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relaxation labeling was described by Zucker et a/. 
[19]. Their scheme is more computationally expensive 
than ours and does not have a true probability 
interpretation. 

It is of interest to evaluate the quality of an edge 
detector, both to compare one detection scheme 
against another, and also to study the behavior of a 
given detector under different conditions and par­
ameter settings. Several authors have proposed tech­
niques for edge evaluation [Abdou and Pratt 1; Fram 
and Deutsch4; Peli and Malah 18]. Most of these 
schemes require prior knowledge of the true edge 
position and lack a continuity measure. None of them 
exploit consistency in the direction of the detected 
edges. Kitchen and Rosenfeld [12] developed a fully 
automatic edge evaluation technique based on the 
idea of local edge coherence. This scheme has an 
inherent bias against curved edges and it only allows 
edge lines a single pixel wide and measures edge 
coherence within a 3 x 3 neighborhood. It also disre­
gards the correct location of the edges. Thus, an edge 
detector that systematically mislocates edges will 
receive an evaluation measure equal to that of a 
detector which perfectly locates edges. Additionally, 
the approach is basically ad hoc, with no underlying 
theory. 

In this paper, based on the same framework as the 
context ~detection scheme, we formulate the edge 
~on problem as a Bayesian decision problem 

. and show that the edge evaluation of Kitchen and 
Rosenfeld [12] is just a special case of our general 
solution. We show how the edge evaluator measures 
edge coherence from any size of neighborhood as well 
as the correctness of edge position. This is the first 
time a general edge position correctness measure has 
been disclosed. 

2. CONTEXT DEPENDENT EDGE DETECTION 

2. Edge context 

To explain the meaning of the edge context of an 
image, fix attention on any pixel in the image. Now 
consider all the row monotonically increasing paths 
which begin at any border pixel of the image above 
the selected pixel, go through the selected pixel, and 
end at some border pixel of the image below the 
selected pixel. Each such path represents a context 
for the pixel. Corresponding to each path and the 
observed pixel values on the path, there is an associ­
ated probability of edge state for the given pixel. 
Among all the paths there is some best 'edge' path 
which assigns the current pixel as an 'edge' pixel with 
a probability that is higher than the probability of 
every other 'edge' path. In general it is not necessary 
that all the pixels in an 'edge' path be 'edge' pixels. 
In the following derivations we allow 'no-edge' pixels 
in an edge path. However, the derivations are as 
general as that by a minor modification, we can 
require all the edge path pixels to have edge state 
'edge'. 

Similarly, there is some best 'no-edge' path which 
assigns the current pixel as a 'no-edge' pixel with a 
probability that is higher than the probability of every 
other 'no-edge' path. In considering the difference 
between the edge and no-edge context, we do not use 
the best 'no-edge' path alone for the no-edge context. 
For a given pixel (r, c), a row monotonically increasing 
path has to pass through one of the pixels 
(r-1,c-1), (r-1,c), (r-1,c+1), and (r,c-1) 
before entering the pixel (r, c) and it has to go through 
one of the pixels among (r + 1, c - 1 ), (r + 1, c), 
(r + 1, c + 1), and (r, c + 1) when leaving (r, c). Thus, 
for each entering and leaving pixel pair there exists a 
best non-edge path. The non-edge context we use for 
the edge detection is the average non-edge probability 
of these best paths. 

In Haralick and Lee [10] and Lee [13], a context 
dependent edge detection scheme was introduced. 
The context used is basically the edge data in the 
neighborhood of the pixel under consideration. Any 
pixels outside this neighborhood have nothing to do 
with the edge detection of the current pixel. In 
this paper we introduce a context dependent edge 
detection scheme which uses all the edge data in the 
image as the context to help the edge detection 
process. 

According to Haralick and Lee [10], the edge 
detection problem can be formulated as a Bayesian 
decision problem. The solution to this problem is: for 
each pixel position (r, c) of the image assign the edge 
state Ere as 'edge' if 

P(E~c = 'edge'IK) > P(E~c ='no- edge'IK) (1) 

and assign the edge state E,c as 'no-edge' otherwise. 
The context information which appears in equation 
(1) is denoted by K which is the facet model represen­
tation of each pixel's local neighborhood [Haralick 
et a/. 1980] of the whole image. Thus, we have the 
most desirable kind of edge labeling process: a process 
which labels each pixel with that edge state having 
the highest probability given the entire context of the 
image. In line with equation (1), the context dependent 
scheme assigns a pixel edge state 'edge' if the edge 
probability of the best 'edge' path is higher than the 
average no-edge probability of the best 'no-edge' 
paths and assigns a pixel 'no-edge' otherwise. 

We begin our description with some definitions. 
The set U,c designates the set of all row monotonically 
increasing paths which begin at some border pixel of 
the image above or to the left of pixel (r, c) and 
terminate at pixel (r, c). The set L,c designates the set 
of all row monotonically increasing paths which begin 
at (r,c) and terminate at some border pixel below or 
to the right of pixel (r, c). These are illustrated in Figs 
1(a) and (b). Let N 1(r,c) = {(r- 1,c- 1), (r- 1,c), 
(r- 1,c + 1), (r,c- ll}, and Nz(r,c) = {(r + 1,c- l), 
(r + 1, c), (r + I, c + 1), (r, c + 1)}. The set U,c(pql where 
(p,q)eN1(r,c) is defined as 

U,c(pql = { T: Te U,c and (p, q) E T}. 




































