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ABSTRACT. The binary relation is often a useful mathematical structure for representing simple 
relationships whose essence is a directed connection. To better aid in interpreting or storing a binary 
relation we suggest a diclique decomposition. A diclique of a binary relation R is defined as an or- 
dered pair (I, 0) such that I X 0 C R and (I, 0) is maximal. In this paper, an algorithm is described 
for determining the dicliques of a binary relation; it is proved that the set of such dieliques has a 
nice algebraic structure. The algebraic structure is used to show how dicliques can be coalesced, the 
relationship between cliques and dicliques is discussed, and an algorithm for determining cliques 
from dicliques is described. 
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1. Introduction 

The binary relation is often a useful mathematical structure for representing simple re- 
lationships whose essence is a directed connection. One important  application for the 
binary relation occurs in the field of general systems theory where a binary relation R 
can be constructed from a particular discipline theory or constructed empirically from a 
data set, where the relation R is considered to be the set of all pairs of variables (x, y) 
where variable x in some sense influences, controls, or dominates variable y. Typically, 
there are three problems associated with such a binary relation: (1) drawing the binary 
relations as a digraph, (2) storing the binary relation in the computer, and (3) using the 
binary relation to get clues concerning which sets of variables form subsystems and for 
each subsystem determining the input  variables and the output  variables. 

Each is a problem because in large systems the variables number  in the hundreds or 
thousands and the connections number in the thousands or ten thousands. These three 
problems are really equivalent, for they are problems of organization. If I can organize 
the binary relation, I can draw it or store it and the organization itself will reveal the 
subsystems. 

I t  is the purpose of this note to define a decomposition of the binary relation which 
can prove useful in such organizing tasks and to prove some theorems, which are con- 
structive in nature, tha t  will indicate the algorithms to carry out the decomposition. 

The binary relation organization is based around a representation which we call the 
diclique representation; the parts to the decomposition we call dicliques. The term di- 
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x R(z) 
1 1, 2, 3, 4, 6, 7, 9, 10, 11, 12, 14, 15 
$ 1, 2, 3, 4, 6, 7, 9, 10, 11, 12, 14, 15 
3 1, 2, 3, 4, 6, 7, 9, 10, 11, 12, 14, 15 
4 8, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24 
5 1, 2, 3, 5, 6 
6 4, 5, 7, 9, 10, 11, 12, 14, 15 
7 4, 7, 8, 9, 10, n ,  12, 13, 14, 15, 15, 17, 18, 19, 20, 

21, 22, 23, 24 
8 I, 2, 3, 6 
9 4, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 

22, 23 
10 4, 7, 9, I0, n ,  12, 13, 14, 15, 17, 18, 19, 20, 21, 

22, 23 
ll  8, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24 
12 5 
13 I, 2, 3, 6, 13, 17, 18, 19, 20, 21, 22, 23 
14 5 
15 5 
16 
17 5 
18 13, 17, 18, 19, 20, 21, 22, 23 
19 8, 13, 16, 24 
20 13, 17, 18, 19, 20, 21, 22, 23 
21 4, 7, 8, 9, 10, U, 12, 13, 14, 15, 16, 24 
22 8, 13, 16, 24 
23 8, 13, 16, 24 
24 1, 2, 3, 6 

!Is 

[ !, 

FiG. 1. Illustration of a complicated relation and a diagram of five of its dicliques which cover the 
relation 

clique is used because a diclique is like a two-sided clique. Graph theorists will identify a 
diclique with a maximally complete bipartite subgraph [1]. 

To motivate our development we provide the example of Figure 1. The table of Figure 
1 indicates tha t  there are 188 ordered pairs in the example binary relation. We can well 
imagine that  the digraph corresponding to the example relation would be hard to draw 
and messy to interpret. Yet if the digraph is organized according to five of its dicliques 
(there are many more than five dicliques for this relation) which cover the relation, we 

obtain the system diagram shown in Figure 1. This system diagram has on it exactly 
every connection which the digraph would have. Notice that  the complicated system 
has been decomposed into subsystems. All subsystem interconnections including feed- 
back loops are readily seen. Furthermore, it takes only 62 storage places to store the 
relation in the diclique format whereas 188 places are required to store the relation in 
standard format (this doesn't account for pointer storage); this three times savings is 
obtained from a digraph of only 24 nodes. Digraphs of 50 or 100 nodes could generally 
bring much better saviugs. 

Notation. 
X is a nonempty set and domain for the binary re- 

lation R. 
Y is a nonempty set and range of the binary rela- 

tion R. 
R is a nonempty binary relation from X to Y; 

R c X X Y .  
I is a subset of X. 

O is a subset of Y. 
z is an element of X. 
i is an element of I .  
y is an element of Y. 
o is an element of O. 
R(z )  = {y E Y l (z, y)  C R}. 
R -~(y) = {x E X I  (x ,y )  E R}. 

Definition. Let R C X × Y and I ~ X and 0 . ~  Y. The pair (I, O) is a block of R 
if and only if I X O ~ R. The set I of the block is called the input set of the block and 
the set O is called the output set set of the block. 

Definition. Let R ~ X × Y, I ~ X, and O ~ Y. The pair ([, O) is a diclique of R 
if and only if (1) (I, O) is a block of R, and (2) I '  ~ I and O' ~ O and ( r ,  o '  ) a block 
of R implies (I ' ,  O')  = (I, O). In  other words, dicliques are maximal blocks. 

Our development will be in three parts. In the first part we prove some lemmas leading 
to the Diclique Representation Theorem, which by its constructive nature indicates 
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how to determine the dicliques of any binary relation. In the second part  we prove some 
more properties about dicliques which indicate that  the set of all dicliques of a given 
binary relation is characterized by being an idempotent commt~tative monoid. This 
algebraic structure provides a quick way via substitution property partitions [2, 3] of 
honmmorphisms to coalesce dicliques and we present an algorithm for doing so. In  part  
three we indicate a relationship between clique and diclique and show how to obtain 
cliques from dicliques. 

2. Diclique Representation Theorem 

Our prGcedure will be to prove three lemmas to establish some basic facts about binary 
relations which are needed to establish the Diclique Representation Theorem. The first 
lemma states that  if we start with a given subset A in the domain of the relation R and 
travel through the relation R to that  subset O, in the range of the relation, each of whose 
elernents are reachable by each element in A, then when we travel back through the 
relation R -~ to that  subset I ,  in the domain of the relation, each of whose elements are 
reachable by each element in O, we necessarily find that  I must contain A. 

Lemma 2 states that  if we now travel from the subset I through the relation R to 
tha t  subset 0 ' ,  in the range of the relation, each of whose elements are reachable by each 
element in I ,  then we necessarily find that  O' = O. In  other words, in any one round 
trip through the relation we cannot lose any members and might in fact pick up some; 
but trips additional to the first round trip cannot pick up or lose any members. 

Lemma 3 states that  the maximality property of the dicliques implies that  if I is the 
input set to some diclique of a relation R, then one trip through the relation R will land 
us at  the output set 0 of the diclique. 

The Diclique Representation Theorem states that  if we start with a given subset A 
in the domain of the relation R and travel through the relation R to that  subset O, each 
of whose members are reachable from each member of A, and then round trip it back 
through R -~ from 0 to that  subset I ,  each of whose members are reachable from each 
member of O, then since trips beyond the first round trip do not add any members, (I, 
O) must be a diclique of R; and the converse is true. 

The Diclique Representation Theorem immediately leads to the algorithm for finding 
dieliques of a binary relation R ~ X X Y. 

D]:CLIQUE ALGORITHM 

Step 1. First form the set T of distinct subsets R(x), x E X. This set will be the generating set 
for the diclique output sets. 

Step 2. Enlarge this set by generating all possible intersections between output sets of T. 
Step 3. If the set T has increased in size go to step 2, else go to step 4. 
Step 4. Corresponding to each output set 0 in T, compute its corresponding input set 1 by I = 

NoEoR-I(o). Each pair (I, O) is then a diclique of R. 

LEMMA 1. Let R _C X X Y, A ~ X ,  0 = N~e,R(i) ,  and I = ~oeoR-l(o).  Then 
A ~ I .  

PROOF. Let i E  A. Then for every o E O, (i, o) E R, since O = N~cAR(i). So 
i E  R - l (o)  f o r e v e r y o  E O o r i E  NoeoR -~(o) = I. 

COROLLARY (Dual). Let R G_ X X Y, B C Y, I = floc,R-~(o), 0 = N~ExR(i). 
Then B C O. 

LEMMA 2. Let R ~ X X Y, A C X,  0 = f l ie~R(i) ,  I = floeoR-l(o), and O' = 
['I~erR (i). Then O' = O. 

PROOF. By Lemma 1, A ~_ I'.  By the corollary to Lemma 1, 0 ~ 0 ' .  But 
O' = fl~er,R(i) ~ fl~e~R(i) = O, since A ~ I ' .  Therefore, O' = O. 

COROLLARY (Dual). Let R G X X Y, B G Y, I = floesR-l(o), 0 = f l ierR(i) ,  
and I '  = ~ocoR-l(o). Then I '  = I. 
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LEMMA. 3. Let R ~ X X Y and (I, O) be a diclique of R. Then 0 = N~e~R(i). 
PROOF. Let o E O. Since (I, O) is a diclique of R, I X O C R. So for every i E I ,  

o E R(i) .  Hence, o E NoerR(i) and O ~ N~rR(i) .  Next note that  I X N~erR(i) c 
R. Let (x ,y )  E I X NierR(i). Then for e v e r y i E  I , y  E R(i) .  Sincex  E [ w e h a v e  
y E R(x)  or (x, y) E R. Finally, I ~ I ,  N~e,R(i ) .~O,  I X N~erR(i) C R ,  and 
(I, O) a diclique implies 0 - -  NiceR(i). 

COROLLARY (Dual). Let R ~ X X Y and (I, O) be a diciique of R. Then I = 
--1 NoEoR (o). 

DICLIQUE REPRESENTATION THEOREM. Let R ~ X X Y, I C X,  and 0 C Y. 
Then (I, O) is a diclique of R if and only if for some A, A .C X, 0 == N~eAR(i), 
and I = Noe oR -1 (o). 

PROOF. Suppose for some set A C X, O = N~e~R(i) and I = NoeoR-l(o). First 
we show that  (I, O) is a block of R. Let (i, o) E I × O. By Lemma 2, O = N~ezR(i). 
Hence, for every i E I and for every o E O, (i, o) E R. 

Second we show that  (I, O) is maximal. Suppose I' ~ I and O' ~ O and I' X O' c 
R. Since I = NoeoR-l(o), there exists no x E X I"1 I ~ such that  (x, o) E R f o r  every 
o E O. We already know that  I X O c R. And nothing in addition to those elements in 
I will go through R to all those elements of O. Therefore, I × O C I '  X 0 C I '  X O' ~_ 
R must imply I -- I'. Since 0 = N~e~R(i), there exists no y E Y I"10 ~ such that  (i, y)  
E R for every i E I.  We already know that  I × 0 C R and nothing in addition to those 
elements in O will go through R -~ to all those elements of I .  Therefore, I X O C I X O' 
R must imply O = O'. Because (I, O) is a maximal block of R, it is by  definition a 
diclique of R. 

Suppose (I, O) is a diclique of R. We are looking for some set A such that  

O = N~e~R(i) and I = NoeoR-~(o). 

By Lemma 3 and its dual corollary, O = N~e~R(i) and I = N~eoR-~(o). We have 
found such a set: I itself. 

COROLLARY (Dual). Let R _~ X X Y, I c X,  and O C Y. Then (I, O) is a diclique 
of R if and only if for some set B, B c Y, I = Noe~R-~(o), and O = N~e~R(i). 

3. Coalescing of Dieliques 

The definition of the binary relation R, whose dicliques we wish to find, usually involves 
some judgment, subjectivity, and error on the part of the definer when the definition 
depends on experimental data. In  other words, there are probably some pairs of variables 
which do not belong to R which should, an error of omission, and others which do belong 
to R which should not, an error of commission. In  the process of system synthesis and 
modeling, those variables involved in errors of omission cause serious problems, for it 
means that  certain important relationships will not be taken into account. On the other 
hand, those variables involved in errors of commission cause little problem except to 
make the system synthesis a little more difficult. Furthermore, sensitivity analysis of 
the model will indicate to us later that  large changes in these variables have little effect 
on the values of those variables they are supposed to control. Hence, we will discover 
them after the model is set up. So our problem at the time we wish to define subsystems 
is to make reasonably sure that  all the necessary input and output variables are included 
in each subsystem and that  the subsystems are simply described and reasonably sized 
pieces of the system. 

One possible way to assume that  all variable corrections which should be in the rela- 
tion are in and the subsystems are reasonably sized is to combine or coalesce dicliques 
having corresponding input and output sets of variables which have a large proportion of 
members in common. For example if (/1, 3, 5}, 12, 4, 81 ) and (13, 5, 61, 14, 7, 81 ) are 
two dicliques of some binary relation we might want to combine them since they have 
2 out of 3 members of the input sets matching and 2 out of 3 members of the output  sets 
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matching. The combinations would be the coalesced pair ({1, 3, 5, 6}, {2, 4, 7, 8} ). 
This coalescing has the effect of adding the two pairs (1, 7), (6, 2) to the binary relation 
since ({1,3,5} X {2,4,8}) U ({3,5,6} X {4,7,8}) U{(1, 7) , (6 ,  2)} = {1,3,5,61 
x {2, 4, 7, s}.. 

Unfortunately coalescing of dicliques cannot be done blindly or arbitrarily. For if we 
indeed add elements to the binary relation, it is possible that dicliques other than those 
we coalesced will be affected. Since we do not want to recompute the set of dicliques of 
the expanded relation, we must determine the effect of the members added to the rela- 
tion on all its dicliques. Since the members we wish to add to the relation are obtained 
by coalescing dicliques and since coalescing coarsens the initial identity partition on 
the set of dicliques and since, as we show in this section, the set of dicliques has a nice 
algebraic structure, it is possible to trace the effect of the coalescing from the dicliques 
themselves. In essence, we coalesce the dicliques we initially wanted to coalesce and we 
then coalesce all other pairs of dicliques which are affected by the initial coalescing and 
we keep this up until there are no more effects. The coarsened partition produced by this 
procedure is called a partition with the substitution property [2, 3]. 

Lemma 4 establishes that when the input sets to dicliques are intersected, the result 
is also an input set to a diclique. Hence the input sets to the dicliques of a relation form a 
lattice under the intersection operation [4]. Lemma 5 takes the appropriately defined 
intersection of dicliques as a binary operation on the set of dicliques of a given binary 
relation and proves that the set of dicliques with the intersection operation forms not 
only a groupoid but an idempotent commutative monoid. 

Lemmas 6 and 7 review some basic relationships between homomorphisms, homomor- 
phic images, and substitution property partitions of groupoids. Lemmas 8 and 9 prove 
that substitution property partitions are characterized by a congruence relation. Use of 
this characterization is made by the algorithm for coalescing. 

COALESCING ALGORITHM 

To find the largest homomorphic image of a commutative groupoid having elements a and b co- 
alesced: 

Step 1. Set up a partition in which each cell has one member except for the cell containing a and b. 
Step 2. In the multiplication table, replace all references of "b"  by " a . "  

Step 3. If there exist two columns labeled the same go to step 4; otherwise stop. 
Step 4. If for any row of these same labeled columns, the pair of entries is not in the same cell, 
coalesce the cells and in the multiplication table replace all references of the second cell by references 
to the first cells. Continue doing this until one pair of these same labeled columns are identical. 

Step 5. Delete one column of the pairs of identical same labeled columns. Delete the corresponding 
row and go to step 3. 

LEMMA 4. Let R C X × Y and (I1,01) and (12,02) be dicliques of R. Then (I1 ~ 12, 
fl~er,n~R (x ) ) is a diclique of R. 

PROOF. By the corollary dual to the Diclique Representation Theorem, B C Y 
implies (flbeBR-l(b), ['l~n~eBR-l(~)R(x)) is a diclique of R. Take B = 01 O 02. 
Then ~beBR-l(b) rlueo,uo2R-~(y) [rlueoz (y)] i~l [rl~eo~R-~(y)]. But (I1,01)  
and (Ie, 0~) are dicliques of R and by Lemma 3 we know that I1 = rlueo,R -1 (y) and 
I2 = l'lu~o2R-l(y). Hence, NbeBR-l(b) = 11 D I2. 

COROLLARY (Dual). Let R ~ X X Y and (11, 01) and (I2, 02) be dicliques of R. 
Then ( rlueo,no~R -1 (y ), 01 N 02) is a diclique of R. 

LEMMA 5. Let R C X X Y and ~ = { ([, O) I ([, O) is a diclique of R}. Define the 
operation • by (I1, 01)" (I2, 02) = (11 n 12, [~ei,nx~R(x) ). Then (~), .)  is a com- 
mutative idempotent monoid. 

PROOF. (1) By Lemma 4, (I1,01) and (I2,0~) ~ ~ imply 

(I1 N I2, I'l~r,n~,R(x)) E 9. 
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Hence the operation • is closed and (5), • ) is a groupoid. 
(2) Suppose (11,01),  (I2, O~), and ( I8 ,08)  E 2). Then 

( ( I1 ,  O1). ( 1 2 , 0 2 ) ) .  ( 1 3 , 0 3 )  = (I1 n I2,  flxE~,n,,R(x)). ( I 8 , 0 3 )  
= ((//1 N//2) n / /3 ,  N~(~,n1~)nx,R(x)) 
= (//1 CI (I2 N I3), N~c~ln(~n~,)R(x) 
= (I1,01)"  (I2 r'l I3, N~e~nr, R ( x ) )  
= (//1, ol). ( (I2, o2). (i~, o~) ). 

Hence the operation is associative and (~, . )  is a semigroup. 
(3) Note that  (X, rl~cxR(x)) E ~). Since by Lemma 1 X C rlycn, ezR(~)R-l(y) and 

since R ~ X X Y, R-~(y) ~ X for every y E Y. Thus rlycn~ex~(~)R-l(y) c X and 
rl  - 1  X = r~ycn, exR(~)R-l(y). By the representation theorem, (r~e  ~ exu(~)R (y), n~exR(x)) 

is a diclique of R. But rl~cn~ R -1 e~R(~) (y) = X implies (X, rl~exR (x)) is a dielique of R. 
Now suppose (I, O) is also a diclique of R. Consider (I, 0 ) .  (X, rt~ExR(x)) = (I rl x ,  
fl~c~nxR(x)) = (1, N~c,R(x))  = (I, 0) .  Hence (X, rl~ExR(x)) is an identity and 
(a), .)  is a monoid. 

(4) Suppose (I, O) is a diclique of R. Consider 

(//, O). (//, O) = (I r l / ,  N~n~R(x)) = (I, fl,~zR(x)) = (I, O). 

Hence, (5), • ) is idempotent. 
(5) Suppose (//1, O1) and (I2, O2) are dicliques of R. Consider (I1, O1)" ( I2 ,02 )  = 

(11 r'l I2,  n ~ , , n ~ 2 R ( x ) ) =  (I2 I"1 11, n~e~2nr ,R(x))= (I~, O~). (11, O1). Hence, 
(D, • ) is commutative. 

= P Definition. Let (G, • ) be a groupoid and ~- { ~}~=~ be a partition over G having 
the property for every x E P~ and for every y E P j ,  xy E P~, for some P~ E ~r, P~ 
depending only on i and j. Then ~r is called a substitution property partition of G. 

Definition. Let (G, • ) and (H, • ) be groupoids and f be a function, f :  G ~ H, having 
the property for every x, y E G, f ( x y )  = f ( x ) f ( y ) ,  then f is a homomorphism. 

LEMMA 6. Let (G, • ) and (H, • ) be groupoids and f: G ~ H be a homomorphism. Then 
= {f-~ (h) I h E H} is a substitution property partition. 
PROOF. Fix a , b  E H a n d l e t  c = ab. Choosed E f-~(a),  e E f-~(b). W e w i l l s h o w  

de E f-~(c). Since d E f-~(a), f (d )  = a. Since e E f-~(b), f ( e )  = b. Then c = ab = 
f (d)f (e) = f (de) and de E f-~ (c). 

p LEMMA 7. Let (G, • ) be a groupoid and ~r = { ~}~1 be a substitution property parti- 
tion of G. Then f: G --~ ~r is a homomorphism from G to ~r where f is defined f (g )  = P~ 
where g E P~. 

PROOF. First we note that  (~-, ~ ) is a groupoid. The multiplication ~ is defined by 
P~ ~ P~ = P~ where for some x E P~ and some y E P~, x . y  E P~. The multiplica- 
tion is well defined since for every x E P~, and for every y E P~, xy E P~ by defini- 
tion of ~r. 

Now we s h o w f  is a homomorphism. Let a, b E G and e = ab. Let P~ = f (a ) ,  
P1 = f (b) ,  and P~ = f(c) .  Then P~ = f ( c )  = f(ab).  Consider f ( a ) f ( b )  = P~ ~ P i .  
Since a E P~ and b E P~, ab = c E P~ by definition of 0 ,  P ~  P~ = P~. Hence, 
f (ab)  = f (c )  = f (a )  ~ f (b )  and f is a homomorphism. 

L~MM~ 8. Let (G, • ) be a groupoid and ~r be a partition over G having the property x, 
y E P E ~r implies for every z E G, there exists Q E ~r such that xz, yz E Q, and there 
exists Q' E ~r such that zx, zy E Q'. Then ~- is a substitution property partition. 

PRoof. Let x E P~, y E P j ,  z = xy E P~. Let x' E P~ and y'  E P~ and z' = 
x'y'. We show that  z' E P~ • Since x, x' E P~ we must have xy and x'y in the same cell. 

y '  But xy E P~ implies x'y E P~ • Since y, E P~,  we must have x'y and x'y' in the same 
cell. But x'y E P~ implies x'y' E P~ • Hence z' E P~ • 

LEMMA 9. Let (G, • ) be a groupoid and ~- be a substitution property partition over G. 
Then x, y E P implies for every z E G there exists Q E ~" such that xz, yz E Q, and there 
exists Q' E ~" such that zx, zy E Q'. 



362 ROBERT M. HARALICK 

P:aOOF. Let x, y E P~ and z E G. Since v covers G, there exists a cell P i  such that  
z E P~. Since ~r is a substitution property partition, for every a E P~, for every b E P~, 
there exist P~ such that  ab E Pk where Pk = P~ ® P i .  Hence, if xz ~ P~,  then yz E Pk ; 
i f z x E  P k , t h e n z y  E P~ . 

Let Iro be a partition on a finite groupoid G. We define an iterative procedure which 
generates a finite length sequence of partitions ~r~, ~ ,  -. • , ~rN such that  ~rN is the sub- 
stitution property partition of G, having the largest number of cells, and of which ro 
is a refinement. 

Suppose ~r~ has already been determined. Either ~ is a substitution property par- 
tition or not. If  not, then by Lemma 8, there must exist some cell P of ~r, and elements 
x, y E P such that  for some z E G, Q~, Q2 E v~, either xz E Q~ and yz E Q2 and Q~ 
Q2 or zx E Q1 and zy E Q2 and Ql ~ Q2. 

Define a coarsened partition ~r~+l by v~+l = {P[ (P E v~ and P ~ Q~ and P ~ Q~) 
o r P  = Q1UQ2I. 

Since at each iteration step the number of cells of the current partition decreases by  
one, the procedure must come to a stop in a finite number of steps. Since the final par- 
tition ~r~ satisfies the property that  x, y E P and z E G implies xz and yz are in the same 
class and zx and zy are in the same class, ~r~ is a substitution property partition. Since 
elements were coalesced or put into the same cell only by necessity at each step, ~'N is 
that  substitution property partition having the largest number of cells. Since each cell 
of the partition ten is the union of some of the cells of fro, ~-o is a refinement of 7rN. 

We illustrate determining the coalescing of dicliques with the digraph of Figure 2. 
The binary relation corresponding to the digraph is given by the table of Figure 2. To 
obtain the dicliques we form a list of the distinct sets R(x ) :  {2, 6, 9}, {10, 11}, {6, 9}, 
{2, 6}, {10, 12}, {10, 11, 12}, {1, 3}. Then we extend this list adding all possible non- 
trivial intersections of combinations of these distinct sets. This extended list then repre- 
sents all possible sets of the form rl~eaR (x) for some A ~_ X. These sets represent the 
possible output sets for dicliques and as illustrated below the input set corresponding to 
each output  set is easily obtained from ~ e  n.  e ~e(~) R-~ (Y), 

All possible output sets Corresponding input sets Diclique label 
I'1, e .~R (x) f l ,  e n,e ~ e c,) R-~(y) 

2, 6, 9 1, 3, 7 A 
10, 11 2, 9 B 
6, 9 1, 3, 4, 7 C 
2, 6 1, 3, 5, 7 D 
10, 12 6, 8, 9 E 
10, 11, 12 9 F 
1, 3 10, 11, 12 G 
10 2, 6, 9, 8 H 
6 1, 3, 4, 5, 7 I 

x,, ~l~) 
! 2, 6, 9 
2 I0, 11 

3 2, 6, 9 
4 6, 9 
5 2, 6 
6 10, 12 
7 2, 6, 9 
8 10, 12 
9 10, I1, 12 
10 I ,  3 
11 1, 3 
12 I ,  3 

FIG. 2. Illustration of a digraph and corresponding relation having nontrivial dicliques ({1, 3, 7}, 
{2, 6, 9}), ({2, 9}, {10, 11}), ({1, 3, 4, 7}, {6, 9}), ({1, 3, 5, 7}, {2, 6}), ({6, 8, 9}, I10, 12}), ([9}, 

~10, 11, 12}), (~10, 11, 121, {1, 31), ({2, 6, 9, 8}, Ilol), and ({1, 3, 4, 5, 7}, 161) 
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Using the intersection operation defined for dicliques we can write down the multi- 
plication table for the idempotent commutative monoid. (See Table I.) 

Notice that dicliques C and D have three out of four elements of their input sets in 
common and one out of two elements of their output sets in common. This suggests that 
they ought to be coalesced. After we replace all references of D in Table I by C we obtain 
Table II. The two columns of Table II  labeled C are not identical, for on the first row C 
occurs in the first column labeled C and I occurs in the second column labeled C. This 
forces dicliques I and C to be coalesced. So we must replace all references to I in Table 
I I  by C and there results a table having all the columns labeled C identical. The multi- 
plication table can be coalesced to that shown in Table III .  

Now notice that the coalesced dicliques labeled C have a fair number of elements in 
common with diclique A. So we coalesce these together and there results Table IV. Since 
dicliques E and H have a large proportion of common members in their input and output 

TABLE I. 
F O R  T H E  

MONOID OF 
RELATION OF 

A B ' C  

A A ~ c 

B ~ B 

c c ~ c 

D A I ~  I 

E ~ H ~ 

H ~ H ~ 

I I ~ I 

X A B C 

THE 
IDEMPOTENT 

DICLIQUES OF 
FIGURE 2 

i 
D i E  F i G  

77V---- 
E l l H i B  

I N i N  N 

~ N 

~iEi E VV---- 

F G 
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TABLE V. THE RESULT AFTER ALL REFERENCES 
TO H IN TABLE IV ARE REPLACED BY E AND 
ONE OF THE SAME LABELED ~E IDENTICAL COLUMNS 
AND ROWS I s  DELETED 

A ~ 

t ~ B E 

t', Z~ E E 

t' ~ B E 

(~ ~ ~ 

~: A B E 

B 

E 

F 

i 
i F 
I 

~2~ A 

B 

~2~ E 

F 

G G 

G X 

TABLE VI. THE RESULT AFTER 
E AND F OF TABLE V ARE 

COALESCED 

° ° 

A a ~ g A ~ 

B ~ B '~' B N 

G ~ ~f G G 

X A B G I X ~2~ 

1 

sets, we coalesce them. Replace all references to H by E in Table IV. Since the two col- 
umns labeled E are identical we may get rid of one and obtain the collapsed Table V. 

Dicliqucs E and F have a fair number of elements in common. Putting these two to- 
gether forces them both to coalesce with B and we obtain Table VI. Finally we sum- 
marize what the final nontrivial dieliques are: 

A = ({1,3,7}, 1 2 , 6 , 9 } ) 0  (11,3,4,7}, {6,9})U ({1,3,5,7}, {2,6}) 
U ({1,3,4,5,7},{6})  = ({1 ,3 ,4 ,5 ,7} ,{2 ,6 ,9}) ,  

B = ({2, 9}, {10, 11}) U ({6, 8, 91, {10, 12}) U ({9}, {10, 11, 12}) 
U ({2, 6, 8, 91, {I0}) = ({2, 6, 8, 91, {I0, II, 121), 

G = ({10, 11, 121, {1,3}). 

The digraph can now be drawn in diclique or Subsystem form as illustrated in Figure 3. 
Compare how much more easily the subsystem diagram of Figure 3 is understood than 
the digraph of Figure 2. Every connection on Figure 2 is on Figure 3. The only difference 
is that  Figure 3 has 5 additional connections: (4, 2), (5, 9), (2, 12), (6, 11), (8, 11). 

4. Dicliques and Cliques 

A:~ the names would imply, diclique and clique are similar concepts: diclique is to digraph 
v~hat clique is to graph. This similarity would lead us to believe that there is a close re- 
lationship between the two structures. In this section we show how the cliques of a rela- 
tion can be quickly obtained from the dicliques of the relation. 

Definition. Let R ~ X X Y and C c X, C ~ Y. The subset C is called a clique of 
R if and only if (1) C × C .~ R, and (2) C' ~ C and C' × C' ~ R imply C' = C. 

Lemma 10 states that  corresponding to each clique C, there exists a diclique (I, O) 
such that C = I n o. So if we are looking for the cliques of a relation R', we determine 
the symmetric core R of R' by R = R' N R '-1. (This serves only to reduce computa- 
tions and is not really necessary. ) Then we find the dicliques of R and take the intersec- 
tion of the input and output sets of each diclique. By the lemma, we know that among 
the sets in the collection of diclique input sets intersected with their corresponding out- 
put sets each and every clique is represented. If we eliminate those sets in the collection 
which are subsets of other sets in the collection, the remaining sets will constitute the 
entire collection of cliques of the relation R. 

The following example illustrates how cliques can be obtained from the set of cliques. 
Consider the graph of Figure 4. Clearly there are 4 cliques: {1, 2, 3, 4}, {1, 2, 7}, {2, 
4, 5}, {3, 4, 6}. The binary relation corresponding to the graph is given by the table in 
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Fm 3. Illustration of the subsystem diagram 
corresponding to the coalesced dicliques of the 

binary relation of Figure 2 

| | 2 3 4 7  

2 | 2 3 4 5 7  

3 1 2 3 4 6  

4 1 2 3 4 5 6  

5 2 4 5  
6 3 4 6  
7 127 

FIo. 4. Illustration of a graph and its cor- 
responding relation having cliques {1, 2, 3, 
4}, {1, 2, 7}, {2, 4, 5}, and {3, 4, 6}. Although 
not drawn on the graph, we assume each 

node is connected to itself 

Figure 4. First we form the list of the distinct sets R(x) :  {1, 2, 3, 4, 7}, {1, 2, 3, 4, 5, 7}, 
{1, 2, 3, 4, 6}, {1, 2, 3, 4, 5, 6}, [2, 4, 5}, 13, 4, 6}, {1, 2, 7}. Then we extend this list 
adding all possible nontrivial intersections. This extended list represents all possible 
output sets of the form N~c ~R (x) for some A ~ X. We obtain the corresponding input 
sets, then intersect the output  sets with the input sets and note that  the cliques are the 
distinct maximal intersections. 

All possible output sets Corresponding input sets 
rl~ ~ ~R (x) rl~ ~ n~ ~ ~ R~) R-~(y) 

Intersection of output 
and input sets 
fl= ~aR(x) and 

Distinct maximal 
intersection (cliques) 

1, 2, 3, 4, 7 1, 2 1, 2 
1, 2, 3, 4, 5, 7 2 2 
1, 2, 3, 4, 6 3, 4 3, 4 
1, 2, 3, 4, 5, 6 4 4 
2, 4, 5 2, 4, 5 2, 4, 5 
3, 4, 6 3, 4, 6 3, 4, 6 
1, 2, 7 1, 2, 7 1, 2, 7 
1, 2, 3, 4 1, 2, 3, 4 1, 2, 3, 4 
1, 2, 3, 4, 5 2, 4 2, 4 
4 1, 2, 3, 4, 5, 6 4 
2 1, 2, 3, 4, 5, 7 2 
2, 4 1, 2, 3, 4, 5 2, 4 
3, 4 1, 2, 3, 4, 6 3, 4 
1, 2 1, 2, 3, 4, 7 1, 2 

2, 4, 5 
3, 4, 6 

1, 2, 3, 4 

LEMMA 10. Let R ~ X X Y be a binary relation and C be a clique of R. Then there 
exists some diclique (I, O) of R such that C = I n o. 

PROOF. Our proof is constructive. Take I = n~cn~c~-~(~)R(x) and 0 = rl~EcR(x). 
By the diclique representation theorem, (I, O) is a diclique of R. 

We now show that  C = I n o. Since c is a clique of R, (C, C) is certainly a block of 
R. (C, C) a block of R implies C ~ Nut cR -1 (y) and this in turn implies that  f l~  eR (x) 
N~en~ e cR-x(u)R(x). By Lemma 1, C ~ ~=en~ e cR-~(~)R(x). Putt ing these two relationships 

together we have C ~ N~en~ecR-X(u)R(x)~ D~ecR(x). Hence, C c I c O, which 
implies C c I O O. 

Now note that  ( i n o )  x ( I N o ) _ c R  since ( I A O )  × (I A 0 ) . ~ I  X 0 and 
(I, O) by virtue of being a diclique is a block of R. The maximality of C asserts that  if 
I N 0 . _ ~  C a n d  ( i n o )  x ( I n O ) ~ R ,  t h e n C  = I N  O. 

5. Conclusions 

We have discussed the usefulness of the diclique concept and an algorithm for determin- 
ing dicliques. We have briefly examined the relationship between clique and diclique 

i 
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and have described an algorithm for determining cliques from the set of dicliques. There 
are still some basic questions to be answered: (1) When determining which dicliques 
ought to be coalesced, what criteria should be used? Wily? (2) How does the clique find- 
ing ,algorithm suggested in Section 3 compare with others such as Bierstone's Algorithm 
for generating cliques [5, 6]? 
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