing disk of the reconstruction
structuring element K. Since the diameter of this disk is
Just short of being large enough to contain two sample
intervals, the morphological sampling theorem cannot
produce a reconstruction whose positional accuracy is
better than the sampling interval.

D. Examples

We use the example sets Fy, F,, F;, and F; in comput-
ing the distance between the original images and the sam-
ple reconstruction images. The values max, g |x — y||
for each x € X are shown in Fig. 10. The minimum value
among them, «/2, is the radius (K ) since (K ) = min, . x
max, .« l|x — y|.

We now measure the distance between two sample re-
constructions for all the example sets. To compute py, ( (F,
NS)eXK (F,NS) e K), we first compute p ((F, N
S)ye K, (FiN S)eK)and p((F, N Sre K, (F, N
S) @ K). The values minye(r ngx [x — y| forallx e
(Fy N §) & Kareshownin Fig. 11. The maximum value
among them, \@ is the distance p((F, N §) e K, (F,
M §) e K). Similarly, we can compute p((F, N §) e K,
(Fy N §) @ K) which equals 0. Thus, py((F, N §) e
K,(F, N S) ® K)equals v2 which is exactly the radius
r(K). Similarly, the distance between two reconstruc-
tions for sets F,, F3, and F, can be measured and they are
all equal to r(K). )

What is the distance py(F, (F N §) @ K) for the
example sets? Since Fy = (F; N §) * K, pyu(Fy, (F, N
S)ye K)=pu((F,NS)* K, (F,NS)® K)=r(K)
It is easy to see py ((F,, (F, M S) ® K) = 0 because
F, = (F, N §) & K. Fig. 12 shows the values minyer,
fx — yl forallxe (F; N §) @ K, their maximum value
being p((F3N §) ® K, F;) = 1. Since F; € (F, N §)
® K, p(Fy, (F; N §) & K) equals 0. Hence, py ((F;
NS)e K, F3) =1< r(K).

The distance p (Fy, (F, N §) @ K ) is interesting since
Fy # Fy© K. The minyernsyox | x — y| values for all
x € Fy are shown in Fig. 13(a), their maximum value being
p(Fy, (F, N S) ® K) = 2. The min,cp, || x — y|| values
forallx e (F;, N S) ® K are shown in Fig. 11(b), the
maximum value is p ((F; N §) @ K, F,) = 1. Thus, the
distance py(Fy, (F4 N S) ® K) is equal to 2 which is
greater than r(X ). This shows why the condition F = F
© K is required to bound the difference between F and its
maximum reconstruction (F N §) @ K. Similarly, we
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Fig. 10. The max,cx [lx — y! values for all x & K, where K is the digital
disk having radius V2.

Fig. 11. The minyep nsyex 1x — yll forallzxe(F, N §) o K.
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Fig. 12. minyeq lx — yll forcachx e (F, N §) & K.
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Fig. 13. (a) Values for min, . r,ns,s ¢ |x ~ v|l for all x & F,. (b) Values
for min,cr, [lx — y|| forallx € (F, N §) ® K. The maximum among
all these values is 2. Hence, py ((F, N §) ® k) = 2 > r(K).
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find
ou((FLNS) e K, F e K)=0< r(K)
ou((F,NS) e K, F, @ K) =~2 = r(K)
eu((F;NS) e K, F; @ K)=1< r(K)
ou((FaNS) e K, Fy e K)=2> r(K).

Note that since Fy # F o K, py((F, N S)Y o K, Fy o
K) £ r(K). Using the minimum reconstruction, the po-
sitional accuracy for the example sets are

pulFi, (F,NS)eK) =0 < HK)
pu(Fo (F, N S) * K) = V2 = r(K)
pu(Fs, (Fs N S)eK) =1 < r(K)
pu(Fi, (Fs N S)*K) =3 > r(X).

Also, since F, ¥ F, * K, p,,(Fy, (F, N S)* K) £

r(K).

E. Binary Digital Morphological Sampling Theorem

This subsection summarizes the results developed in the
previous subsections. These results constitute the binary
digital morphological sampling theorem.

Theorem 1—Binary Digital Morphological Sampling
Theorem: LetF, K, S < E". Suppose K and § satisfy the
sampling conditions

HSaS=3S

2)§=25%

KNS = {0}

H K=K

5) xeK,implies K, N K, N 5 = ¢J
Then

DFNS=[(FNS)«K]NS.

DFNS=(FNS)Yse KNS

DN(FNS)* KCS Fe K.

4 FoKS(FNS) s K.

HIUHF=FeoK=FeE then(FNS§S)eKC FC
(FNS)s K.

6) f A=A KandA4d N S :
NS)eKimpliessd = (FN §)* K

NIHfA=AcKandANS§S=FN S, thend 2 (F
NS)e Kimplies A =(FN S§) @ K.

) HF=FeK thenpoy(F,{(FNS$§)*K) = r(K).

NIF=FocK, then py, (FN §) s K, F) <
r(K).

F O S, thend € (F

IV. MORPHOLOGICALLY OPERATING IN THE SAMPLED
DoMaIn

Section 11 established the relationship between the in-
formation contained in the sampled set and the informa-
tion contained in the unsampled set. It shows that a min-
imal and maximal reconstruction can be computed from
the sampled set. When the set is smooth enough with re-
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spect to the sampling S (that is, when the set is both open
and closed under the reconstruction structuring element),
then the minimal and maximal reconstructions bound the
unsampled set, differing from it by no more than the sam-
pling interval length.

Not addressed in Section III is the relationship between
the computationally more efficient procedure of morpho-
logically operating in the sampled domain versus the less
computationally efficient procedure of morphologically
operating in the unsampled domain. In this section we
quantify just exactly how close a morphological operation
in the sampled domain can come to the corresponding
morphological operation in the original domain. Thus, we
answer the question of how to compute the largest length
of sampling interval which can produce an answer close
enough to the desired answer when morphologically op-
erating in the sampled domain.

The first proposition shows that a sampled dilation con-
tains the dilation of the sampled sets and a sampled ero-
sion is contained in the erosion of the sampled sets.

Proposition 14: Let B € E" be the structuring element
employed in the dilation or erosion. Then

D((FNS)ye (BNS)Yc(Fe B)NS

Dy (FNS)ye(BOS)2(Feo BYNS

Proof:

I)FﬂSQFandBﬂSCB Hence, (FN §)

@ (BNS)c Fe B.Also, FNS<c SandBN § <
S.Hence, (FNS)e(BNS)C Sa S.ButS & § =
S.Then, (FN S)e (BN S) (Fe BYN S

o
DBy(OH[(FeB)NSJe(BNS)CS[(Fe
B)es BINS=(FeBYNSSFN S But[(Fe B)
NSle(BNS)YS(FN S)ifandonly if (FN §)
e(BNS)y2(Fe B)yNS. £

Unfortunately, the containment relations cannot, in
general, be strengthened to equalities. But we can deter-
mine the conditions under which the equality occurs and
the distance between sets suchas (FN S) @ (BN §)
and (F @ B) N S. In the sampled domain, we compare
the scheme of sampling and then performing the dilation
in the sampled domain to dilating first and then sampling.
We also mquire about how different things could be in the
unsampled domain by comparing performing the dilation
in the sampled space and then reconstructing versus per-
forming the dilation in the unsampled domain. The next
proposition shows that this difference in the sampled do-
main cannot be more than 2r (K ).

Proposition 15: If F = Fo Kand B = B © K, then
eu((Fe BYN S, (FNS§) e (BN S)) =< 2r(K).

Proof: First consider p((F @ BYN S.(FN S) &

(BOSH=p(Fe B,(FNS§)a (BNS)). Since F
=FoKandB=BeK FC(FNS§)a Kand B ©
(BN §) @ K. Hence,

p(Fe B,(FNS)e (BN S))
=sp((FNS)e Ko (BNS)s K, (FNS)
e (BNS))
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<p([(FNS)e (BNS)®Ke K, (FNS)
e (BNS))
=r(K e K) < 2r(K).

Nextnotethat p((FN S) e (BN S, (Fe BYN S)
=0.Since(FNS)es (BNS)<E (Fe B)N S. Now
pu({(Fe BYNS,(FNS)Ye (BN S)) =max { p((F
@ BYNS,(FNSYe (BN §)),p((FNS) & (B
NS),(Fe B)NS)} < max {2r(K),0} = 2r(K).
|
Whereas dilation tends to suppress differences, erosion
tends to accentuate differences. Consider the following
example. Let F be a disk of radius 12, and let B be a disk
of radius 10. Then F & B is a disk of radius 2. Now define
F' to be a disk of radius 12 with its center point deleted.
Notice that the pseudoset distance between F and F' is
zero. But although F ' close to F, F' e B = . The
difference of one point makes all the difference.
More formally, consider the difference between the ero-
sion of F and the erosion of F & K.

pu((F @ K) e B, F e B)
p((F ® K) © B,F e B)
p((F e By @ K, F e B)

since (Fe K)e BS (Fe B) o Kwhere p({(F © B)
@ K, F e B) is no greater than, and could be as close as
possible to, r(K).

Thus, we cannot expect that the difference between per-
forming an erosion in the sampled domain versus per-
forming a sampling of the erosion in the unsampled do-
main is no greater than the size of K. However, we do
obtain set bounding relationships for dilation and erosion
using the following relationships.

Dilating (eroding) a sampled set by a sampled structur-
ing element is equivalent to sampling the dilation (ero-
sion) of the unsampled set by the sampled structuring ele-
ment.

Lemma:

v

DFNS)Ye(BNS)=[Fe(BNS)INS
INns

D(FNS)ys (BN S) [Fe(BNS)
Proof:
D [F@(BﬂS)]ﬁS:—'< U FJHS
YeBNS
= U (F, N§).
aeBNS
But x € § implies § = §,. Hence,
[Fe(BNS)NnS= U F NS
xeBNS
= U {FHS)I
teBNS

(FNS)e (BN S).
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2y [Fe(BNS)NS

=( N Fx) ns
xeBNS

= ( N Fx> ns
xeBN3

= (1 (F,NS)
.1EBn.§
.} (F, N §,)since x € § implies S, = §
xeBNS

= [ (FNS§
xeaﬂs( )"

Il

(FNS)ye (BN S). ]

Moreover, the dilation of the minimal reconstruction by
a structuring element B open under K is contained in the
dilation of the maximal reconstruction by the sampled
structuring element B M §.

Lemma: letB=Bc K. Then{[(FN S)*K]ae BC
[((FNS)e K]le (BN S).

Proof: Let x e [(F N §)e K] ® B. Then there
existsan fe (F N S)y® Kand b € B such thatx = f +
b. Since B = B © K, b € B implies there exists a y such
that b € K, © B. But because of the sampling constraint
between K and S, b € K, implies K, N K, N S # &.
Therefore, there exists a z € K, N S. Now z € K, implies
that z = k + b for some k € K. Since it is also the case
that z € XK, it must be that z € B because K, & B. Recall
thatx = f+b=f+z~k=(f~k)+ 2z Sincefe(F
NS)YeK=[(FNS)e® K] e Kandsince —~kek =
K.f-ke((FNS)eK]leK)Ys K=(FNS§)e
K. SincezeBandze S,zeB N 8 Finally, f— ke(F
NS)Ye Kandze BN Simplyx = (f~ k) +ze[(F
NS)ye Kle (BN S). [}

Now we see that dilation in the sampled domain and
dilation in the unsampled domain are equivalent exactly
when the structuring element B of the dilation is open un-
der K, and when the image F is its minimal reconstruc-
tion.

Theorem 2: Let B = Bo K. Then(F N §) & (B N
Sy={[(FNS§)=K]J]e B} NS

Proof: (FNS)e (BN S)=((FNS)e B)N
Sisalwaystrue. Since FN SC (FN S)e K, ((FN
SYeB)NSc{[(FNS)*K]e B} NS But[(F
NS)*K]j]eBCS[(FNS)e® K] e (BN S)when
B=BoK Hence,(FNS)e (BNS)c {[(FNS)
eKleB}NSC{[(FNS)e K]e (BN S} N
S.Now {[(FNS)e K] e (BNS)} NS = {[(F
NS)yes KNS} e (BNS).Since [(FN S) ® K]
N § = F N § always holds under the sampling condi-
tions, thereresults (F N S)Y @ (BN S) S [(FMN §)e
Kle(BNS)YS(FNS§) e (BN S§)sothat (FN
SYe (BNS)=[(FNS)*K]s (BNSI). L

The equatity relationship established in the theorem im-
mediately leads to a set bounding relationship for dilation.
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[(Fek)eBlNnsSc{[(FNS)*K]e B} NS
=(FNS)e (BNS)
S (Fe B)NS.

Also from the theorem, it becomes apparent that the
difference between the maximally reconstructed dilation
and the dilation of the minimal reconstruction can be no
more than the size of K when B is open under K. This
happens because

ou([(FNS)e (BNS) e
® B)
=m({[(FNS)e (BN S e k}NS,
{[(FNS)*K] e B} NS)+r(K)
< pu((FNS)e (BN S),(FNS)
o (BN S)) + r(K) = r(K).

K, [(FNS)*K]

Similarly, eroding a sampled image by a sampled struc-
turing element is equivalent to eroding the maximal re-
construction by the structuring element and then sampling
when the structuring element is open under K.

Theorem 3: Let B = Bo K. Then (F N §) © (B N

={[(FNS)e K] e B} NS.
Proof: The sampling conditions imply [(F N S) @
K] N §=FN § Hence,

(FNS)e (BNS)
={[FNnS)ek]NS}e (BNS)

{[Fns)yek]e (BNS)INS

{[FN5s)e kK] e B}NS. E

U

Under the sampling conditions, (F N §) e (BN §)
< S. So to complete the equality, we need to show that
(FNS)YseBNSYc[(FNS)ye K} e B Letxe
(FNS)e (BN S). Then (BN §), & FN §. Since
B=BoK, Bc(BNS)we K. Hence, B, € (BN S),
o KBut(BN S§), € FN Ssothat B, € (FN §) &
K. Now by definition of erosion, if B, € (FN §) & X,
thenxe[(FNJ§)e K] e B.

Theorem 3 immediately leads to some set bounding re-
lationships for erosion

(FeB)NSc (FNS)e (BNS)
={[(FNs)e K]e B} NS
c[(Fe K)e B|NS.

Theorem 3 also makes it apparent that the difference
between the maximally reconstructed erosion and the ero-
sion of the maximal reconstruction can be no more than
the size of X when both B and the erosion of the maximal
reconstruction are open under K. This happens because
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u(lFNS)e (BNS) e
eB)

K [(FNS) e K]

=ou({{FNS)e (BNS) ek} N5,
{[(Fn s} e K] e B}NS)+r(k)

=ou((FNS)e (BN S),(FNS)
e (BN S)) +r(K)=r(K).

Just as it was the case that dilating (eroding) a sampled
set by a sampled structuring element is equivalent to sam-
pling the dilation (erosion) of the unsampled set by the
sampled structuring element, so it is also the case that
opening (closing) a sampled set by a sampled structuring
element is equivalent to sampling the opening (closing) of
the unsampled set by the sampled structuring element.
These relationships are useful in establishing when the
opening and closing operation are equivalent in the sam-
pled and unsampled domain.

Proposition 16: [Fe (BN SN S=(FNS)o(B
NS

Proof: Letxe[Fe (BN §)Y] N S. Thenxe Fo
(BN S)andxe S. Butxe Fo (B N §) if and only if
forsomeyeF e (BN S),xe(BN §), € F. Nowx
€(B N §),impliesx = b + y where b € B N S. Then
y =x — b. Since b € § and since § — §, —b € §. Since
xeSand ~be S, x —beS e S.ButS & § =38 Then
y€S. Now we show thaty € Sand (B N §), & F imply
(BNS§), €FNS Letze(B N §),since (BN S),
S FzeF Nowze(BNS§)y,=BNS§, =B,NS§
since y € S. Hence, z € §. Hence, z € F N §. Finally, x
E(BNS§), € FN Simpliecsxe(FN §)° (BN §).
Thus, [Fo(BNSINSS(FNS)o(BNS).

Now suppose x € (F N §) o (B N §). Then there
existsave(FN S)e (BN S)suchthatxe (B N &3y
SFNSBuFNSCF Thenxe(BN §), € Fand
this implies thatx e Fo (B N §). Also, x € F N § implies
xeS. Thenxe[Fo (BN S)] N S. This establishes that

(FNS)Ye(BNS)S [Fe(BNS)I NS il
Proposition 17: [F* (BN S)]NS=(FNS)*(B
(Y 5).

Proof: Letxe{Fe (BN S)J]N S. ThenxeFe
(BN S)andx e §. Butx e Fe (BN §)if and only if
xE(BﬂS)ylrnphesxe(BﬂS)}ﬂF¢Q’i Let y
satisfy x e (B 1 §),. Thenx—b+ywherebEBﬂS
Theny = x — b. Sincexe Sand —beS,yeS o § =
S.NowifyeS,then (BN §), N F = B,N3,NF=
B, NS, ﬂSﬁF—(BﬁS)yﬂ(FﬂS) Nowxe(B
A ), implies (B (1 §), N F # . Since (BN §), N
F=(BN S), N(FNS), (BﬁS}yﬂ(FﬂS)aﬁ
5. This implies thatx e (F N §) e (B N §).

Letxe(FN S§)e (BN S). Thenxe (BN S),
1mplles(BﬂS) N(FNS) = &. But(BﬁS)y
(FN S) < (BA S), N F. Hence, (B M 8), N F #
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¢ and this implies thatx e F ¢ (B N §). Also,
(FNS)s(BNS)
=[(FNS)e (BN S)] & (BNS)
{[Fe(BNS)Ins}e(ns)
SSe(BNS)cSe S8

Hence, x € §. Finally, x e Fo (B ) §) and x € § imply
xelFe(BN SHI NS 4
The bounding relationships between the sampled and
unsampled domains for the opening and closing operation
now follow immediately.
Theorem 4: Suppose B = B o K, then

) {Fo[(BNS)® K]} NSC (FNS)o(BN
SYc{[(FNS)e K]°oBYNS

D {[(FNS)eK]*BINSCS(FNS)e (BN
SYc{Fe[(BNS)e K]} NS

Proof:

1) Noticethat (BN §) ® K] (BN S) = (B
M §) & K. Under this condition, {Fec [(B N §) @
K1} NS < [Fo(BN §)I N S. But by a previous
proposition [Fe (BN S)I N S=(FN S)o(BNS).
Now suppose x € (F N §)© (B N §). Then there exists
aysuchthatxe (BN §), € FN S. But(BN §), ¢
(FN §S)imples (BN §), e K< (FN S) ® K since
dilation is an increasing operation. Hence, [(B N S) o
Kl,c(FNS)e K. SinceB=BoK,BS(BNSY)
® K. Then, B, C (FN §) @ K. Also, xe (B N §),
implies x € B,. Finally, x € B, € (F N §) & K implies
xe[(FNS)ese K]oB.

2) By a previous proposition (F N §)* (BN §)
=[Fe(BNS)IN S Since[(BNS)® K]o(BN
S)=(BNS)e K, [Fe(BNSINSc {Fe[(B
NS)Ye K]} NS LetR=(FN S)e*K. Since B=18
°©K,R @ Bis open under K. Hence, R @ B S [(R @
BYN S} & K. Now

(ReB)NS=[(ReB)e BINS
g({{(ReaB)ﬂS]aaK}eB)ﬂS.

But the sampled erosion of a maximal reconstruction is
the erosion of the sampled set by the sampled structuring
element. Hence,

({llreByNslek}eB)ns
=([(R e BYyN S]) e (BN §).

And the sampled dilation of a minimal reconstruction is
the dilation of the sampled set by the sampled structuring
element. Hence,

[(ReB)NS]e (BNS)
=[(RNS)e (BN S)] e (BN S)

Finally, RN S =[(FN §)* K] N § = FN S so that
({(FNS§S)eK]jeB)yNSCS(FNS)s«(BNS). W
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The bounding relationships immediately imply the fol-
lowing equivalence for the opening and closing opera-
tions between the sampled and unsampled domains.

Theorem 5: Suppose B = Bo K.

DIfF=(FNS)e Kand B= (BN §) @ K,
then (FO S)Ye (BN S)=(FeB)NS.

D fF=(FNS)*KandB=(BN S) e K, then
(FNNS)Ye(BNS)y=(FeB)NS.

Proof:

DIF=(FNS)e KandB=(BN S) @ K,
the bounding relationship for opening becomes

(F’B)QSE(FOS)O{BHS)C_'-_'(FOB)DS
from which we immediately obtain (Fo B) N § = (F N
Sye(BNS).

HUfF=(FNS)*KandB=(BN S) & K,
the bounding relationship for closing becomes

(FeBYNSS(FNS)e(BNS)S(FeB)N S

from which we immediately obtain (Fe BY N S = (F N
S)ye(BN §). i)

A.  Examples

A simple example illustrates the bounding relationships
of morphological operations operating in the pre- and
postsampled domain. The sample set S and the set K we
used are those defined in the previous examples (see Fig
5). The sets F, B, and K are defined in Fig. 14. It is clear
that B = B o K. In Fig. 15, we show the results of down-
sampling every other row and every other column, F N
S, B N S, and the sampled domain morphological oper-
ations, (FN1 S) e (BN S), (FNS)Ye (BN §). The
results [(FN S)*K] e B,[(FNS)e K] e B, {[(F
NS)eKle Bt NS, and{[(FNS)e K] e B}N
§ are shown in Fig. 16. Note that the following equalities
hold:

(FNS)e (BNS)={[(FNS)sK] ® By NS
and
(FNS)e (BNS)={[(FNS)es Kk]e B}Ns

Fig. 17 shows (F & By N S, (F @ BYN S, (F & (B
M §)),and (F & (B N §)). Note that the following are
true:

(FNSYs(BNS)S(FeBNS
and
(FNS)e (BNS)2(Fe B)NS.
It can be easily verified that
(FNS)e(BNS)=[Fe (BNS)]NS
and
(FNS)e(BNS)=[Fe (BN S)|NS.

In practical multiresolution image processing applica-
tions, we would like to perform morphological operations
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Fig. 16. The dilation and erosion of the minimal and maximal reconstruc-
tion of F by the structuring element B, and also the sampling of this
dilation and erosion.

in the sampled domain to reduce the computational ex-
pense. How well can a morphological operation be per-
formed in the sampled domain rather than the original do-
main can be answered by the relationships and distances
between (FN S) @ (BN S)and (F & B) N §as well
as (FN S) e (BN §)and (F & B) N §. Unfortu-
nately, the distance

W((FNS)e (BNS), (FeB)NS)<2r(K)
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Fig. 17. Some morphological operations in the original domain followed
by sampling.
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Fig. 18. The values of min,erns,e(ans) forall xe (F @ BY N §.

can be guaranteed only when F = Fo Kand B = Be K.
It can be very big when the set F is not open. The set F
of Fig. 14 is an example having a large difference between
the pre- and postsampled dilations because the conditions
F=FoKand B = Bo K are not satisfied.

We now show the distances between the pre- and post-
sampled morphological operations. We first check the
distance between (F N S) & (BN S)and (F & B) N
§. The minye(rnsyeans i1X — ¥l values forall x e (F @
B) N S are shown in Fig. 18; their maximum value is
p((Fe BYN S, (FNS)ye (BN §)) =4. Since (F
NSye (BNS) C(F e B) NS, the distance p((F
NS)Yye (BN S), (Fe B)YNS) =0, Thus, py ((F
NSYye (BN S). (Fe B)N§)=4. Note that

pu((FNS)e (BNS),(Fe B)NS)
sid, o 2r(K)

since F # Fo K. Suppose F' = FoKand B' = Bo K.
Fig. 19 shows the results of (F' N S) & (B’ N §) and
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Fig. 20. The distance between the result produced by reconstructing the
morphological dilation done in the sampled domain and the dilation of
the minimal reconstruction done in the original domain must be less than
r(K) = 2.

(Fle B'YN S§.Since (FFNS)e (BNS)=(F'a
B’) M § in this example, we find that
ou((FFNS)e (BPNS),(FeB)NS)
=0 < 2r(K).

Now we check the distances between the maximally re-
constructed dilation (erosion) and the dilation (erosion) of
the minimal (maximal) reconstruction, py ([(F N §) &
BNS) e K,(FNS)eK] e B)(pu([(FNS)
e(BNS)e K, [(FNS)e K]eB)).[(FNS) e
(BN S) # Kand [(FN §)e K} @ B are shown in
Fig. 20. The values of miny(rnsyexjo s | X — y|i forall
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Fig. 21. The distance between the result produced by reconstructing the
morphological erosion done in the sample domain and the erosion of the
maximal reconstruction done in the original domain must be less than
r(Ky =2,

xe[(FNS)e (BN S)] ® K are shown in Fig. 20;
their maximum is p,([(FN S) @ (BN S)] @ K, [(F
MNSY*K}e B)=1.8ince[(FNS)eK]® B C
[(FMN S§)a (BN §)] ® K, this implies p([(F N §)
e K]le B,[(FNS§)eo (BN S)] ® K) = 0. Hence,
ouy(ItFNS)*Kle B, [(FNS)s (BN S§)] e K)
=]1=r(K)[(FNS)Ye (BN S)] & Kand [(F N
S) @ K] © Bareshown in Fig. 21. Note that [(F N §)
@ K] o B is open under X. The values of
min,cqrnsyekjep |x — yll forallx e [(FN §) e (B
N §)] @ K are shown in Fig. 21; their maximum is
p{lI(FNSYe(BNS)]Je K, [(FNS)e K] e B)
=1.Since[(FNS)e KjeBeS[(FNS)e (BN
§)] & K, this implies p([(F N S) @ K] @ B, [(FN
S)Ye (BN S)] @ K) =0 Hence, pu, ((FN §S) @
Kle B, {(FNS)Ye(BNS)le K)y=1=<r(K).

V. THE GRAYSCALE MORPHOLOGICAL SAMPLING
THEOREM

In this section we present the extension of the mor-
phological sampling theorem from the binary case to the
grayscale case. We begin by reviewing some definitions
and results [8].

We adopt the convention that the first (N — 1) coor-
dinates of the N-tuples in a set 4 € EV constitute the
spatial domain of A, and the Nth coordinate represents the
surface, i.e., 4 € EV"! x E. For grayscale images, N
= 3 and an image is a functionf = E X E = E. Aset 4
¢ EN ! x Eis an umbra if and only if (x, z) € A implies
that (x, z) € A forevery z < y. The top of A is a function
T{A) mapping the spatial domain of 4, {x € E"™!| for
somey € E, (x,y) € A}, to the ‘‘top surface’” of 4,

T[4] (x) = max { y e E|(x, y) e 4}.
If F < EN"'and f:F — E, the umbra of fis the set
Ulfl={(x,y) e Fx Ely s f(x)}.



2084

For F, K € EN™', f:F — E, and k: K — E, the dilation
of fby k is the mapping f @ k:F @ K — E defined by

fek=T[U[f] e U]

from which it follows that

(f @ k) (x) = max {fix - 2) + K2)}.

x—zefF
Similarly, the erosion of fby k maps F & Kto £ by
fek=TU[f] e UlK]

from which it follows that

(feﬂ&)=i?{ﬂx+d*kkﬂ-

The umbra homomorphism theorem states that the oper-
ation of taking an umbra is a homomorphism from the
grayscale morphology to the binary morphology. That is,
ifF, K< EN"',fiF - E, and k: K — E, then

Ulfe k]l =U[f] e Ulk]
Ulfe k] = U[f] e U[K].

Furthermore, the operations of max and union, and of
min and intersection, are homomorphic under the umbra
transformation. That is,

Ulmax { f, k}] = U[f] U U[k].
Ulmin {f, k}] = U[f] N U[k].

Two more notational conventions are needed before we
begin developing the correspondi /ﬁ grachaie morpho-
logical sampling results. If § € E is a sampling set,
and f: F — Eis a grayscale image, then the sampled ver-
sion of f is the restriction of fto ¥ N § denoted by f |;.
Thus, f|;:F N § = E defined by f|,(x) = f(x) forx e
F O S.Ifk:K — E, then k is the reflection of k, defined
by k: K — E where k(x) = k(—x).

A. The Function Bounding Relationships

The set bounding relationships for the binary morphol-
ogy have a direci correspondence to function bounding
relationships in grayscale morphology. In this section we
develop the bounding relationships without spending
much time or discussion even though the extensions are
somewhat more involved. The grayscale analog to the re-
lationship Fe K€ (FNNS)ye Kc Fe Kisfe k
< fls ® k < f @ k and it holds under very much the
same conditions that the binary relationship holds. The
only new requirement is for £ = 0 which is stronger than
the requirement that 0 € Ul k].

Proposition 18: Let F, K, S € E¥™! f:F — E, and
k:K—>EIfk=kk=0andK ® § = EV', then f
eksfhek<fek

Proof: First we show thatf e k < f|, ® k. Letx e
F e K. Then (f e k)(x) = minm,( {fix + u) —
k(u)}. Butk = kand k > O imply min,x { f(x + u)
— k(u)} < mingg { f(x —v) + k(v)} Now, k = k
implies K = K, and this with § ® K = EY~! implies F

IEEE TRANSACTIONS ON ACOUSTICS. SPEECH, AND SIGNAL PROCESSING. VOL. 37, NO. 12. DECEMBER 1989

e KS(FMNS)e K. Thus, x e F © K implies x € (F
M §) & K. Hence, there exists a w € K such that x — w
€ F N S. Because min,.4 z < max,.z z when BN 4 #
&1, there results

(f e k) (x) = min {/(x = v) + k(v)}
=  max {f(x—y)—%—k(z‘)}

rek
x—veFN§

max {f|s(x -v) + k(v)}
x—::gﬁﬂs

(F], ® &) (x). =

Next we show f |, ® k < f @ k. By the umbra homo-
morphism theorem, U[ f |, ® k] = U[ f|,] ® U[k]. But
ULf|,] = UL£]1 N (S x E). Hence, ULf], ® k] =
{ULAIN(SXE)} @ Ulk] € (U[f] @ ULk N
((SXE) @ Ulk]). But (S X E) & Ul[k] = E¥if and
onlyifSe K=E""" SoU[f|, @ k] € U[f] ® Ulk]
= U[f & k] by the umbra homomorphism theorem.
Hence, T[U[ f|, ® k1] = T[U[ f ® k]] which by def-
inition of grayscale dilation implies f |, ® k < f ® k

The analogof FN S=[(FN S) e K1N Sisf|,

(fls @ k)|,. It holds under the condition that k(0) = 0.
Proposition 19: Let F, K, S < E""' fiF = E, k'K
— E, satisfy S @ § = S.S5=5KNS= {0}, k =k,
and k(0) = 0. Thenf |, = (f], @ k)|,
Proof: Since [(FN §) e K] N § = FﬂSwe

need only to prove that for each x € F N S, (f],
K)[s(x) = f(x). But (f; ® k)|(x) = (f|; ® k)(x)

Sincex € 8, (fi; @ k)|;(x) = maxzek {f(x-2)

+ k(z)}. Furthermore, x € Sandx — z € Simply z = x
—(x—2)eS.SinceS ® S=Sand § = §. Thus, z =
Oasisimpliedbyze K, zeSand K N § = {0}. Finally,
(fls ® K)|s(x) = f(x) + k(0) = f(x), since k(0) =
0

In order to continue with the parallel development fo k
< f|; ® k, we first prove the stronger relation that for
every x € F o K, there exists an s € § N Fsuch that x €
K and ( fe k) (x) = f(s) + k{x — s). This result fol-
lows from the sampling condition 1 € K, which implies §
M K, N K, # @ and a constraint on the structuring ele-
ment k:k(a) < k(a — b) + k(b) for every a, b satis-
fyinga e K, b € K and @ — b € K. This latter constraint
is a new concept essential for the reconstruction structur-
ing element in the grayscale morphology.

Before developing the proof for the inequality ( f o
k) (x) = f(s) + k(x — 5), it will be useful to explore
the meaning of the inequality £(a) < k(a — b) + k(b)
since this is a constraint we have not had to deal with until
now. The inequality k(a) < k(a — b) + k(b) together
with k = k implies that k( y) = 0 for every y € K. This
can easily be seen by letting @ = x + y and b = x. This
leads to k(x + y) < k(x) + k{y). Then let @ = x and
b =x + y. This leads to k(x) = k(y) + k(x + y). The
two inequalities imply k(x) < k(y) + k(x + y) < k(x)
+ 2k( y) from which k( y) = 0 quickly follows.
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The inequality k(a) < k(a — b) + k(&) also implies
that for any integer n = 2, k(nx) < nk(x) forevery x €
K satisfying mx € K for every m, 2 < m < n. The proof
is by induction. Taking n = 2, @ = 2x, and b = x estab-
lishes the base case k(2x) =< 2k(x). Suppose that for
every m,2 = m < n, k(ma) < mk(a) and ma € K and
a € K. Taking @ = (n + 1) x and b = x produces k(n +
1) < k(nx) + k(x). But k{nx) < nk(x). Hence, k((n
+ 1)x) < nk(x) + k(x) = (n + 1) k(x). Now by in-
duction k(nx) =< nk(x) for every integer n = 2 satisfying
mx e K forevery m, 2 < m = n.

Finally, notice that k(¢) = k(a — b) + k(b) for every
a, b € K satisfying @ — b € K and K = K imply, as well,
k(b) < k(b — a) + k(a) for every a, b € K satisfying
a - b e K. Since k = k, we obtain k(a - b) =
max {k(a) — k(b), k(b) ~ k(a)}.

Constructing functions which satisfy the inequality is
easy with the following procedure. Define £(0) = 0 and
k{1) to be any positive number. Suppose k(m), m = 0,
+ -+, n have been defined. Take k(n + 1) to be any
number satisfying

max {k(u) ~kin+1- u)} < k(n + 1)
IﬁﬁSn
< min {k(v) + k(n + 1 — )},
. ts;sn
After k is defined for all nonnegative numbers in its do-
main, define k(—n) = k(n) forn = 0. 5
The generating procedure works because k = & and the
inequality implies k(x) — k{(y — x) < k(y) < k(x) +
k{y — x). Hence, maxy {k(u) — k(y — u) =

L(Y)} = min:{.’.vﬂ\ {k(’!') i k(}' - 'U)},

Proposition 20: LetF, K, § € EN"', f1F - E, k:K
- E. Suppose u € K, implies § N K, N K, # & and
k(a) = k{a — b) + k(b). Then for every x € F o K,
there exists an s € § M Fsuch thatx € K, and ( fo k) (x)
< f(s) + k(x — 3).

Proof: Letxe Fe K. Then (x, (fok)(x))e U[f
okl.But U{ fe k] = U[f] e Ulk]. Hence, there exists
(u, v) € E'"' x E such that (x, (f ° k)(x)) €
UEk](u,v) = U{f}' Now (xs (fo k) (JC)} € U{k](u,v)
implies (x, (fo k) (x)) — (u, v) e Ulk]. So(x —u, (f
o k){(x) — v) € U[k} which implies ( fo k) (x) — v =<
k{x — u). Thus, v = (fo k)(x) — k(x -~ u). But
Ulklw,.y € Ul f] implies forevery a € K, (a, k(a)) +
(u, v) e UL f]. Hence, foreveryae K, a + u e Fand
k(a) + v =< f(a + u). Now x € K, implies there exists
seK, NK, M Ssothats — ue K. And sinces — u e
Kok(s~u)y+v=f(s—u+u)=7F(s) Now (fo
KY(x) —k(x —u)<vandv < f(s) — k(s — u) imply
(fok)(x) —k(x —u) = f(5) — k(s — u). But k(a)
= k(a — b) + k(b) for every a, b € K satisfyinga — b
eK. lettinga =x —uandb =5 —u,a — b =x -3,
it is obvious thatx —~ue K,s —ue K, and x — s € K.
Hence, k(x —u) — k(s —u) = k((x —u) —= (s ~ u))
= k{x — 5). Therefore, (f¢ k) (x) = f(s) + k(x —
5). _ E
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Corollary: LetF,K,S € EN"!, fiF—> E, and k: K —
E. Suppose u € K, implies S N K, N K, # & and k(a)
s k(a—0b) +k(b). Then(fok)(x) < (f|, ® k) (x).

Having determined that fo k < f|; @ k, the maximal-
ity of f |; @ k comes easily.

Proposition 21: Let G, F, K, S € EN™!, ¢:G - E,
k:K = E, f:F > E. If k(a) < k(a — b) + k(b) for
every a € K and b € K satisfyinga = b € K, and x € K,
implies K, N K, N S # @, theng = gok, g, = f|,,
and g = f|, ® kimpliesg = f|, ® k.

We continue our development with the bounding rela-
tions for the minimal reconstruction.

Proposition 22: Let F, K, § € EN"!, f1F — E, and
k:K— E Ifk =k k(a) < k(a - b) + k(b) for every
a, b € K satisfying @ — b € K, and x € K, implies K, N
K,NS+# g, thenforeveryuek, f(x +z2) —k(z) <
(fl: @ k) (x + w) — k(u) foreachz € K.

Proof: Since k(a) = k(a — b) + k(b), for every
a, b e Ksatisfyinga -~ be K, —k(z) = —k(u) + k(u
— z) for every u, z € K satisfying u — z € K. Hence, f (x
+2z) - k(z) = f(x+z)+ k(u — z) ~ k(u) for every
u, z € K satisfying u — z € K. Making a change of vari-
ables t = u — gz, there results

Flx +2z) — k(z2)
< [fx+u—1)+ k(2)] = k(u)

then
flx +2) = k(2)
= max f}s(x +u— 1)+ k()| — k(u)
x+uier§FﬂS
u—tek
= (f], @ k)(x +u) — k(u)
for every u € K. Fil

Proposition 23: Let F, K, § © EN™', f1F — E, and
k:K — E. Suppose u € K, implies K, N K, N § #+ ¢,
k=Fk andk(a) < k(a — b) + k(b) foreverya, be K
satisfying a — b € K. Then foreveryxe F o K, (f o
k)(x) < (fls®k)(x).

Proof: Letx e F © K. Then (f o k) (x) = min,cx
{f(x+2) = k(2)} = (fl, ® k) (x + ) — k(u) for
every u € K. There results ( f © k) (x) < min,ex {(f],

@ ky(x +u) —k(u)} =(fl;*k)(x). &
Proposition 24: Let F, K, S € E¥ ! and f:F — E,
k:K — E. Then

1)f's:‘(f|s.k}ha
Z)fls.k = fek

Proof:
1) Since closing is an increasing operation, f |, <
f s ® k. Since dilation is an increasing operation, f |, ® k
liek) ® k=rl, ® k Hence, f|, < (£, * k)|,
Is @ k)|,. But (f|, ® k)|, = f|, and this proves

=(f
= LF
fls=(fls* k)|,
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(b) (©)

Fig. 22, A 3-D plot illustrates the grayscale opening operation. (a) A 20
X 20 checkerboard image with checker size 10 X 10. The gray value of
the bright checker is 100 and the gray value of the dark checker is 50.
(b) The noisy image by adding a zero mean Gaussian noise of standard
deviation 20 to (a). (c) The result of opening (b) by a brick of size 10 X
10.

2) ULfl|, ® k] = U[f],] ® Ulk] by the umbra
homomorphism theorem. Also, U[ f|,] = U[f] N (S
X E) so that U[ f|,] € U[f]. Hence, U[f|, * k] <
U[f]e Ulk] = U[ fe k] by the umbra homomorphism
theorem. This implies f|, ¢ k < fe k. n

As before, the maximality comes easy.

Proposition 25: Let G, F, K, S € E¥"!, g:G - E,
fiF > E, and k:K — E. Suppose g|, = f|,andg = g *
k. Then g < f |, ¢ kimplies g = f|, ® k.

B. The Grayscale Digital Morphologic Sampling
Theorem

This section summarizes the results developed in the
previous sections. These results constitute the grayscale
digital morphological sampling theorem.

Theorem 6—Grayscale Digital Morphological Sam-
pling Theorem:

Let F, K, S € EV~'. Suppose K and § satisfy the fol-
lowing sampling conditions.

hSeS=S.
2)§=38.

3 KNS ={0}.
4) K = K.

5) xe K,implies X, N K, N S # &. Letf:F - E
and k: K — E. Suppose further that k satisfies.

6) k = k.

7) k(a) = k(a — b) + k(b) for every a, b'e K
satisfying a — b € XK.

8) k(0) = 0.

Then
Dfls=fleo k)
) fls=(fl; @ k)|,
3) floek = feok.
4) flsok=fok

5) Iffszsz-k,thenﬂs-ksfﬁf]j@k.
6) If g =gekand g|, = f|,, theng =< f|, ® k
implies g = f |, * k.

TyIfg=gokand g|, =
implies g = f |, e k.

f{ssthéngafh@k

C. Examples

Fig. 22 illustrates an artificial example of opening a
noisy 20 X 20 checkerboard image having 10 X 10 checks
with a brick structuring element whose size is also 10 x
10. The gray level difference between the bright and dark
checks before the noise was added was 50. The noise is
Gaussian noise with standard deviation 20. The example
illustrates how when the structuring element is matched
to the structure of the signal, a surprising amount of noise
reduction can take place.

The remaining examples illustrate how the morphol-
ogical sampling theorem can lead to multiresolution pro-
cessing techniques. The resolution hierarchy, called a
pyramid, is produced typically by low-pass filtering and
then sampled to generate the next lower resolution level.
The purpose of the low-pass filter is to remove from the
higher resolution image those spatial frequencies which
are higher than the Nyquist frequency corresponding to
the sample spacing. Fig. 23 shows a 5-level pyramid pro-
duced by pure sampling from a laser radar range map. The
highest resolution image size is 256 X 256. A 2-pixel
wide line and a 4 X 4 box are placed intentionally at the
upper right and upper left, respectively. Fig. 24 shows
the S-level pyramid produced by a 3 X 3 box filtering
followed by sampling to generate the next pyramid level.

Because multiresolution pyramids are used for detec-
tion and identification of objects or features of at least a
specified size, it is natural to ask if mathematical mor-
phology [14], [17]. [8] might provide a better basis than
low-pass filters, for constructing pyramids. This question
is suggested by the fact that mathematical morphology
deals directly with shape, whereas low-pass filtering tech-
niques are based on linear combinations of sinusoidal
waveforms, a representation far removed from shape.

Fig. 25 shows a 5-level morphological pyramid. At each
level, the image is opened by a brick of size 3 x 3, and
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Fig. 23. A S-level pyramid of laser radar range image produced by pure
sampling. The highest resolution image size 15 256 by 256. A 2-pixel-
wide line segment and a 4 X 4 box are intentionally placed at the upper
right and upper left of the image, respectively.

Fig. 24. A 5-level pyramid of the same image as Fig. 23, produced by 3
% 3 box filtering and then sampling.

Fig. 25. A S5-level pyramid of the same image as Fig. 23, produced by,
opened by a brick of 3 X 3 and then sampling to generate the next
fayer.

then sampled to generate the next lower resolution layer.
Notice how the line in the upper right part of the image
has been eliminated. Fig. 26 shows a similar 5-tevel mor-
phological pyramid. In this pyramid, the image at each
level has been opened by a 3 x 3 brick, sampled, and
then reconstructed, using the maximal reconstruction, The
next lower resolution layer is generated by sampling as
before. The greater smoothness of the images in Fig. 25
over the corresponding images of Fig. 24 is precisely due
to the smoothness introduced by sampling and recon-
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Fig. 26. A 5-level pyramid of the same image as Fig. 23. In each level,
the image is opened by a brick of 3 X 3 and then is sampled and recon-
structed before it is downsampled to generate the next level.

structing. This illustrates that when images have been
properly morphologically smoothed before sampling, the
reconstructed images are indeed representative of the un-
sampled images.

Next we describe a multiresolution matching scenario
to integrate ground truth maps with terrain region bound-
aries detected from registered millimeter wave (MMW)
radar polarimetric imagery acquired from the TABILS 5
section of the Air Force TABILS (Target and Background
Information Library System) database to estimate position
along a planned flight path.

The ground truth database stores vertices of terrain re-
gion boundaries, along with region descriptions such as
pine forest or wheat field. We estimate flight position by
matching detected boundaries in the incoming data to pat-
temns in the ground truth. Fig. 27(a) shows the boundary
patterns for scene 2051A derived from the ground truth
vertices. The pattern in Fig. 27(b) corresponds to the cur
rent flight position. to match against ground truth. Large-
scale boundary pattern structures can estimate the dis-
placement between detected and stored patterns over a
large range at low accuracy and sampling density; smaller
structures can be used over short ranges at increased ac-
curacy and sampling. Therefore, we use a multiresolution
coarse-to-fine matching strategy to meet the response-time
needs of flight path estimation.

Fig. 27 illustrates morphological dilation pyramids for
both the ground truth boundaries and the detected edge
patterns. Dilating the binary patterns by a 2 X 2 kernel
before downsampling (2 to 1 in both directions) retains
the pattern points at coarse image resolution. Coarse-to-
fine binary correlation on these pyramids [10] determines
the best match: the flight position estimate is refined pro-
gressively, with estimates at one level restricting the
search arca at the next higher resolution.

The overall hierarchical correlation scheme outlined in
Fig. 28 begins each stage with one pattern preshifted by
its input offset. The pattern at the current resolution is
shifted by various displacements, for which (binary)
global correlation error counts are determined. Each count
sums over both the detected pattern points which are not
ground truth boundary points, and the ground truth
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Fig. 27. (a) Terrain boundary patterns for scene 2051 from the ground truth
vertex database; (b) detected region boundary image corresponding to
the current flight position; and (¢} morphological dilation pyramids for
the ground truth boundary and detected edge patierns

Morphologicel Dilation Pyramid Morphoiogicel Dilelion Pyramid

Detected Ground Truth

edge pattern trial Offsa! Mg

Giobal Corcelalon
Clfsal

b b
Glodat Correlation
Ofisal

4

Glebal Corralation

Olfspl

v

Ciobal Conelalion

Final Pgozvion Lstmalion

Fig. 28. An illustration of multiresolution coarse-to-fine hierarchical cor-
relation strategy for curreat flight position estimation.

boundary points (within the region enclosing the detected
patterns) not corresponding to detected pattern points. The
output offset of this stage, input to the next stage, equals
the input offset plus the offsct with the smallest error, We
repeat to the finest image resolution, where the final offset

Fig. 29. (a)-(c) Estimated positions overlaid on the ground truth map for
three sections of the detected edge patterns.

specifies the estimated position of the current detected
pattern in the ground truth map. Fig. 29 shows estimated
positions overlaid in white on the ground truth for three
detected pattern sections.

VI. CoNCLUSION

We have shown that before an image can be sampled,
it must be morpholegically simplified by an opening or a
closing with the reconstruction structuring element. A
sampled image has a minimal and maximal reconstruc-
tion. The minimal reconstruction 1s generated by closing
the sampled image with the reconstruction structuring ele-
ment, and is a valid reconstruction when the morpholog-
ical simplification done before sampling is a closing. The
maximal reconstruction is generated by dilating the sam-
pled image with the reconstructed structuring element, and
is a valid reconstruction when the morphological simpli-
fication done before sampling is an opening. The spatial
meaning of the minimal and maximal reconstruction is di-
rect. The minimal and maximal reconstruction delineate
the spatial bounds within which the image event on the
unsampled meorphologically simplified image actually oc-
curs. That is, the uncertainty due to sampling is precisely
specified by the bounds given by the minimal and maxi-
mal reconstruction.

We developed the relationships between the sampling
interval and the reconstruction structuring clement, and in
the binary morphology we fully developed the relation-
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ships between operating in the sampled domain and re-
constructing versus performing the equivalent operations
in the unsampled domain. Likewise, we developed the re-
lationship between operating in the unsampled domain and
then sampling versus sampling and performing the equiv-
alent operation in the sampled domain. In both cases, the
uncertainty introduced is closely related to the sampling
interval.
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