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Abstract—To simulate the edge perception ability of human eyes and detect scene edges from an image,
context information must be employed in the edge detection process. To accomplish the optimal use of
context, we introduce an edge detection scheme which uses the context of the whole image. The edge
context for each pixel is the set of all row moenotonically increasing paths through the pixel. The edge
detector assigns a pixel that edge state having highest edge probability among all the paths.

Based on the same framework, we developed a general robust evaluator for edge detectors. The scheme,
based on local edge coherence, does not require any prior information about the ideal edge image and
allows any size of neighborhood with which local edge coherence is evaluated on the basis of continuity,
thinness, and positional accuracy. The edge evaluator can be incorporated with a feedback mechanism to
automatically adjust edge detection parameters (e.g. edge thresholds), for adaptive detection of edges in
real images.

Experiments indicate the validity of the edge detector and the general edge evaluator. Upon comparing
the performance of the context dependent edge detector with the context free second directional derivative

zero-crossing edge operator, we find that the context dependent edge detector is superior.

Edge detection Context

1. INTRODUCTION

Edges in a scene are the consequence of changes
in some physical and surface properties, such as
illumination (shadows, for example), geometry (orien-
tation or depth) and reflectance. As there is a direct
relationship between the edges and physical properties
of a scene, much of the scene information can be
recovered from an edge image. Thus, edge detection
plays a key step in the early processing of a computer
vision system.

Image edges occur in places of significant intensity
changes on the image. There are many kinds of
intensity changes in an image. The usual aim of edge
detection is to locate edges belonging to boundaries
of objects of interest. While the human eyes perform
this task easily, the detection of edges is a complex
task to achieve. The difficulties in edge detection are
mostly caused by noise, blurring and quantizing
effects. This results in a situation in which not all the
image edges correspond to scene edges and vice
versa. People incorporating world knowledge and
contextual information can detect edges selectively.
Minor image edges which do not correspond to main
scene edges are ignored and major scene edges are
detected even though they do not correspond perfectly
to image edges.

A variety of edge detection schemes have been
proposed in the past decade. Most of these operators
perform reasonably well on simple noise free images
whereas they tend to fail on the images degraded by
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noise. This is because that as the noise of an image
increases, the correspondence between image edges
and scene edges becomes weaker and weaker. Thus,
an edge detector which can perform well on noisy
images is most desirable.

Even though it is possible to derive an edge
detection algorithm and argue that it is mathemat-
ically optimal under certain ideal image models [Marr
and Hildreth 14; Canny2], any detector which is
optimal for an image intensity edge is not necessarily
optimal for a scene edge. One possible solution to
this exploits the fact that the edges in the real scene
domain are not difficult to define and they are less
ambiguous than the edges defined in the image
domain. The ambiguity with image edges is mainly
caused by the unknown factors involved in the many
to one physics governing image acquisition.

The solution to edge detection on noisy images
should not be image smoothing, because image
smoothing alone tends to blur edges. The best solu-
tion, we believe, is to incorporate world knowledge
and edge context information into the edge detection
process.

The context approach described here is related to
the dynamic programming idea of Montanari [16]
and Martelli [15] of linking together edge segments.
However, the dynamic programming, as they
employed it is basically a postprocessing process
whose performance heavily relies on the starting
points for linking which are provided by the prepro-
cessing. A context dependent edge detection using
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relaxation labeling was described by Zucker et al.
[19]. Their scheme is more computationally expensive
than ours and does not have a true probability
interpretation.

It is of interest to evaluate the quality of an edge
detector, both to compare one detection scheme
against another, and also to study the behavior of a
given detector under different conditions and par-
ameter settings. Several authors have proposed tech-
niques for edge evaluation [Abdou and Pratt 1; Fram
and Deutsch4; Peli and Malah 18]. Most of these
schemes require prior knowledge of the true edge
position and lack a continuity measure. None of them
exploit consistency in the direction of the detected
edges. Kitchen and Rosenfeld [12] developed a fully
automatic edge evaluation technique based on the
idea of local edge coherence. This scheme has an
inherent bias against curved edges and it only allows
edge lines a single pixel wide and measures edge
coherence within a 3 x 3 neighborhood. It also disre-
gards the correct location of the edges. Thus, an edge
detector that systematically mislocates edges will
receive an evaluation measure equal to that of a
detector which perfectly locates edges. Additionally,
the approach is basically ad hoc, with no underlying
theory.

In this paper, based on the same framework as the

context edge-detection scheme, we formulate the edge
) /e,vahﬂlo/ngiroblem as a Bayesian decision problem

and show that the edge evaluation of Kitchen and
Rosenfeld [12] is just a special case of our general
solution. We show how the edge evaluator measures
edge coherence from any size of neighborhood as well
as the correctness of edge position. This is the first
time a general edge position correctness measure has
been disclosed.

2. CONTEXT DEPENDENT EDGE DETECTION

2. Edge context

To explain the meaning of the edge context of an
image, fix attention on any pixel in the image. Now
consider all the row monotonically increasing paths
which begin at any border pixel of the image above
the selected pixel, go through the selected pixel, and
end at some border pixel of the image below the
selected pixel. Each such path represents a context
for the pixel. Corresponding to each path and the
observed pixel values on the path, there is an associ-
ated probability of edge state for the given pixel.
Among all the paths there is some best ‘edge’ path
which assigns the current pixel as an ‘edge’ pixel with
a probability that is higher than the probability of
every other ‘edge’ path. In general it is not necessary
that all the pixels in an ‘edge’ path be ‘edge’ pixels.
In the following derivations we allow ‘no-edge’ pixels
in an edge path. However, the derivations are as
general as that by a minor modification, we can
require all the edge path pixels to have edge state
‘edge’.

Similarly, there is some best ‘no-edge’ path which
assigns the current pixel as a ‘no-edge’ pixel with a
probability that is higher than the probability of every
other ‘no-edge’ path. In considering the difference
between the edge and no-edge context, we do not use
the best ‘no-edge’ path alone for the no-edge context.
For a given pixel (r, ¢), a row monotonically increasing
path has to pass through one of the pixels
r—1,c—1, (r—1,¢, r—=1,c+ 1), and (r,c— 1)
before entering the pixel (r, ¢) and it has to go through
one of the pixels among (r + l,¢ — 1), (r + 1,¢),
(r+ ¢+ 1), and (r,c + 1) when leaving (r,c). Thus,
for each entering and leaving pixel pair there exists a
best non-edge path. The non-edge context we use for
the edge detection is the average non-edge probability
of these best paths.

In Haralick and Lee [10] and Lee [13], a context
dependent edge detection scheme was introduced.
The context used is basically the edge data in the
neighborhood of the pixel under consideration. Any
pixels outside this neighborhood have nothing to do
with the edge detection of the current pixel. In
this paper we introduce a context dependent edge
detection scheme which uses all the edge data in the
image as the context to help the edge detection
process.

According to Haralick and Lee [10], the edge
detection problem can be formulated as a Bayesian
decision problem. The solution to this problem is: for
each pixel position (r, ¢) of the image assign the edge
state ¢, as ‘edge’ if

P(e*. = ‘edge’| K) > P(e¥. = ‘no — edge’|K) (1)

and assign the edge state ¢, as ‘no-edge’ otherwise.
The context information which appears in equation
(1) is denoted by K which is the facet model represen-
tation of each pixel’s local neighborhood [Haralick
et al. 1980] of the whole image. Thus, we have the
most desirable kind of edge labeling process: a process
which labels each pixel with that edge state having
the highest probability given the entire context of the
image. In line with equation (1), the context dependent
scheme assigns a pixel edge state ‘edge’ if the edge
probability of the best ‘edge’ path is higher than the
average no-edge probability of the best ‘no-edge’
paths and assigns a pixel ‘no-edge’ otherwise.

We begin our description with some definitions.
The set U, designates the set of all row monotonically
increasing paths which begin at some border pixel of
the image above or to the left of pixel (r,c) and
terminate at pixel (r,c). The set L,. designates the set
of all row monotonically increasing paths which begin
at (r,c) and terminate at some border pixel below or
to the right of pixel (r, ¢). These are illustrated in Figs
1(a) and (b). Let Ny(r,c) = {(r — L,c — 1), (r — 1,¢),
(r— Lie+ 1), (r,c — 1)}, and Ny(r,c) = {(r + 1,c = 1),
(r + L) (r + Lc+ 1),(r,c + 1)}. The set U,,q Where
(p,q) € N,(r,c) is defined as

Ureipgy = {T: Te U, and (p,q)e T}.
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Similarly, we can define
Ly ={T:TelL, and {i,))e T}

where (i,j) € N,(r,c).

The set Z,. designates the set of all row monoton-
ically increasing paths beginning at a border of the
image passing through pixel (r,¢) and continuing to
another border pixel of the image. The relationship
between Z,, and L, and U, should be obvious. Z,,
is just the join of all paths in U,, with the paths in
L,.. Similarly, we can define Z,.,, ;;, as the join of all
paths in U, with the paths in Lj.

The set U*. designates the set of all row monoton-
ically increasing paths which begin at some border
pixel of the image at the same row or above pixel
(r,c) and terminate at pixel (r,¢). The set L*, designates
the set of all row monotonically increasing paths
which begin at pixel (r,¢) and terminate at some
border pixel at the same row or below the pixel (r, ¢).
This is illustrated in Figs 1(c) and (d).

2.2 Detection algorithms

For pixel (r,c), let k,, designate its facet parameter
representation and f; (¢7.) be the probability that its
true edge state is £*, given the facet parameters of the
best row monotonically increasing path T taking the
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direction 0%, through (r, ¢), where 8%, is the direction
which maximizes P(67F,|k,.). Let gz, be

8z,(¢7e: 07c) = max P(ev., 07 |k (L)eT).  (2)

Then,
Sz, (7)) = gz (&F 0. 0% co)-

It is noted that f; is not a function of 6%, because
0%, 1s a fixed value which is determined by

P07 colkr) > P(Orc|kr) ¥ 0, # 0% 0.

Similarly, we can define fzmm_m(cfc). The average

probability fzﬁ(si‘c)is defined by
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The Bayesian decision theory based edge detection
scheme (1) can be expressed as

o = edge
"¢ Ino-edge
if fy, (e%. = ‘edge’) > fy, (e}, = ‘no-edge’)
otherwise.

(4)

To perform edge detection we have to compute f,_
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Fig. 1. Illustrates (a) the set U,. and (b) the set L,. U, is the set of all row and column monotonically

increasing paths beginning at a border of the image above or to the left of the pixel (r,c) and terminating

at pixel (r,¢). L, is the set of all row and column monotonically increasing paths beginning at the pixel

(r,¢) and terminating at the border of the image below or to the right of the pixel. Similarly, the sets
U*. and L*, arc illustrated in (c) and (d).
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and then derive fz" from f;_

have to compute g, first.
Analogous to the definition of g, (e¥,,0%,),

gu et 0%) and g (e}, 0%,) are defined as Tollows:

gU,‘r(Etcs gfc] - ?l%x P(sfca("*c|ku {1 J]E T] (5]

- To compute f7 , we

and
gL,.,(Szfc: Gtc) = ITTI%X P(ET(" OTC'KU: (I,]] € T) (6)
8U,pulEres 0F) and gp (63, 0%) are defined in a

similar fashion. g (¢%.,0%,) can be decomposed as
follows,

2068, 0%) = max Plet, %Ik, i j)e T)
—max Z P(—!] (l J)ETJF th(iJ]ET)
Zre 0, e
(i, f)é? -

LPET, 07,0 ))eT)

PlorGyen) O

where T~ designates the set of all pixels in T but
pixel (r,c).

It is reasonable to assume that when the pixel (v, ¢)
is being examined, no observed characteristics from
any other pixel but pixel (r,¢) affects the observed
data of position (r,¢). Hence

P{I_CU(I,_]] € TIFTJ'I Osfp(! fJE T]
= ] Plk;le*;,0%.0G,j)eT) (8)
(L,J)eT
and
P(Ku:(isj]E T)= ]__I P(KU}- 9
(i j)eT

It is also reasonable to assume that the observed facet
measurements k;; at a pixel (i,j) depends only upon
its true facet parameters and edge data. Hence

Plky; |k, 2%, 0% (k1) e T) = Plk,;|k¥

P
ij2 €

ij=8?jJ-

(10)
Based on the above two assumptions we can derive

PUisﬁ(fJ)E Tle¥;, 0%;

ijavYij

(.)eT)
[T Plylet;, 0%)

(i J)eT

(11)

The joint probability P(et;, 0%;,(i,/)e T) contains
all the information about context. A second order
generalized conditional independence assumption is
used. It is a Markov-like assumption and is the
simplest assumption of higher order than indepen-
dence. Based on this assumption the joint prior

probability can be expressed as the product of
functions whose arguments are the label pairs for

successive pixels in the path. Let R(T') designate the
set of all pairs of successive pixels in the path T, we
have

Pex;. 0%:(.)eT) = ]

(i) (k.1))eR(T)

a(a?jvgqi‘j’ﬁ?:bgﬁl)-
(12)

Using assumptions (9), (11), and (12), (7) can be
decomposed into

n (_l_,llfl_j" _l]

max
P(ky;)

o

gZ,t(&'rn rt)
oy (el

(i j)eT ™

* 11 a(e*

Ed * %
ijo gijvsklvgkl)-
(i) (k. )ER(T)

(13)

Since Z,, can be decomposed into the join of U,, and
L,., this results in

z(e¥,0%) = max max Y )

T1eU,. Taek,, L
1 264, 9:1‘5'1 0,j-5.j
(i j)eT [ (LT,

Plky &7, 07))

ij?

Plkiy)

Plk;| 75, 0%))
Plk;;)

( )‘C)

—rc‘lFrc’ C}

[1

{i. e’y (i.j)ea

* ko
*® H ale;, 0%, e8,, 0F)
(LK eR(T))

* H G(ET;H GTJ" 51, 0%). (14)

((.J).(k DER(T )

Rearranging (14) we can group all expressions involv-
ing T, together and all expressions involving T,
together and obtain
_ P

Plk,c|eFe, 0F,)
*gU,r(Erm rc] *gL,r(ET(‘:GTrJ' {15)

8z, ( c’efc) =

Similarly
P(k,)
gZ,ﬂM UJ( “res Gtc) mg(armm( res OTC)

%3 *
#8150 0%,

The decomposition of g, _is in terms of the neighbor-
ing gy,._,» hve_, s by, - and Ay all of which

relet1?

need definition. Just as the derivation in (7),

g[’rc(afc! Gtc) = max P(arcv rrlk ( 1] E T)
Plk;;|e%;,0%))
= max YT
TeUp B%:} (g_jll',r P(EU)
(i, j)eT ™
* l_[ ale¥;, 0%, %1, 0%)) (16)
Wi g).(k.eR(T)
and
hU ( ren ch) = maxP( res FEIK!] (:]}e T)
TEL
P(k;le¥;, 0F5)
~ Ter 923 (I]I P(k;)
(i J)ET
] alet0%,68,08).  (17)

(L)) (kD))eR(T)
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To do the decomposition for gy we need to
recognize that whatever the best path is, the best path
to (r, ¢) must have come from one of the pixel locations:
(re—=1), r—1,c—=1), (r—1¢), or (r—1,¢c+ 1)
Because the best paths cannot cross itself, if the best
path came from (r,c — 1), then the path must be in
U,.-;. However, there is no danger of the path
crossing itselfif the best path comesfrom (r — 1,¢ — 1).
Hence, such a path must be in U¥_, ._,. Likewise,
a best path coming from (r — I,¢) must be in U¥_ | .
and a best path coming from (r — 1,¢ + 1) must be
in U*,_; .+,. Using this idea, we can express (16) as

(krelE¥ e, OF)
gU"(E”r‘c,ﬂ“,‘c]: r[‘ resYre

Plk,.)
{—I‘J'S’fj’ 0*
#max § _max ( )
U=t g (jleT Kij
i i
(i.j)eT

* I—.[ a(‘::}"js G:Fj’ 6?:1: Gti)
(€L, ) (k. ))eR(T)

*(aleF e—1, 0% -1, 8%, UF)
Plk;let;, 0%))
I1 P(ky;)

o ij)eT

max
Tel, . 16

(i J)ET
* l_[ a(g:rjao?jsafha?:!)
() (ke ))eR(T)
wa(ed g 0% oo 8%, 08
(ku‘s:p ;)
P(k;))

max Z I
7EU’ . g Eu (T
(i, J)ET

* I1 a(e;,
(LD (k ))eR(T)

()Tjsﬁfho?:z)

*a(}r—] r!{)t— l.r*g?fr! ()tr)

v 11 Plk;;|e¥;, 0%))
max 1l 7By
TEU"__ . e;j'_,_.lfj (i j)eT P(&U)
(i.f)eT
« 1 aler; 0% 68, 0%)
(i) (k.))eR(T)

wale¥_ | o ,0%_ | ,Efcsgfc)}-
la+1 lietl (18]

When examining the first term in the maximization
and comparing it to the term gy (e} .-y, 0% .- y)
defined by (16) we discover that the expressions are
almost identical. The only difference is that the
expression for gy (¢¥ —1,07 (—) involves a summ-
ation iterated over all (i,/))e T~ while the first
expression in the maximization involves a summation
iterated over all (i,j)e T. Since the maximization done
in the first term is over all paths terminating at
(r,c — 1), the summation over &% ,_, and 0% ._, can
be interchanged with the maximization over all
TeU, .. A similar reorganization can be done with
the second, third, and fourth terms of the summation
after comparison of them with hy_ oo o
hy . This results in

r-le+t’

Plkyc| e, 0F.)
8u (Et.c: O’sc) =
L" P(k,)

% %
*max Z 8u,. EF 1508 o)

B -1

i * * *
*a(&r.cf laor.('71a8rm0rr):

Z hUr [ ](affl.c*l!gf—l.r—l)
0 :

£
r-le—1 = led
*a(s’f_ | 5 v 11()?‘— ].(‘-ISETNOTE]’
w 3 *
Z‘ hU, ,_L.(f‘t ~ 1,00 Ur 8 l.c]
7

<&
=10 Br - e

* & #®
*G(Er =l Or -t Eres 0rc)~

Z hb‘:_t_r‘l(ﬁf—l.ﬁlvgfﬂ.c*ﬂ

e S o

[

#ale¥ g v 1 0% C a8, 0F )} (19)
Equation (19) says that for each edge label &*_, 6%,
the conditional probability of &*,0% given
{kij:(i,j)e T} of the best path T can be obtained on
the basis of the previously computed gu,. ,»and on
the previously computed hy: |, hy hLHc .
coming from the row above the current row Equation
(19) specifies a recursive neighborhood operator which
scans the image in a top down left right scan to
produce for each pixel (r,c) and for each edge label
&%, 07, the probability g, (e}.,0%,) providing we can
demonstrate a way to compute hy: - Similarly,
P(k,| 7., 0F.)
Plky,)

e F. B

6 3

£
re—1 re -1

( S r{‘}—

gu

refre= 11

* .
(ar.c ) OM., l)

* %
* Q(Er.r— 1 -Or.r— 1 wstwofc)

and

Plky|ev, 07)
Plk,)

* ) hD’;j{s?js(J?j]

o 5,

waled;, 0%, ¢%,,0%),

tjrVijsCres

8U, 5 0% =

retif)

where (i,j)e Ny(r,¢) — (r,c — 1).

The algorithm for computing hy;_is similar to that
of gy . For a path from U%, to reach (r,c) it must
first have gone through one of the pixel location:
(rhe—=1), (rne+l), (FP—=1,e—1) (r—1,0), or
(r —1,c + 1). Furthermore, if it went through
(r,c — 1), since the path cannot cross itself, it must be
a path in U, . ;. From our development of equation
(19), we know that the maximization over the prob-
ability of the paths go through (r,c — 1), (r — 1,¢ — 1),
(r—1,¢), and (r — 1,¢ + 1) yields gu (%..0%F,). Thus
we have

hU:,c(at("gTC) = max {gU ( ree I‘CJ
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P(Kﬂ"ET("()Tn‘) ( |FIJ7 I)
Plk) Lo P(kyy)

TeU’ s (el

el ﬁ;j.-ﬂfj
(L.)eT
* n a(s?ﬁeu:gkb "‘)
(i) (k.D)eR(T)

*H[St.cﬁ-l!gf,c+]7etc:6fc]}' (20)

In a similar manner as in the development of (19),
we interchange the order of the summation over
e* ,1,0% .., with the maximization over all path T
in U¥ ... (20) becomes

hu:c(af” 6"‘5[‘) = max {gUrC(E:ct Otc}a

Plk,|e7c, 07.)

Py max
PL) ', % E-
ot LR
 Ple. o)
g, UaeT P(k;;)
Wil
(i.1eT ™

¥ g%
* H a(s?jsa?jsgk!sakl)
((i. ). (k. 1))eR(T)

*a(sr c+l’9r c+l=8rc"9fc]}- (2[)

By the definition of (17), the bracketed expression of
equation (21) is precisely hy: (67 ;41,07 c+,) This
results in

(_rl‘lsrcs 0?‘[‘)
P(k..)

hU (Prca rr) = mdx{ﬁb ( rc’gfc]a

* Z hb’:‘r,l(ef.ﬁ-lagf.c* l]

o

et 1o

*ﬂ(ﬂf“._,_1,0’:“41,8?‘.,9?‘.)}. (22]

Equation (22) states that hy: can be recursively
computed from g and the previous hy: | inaright-
left scan of a row done after gy: has been computed.
To start the recursive calculation (22), we take
hu:c(s:f,(]’fc) = gy (&¥.,0%) for that column position ¢
which is the right most position,

In summary, equations (19) and (22) imply the
following algorithm for the computation of
gu, (&%, 0%.). From (19), we perform a top down left—
right scan of the image recursively computing gy
fromgy, b,y Buso - and by which had
been computcd Followmg the Lomputatlon of gy,
for all pixels on row e, we perform a right-left scan
of row r using equation (22) to compute hy: .

An absolutely mirror image derivation applies to
g, Namely,

Plkyc|e7e OF.)

¥ 0% ) =
g ( rce ] (_rc

* max Z gL,_C,I(ET,c+laGf.£+1)

O 1Brc1

* & * *
- a(£r.c+ 1 Br.c+ 1 aarcvarc]a

Z. hL:+1‘fﬂ(3,:+1,c+1,0T+1,c+1)

L e
* * *
#aeT 4 rer 1 0F o1 ch 1,870 0%,

Z h.!.;+,_‘.[af+1,c=9,§+l‘r)
o ,

s
* * Ed
% ﬂ(ﬁr + 1. 0 r+l.c:£fcs Orc)a

2 hL;+l‘(_|(8T+1.c“130t+l‘c—1)

B pe—1trt -1

*AET 4 10— 1 GT-}L(‘*hathfc)} (23)
and
Plk,|¢%.,0%,)
h.[.;l.{sfc! gfr) = max {gl.,,(ﬁfcs GT[‘)’—C}W
# z hL“. I(ch*lsgf.rfl)
. l-E;.:—l
*a(s?‘c.c— I!gf.c-l!efc!UTrJ}' (24)

It is also easy to show that

Plk,let., 0%
P(k,.)
* )
0 e

* Ed *
*a(gr,c*- 1s Gr.c‘r 1> Srcaatc)

EL s ”(afm 6?(‘) =

gL, .(ﬁf.w L0F 1)

and

« on_ Plkelele, 0F)
gLr((ij|(£rc’0rc) = a

Plk,.)
* Z hl.,, v IJ)
BIJ i
*G(SL 110: J’af(“' rc)I
where (i,j)€ N,y(r,¢) — (r,c + 1).

g1, can be computed by a bottom up right-left
scan of the image recursively from g, ., b, .\
hyx., .and by which had been computed. A left—
right scan of row r is then performed to compute
hy: .

As soon as g _(e%,,0%,) has been computed, it can
be combined with gy (e¥.,0%) to compute
gz, (e¥., 0%,) {see [15]). In practice, the only useful %,
for edge detection is 0%, which maximizes
P(0%.|k,.). Hence, we determine 0%, first and then
only compute g, (e*., 0% ) for both &¥, = ‘edge’ and
‘no- edge‘ The two probability terms f; (e¥) and
f; ¢*.) are then readily available. The edge state of
each pixel (r,c¢) can now be labeled by means of the
rule of equation (4).
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2.3. Probabilities

To perform the recursive algorithms (19), (22), (23),
(24), we need the probability ratio
(P(ko|ek, 0%))/(P(ko)) and the edge consistency function
a(ed, 0%, e%,07) where 0 and 1 designate any adjacent
pixel pairs in the image.

In Lee [13], we have derived the conditional
probability as
Plky,... kyole¥, 0%) = P(k%, k%|e*, 0%) P(4, B|e*, 6%)

* Plky,....kiolA4,B) (25)
where

A = 6[k;sin*0 + kgsin? 0 cos 0 + kg sinicos? 0
+ kygcos® 0]
B = 2[k,sin? 0 + kgsinflcos ) + ke cos® 0].

Let 4 be the edge to no-edge ratio of K, standard

deviation. Then Plk,, k;|e* = ‘edge’,6%) can be
described by a normal distribution
0 | ,
el 0
N|H JH . H' 26
| \/é/.ﬂ?;‘ ( 0 27%a% + crj) 26)

and P(k,, k;|e* = ‘no-edge’, 0*) being a normal distri-

bution
N a(0) 1 O 27)
0/’ 0 20% +o0;

o= cos §* sin 0%
T\ —sin0* cos0*
The conditional probability P(A4, Ble* = ‘edge’, 0*) is

whY (0 0N\ (o7 O
N T T 29
((0) (0 U?‘) +( 0 a7 =

and the conditional probability P(4, B|e* = ‘no-edge’,
0%) 1s

0 a0 o4 O
' 30
N((G)’ T( 0 05’)T +( 0 a3 )

where

(28)

where
Il —1
T= [ 1+ J1+p°
1 [
_\r.]+Pz Vet

and p is the distance along the direction € between
(#,¢) and (0,0) as defined in Lee [13].

The probability P(k,,...,kyo) can be expressed in
terms of P(k,, ks|e*, 0%) and P(A, Ble*, (*).

Plk,,.... ko)

:J. P(k%, k%|e* = ‘no-edge’, 6%)P(A, B|e*, 0¥)
9*

(1 — Pledge))

*
2n a0

# Plka, ... koA, B)*

+j P(k3, k%|e* = ‘edge’, 0%)P(4, B|e*, 0%)
a*

« Pllg,.. kyol A, B+ PIES) o

2 (31)

From (19), (21), (22), (23), and (24) we know that the
term we used for the local edge probability is
(Plkoled, 05))/(P(ko)). And, when we compute this local
probability, the probability P(k,,... ko] A, B) is can-
celled out by dividing (25) by (31) and need not be
computed. The only probability we need is the prior
edge probability P(e* = ‘edge’) (or P(edge)).

The edge consistency function a(e}, 0%, e%,0%) is
defined separately in three different cases.

(1) & =‘edge’ and e} =‘edge’. Due 1o the low
cumulative curvature requirement of an edge line in
a small neighborhood, it is reasonable to assume that
aled, 0, ¢%,07) has maximal value when the edge
direction at the immediate adjacent neighbor agrees
with that at the center, d, and the expected neighbor
direction agrees with the true neighbor directicn, d,.
To satisfy these requirements, we define

aled = ‘edge’, 0%, T = ‘edge’. %)
a0, 0%) + d (0%, Mn, 4)

. 2 (32)
where d and d, are defined by
_cosfx—f)+1
d(“v }@) = 2
4yl py = 20D (33)

and M is the adjacent edge position index in the
following order

~1 O L
[ o B e TS
—_ o W

In a(ed, 0%, €. 0%), the center position is the position
of the pixel associated with &, 6%, different positions
of pixel with &, 0% correspond to different M values.
The measure d is 0 (smallest value) when the difference
between two angle operands is +n (in opposite
directions). However, when the difference between
two angle operands is +m, the measure d, is 1 (highest
value), since the neighbor direction difference of one
of the two adjacent neighbor pixels which agree with
the given edge direction is +7.

As a approaches f the nonlinear edge consistency
function imposes less penalty (higher value) then the
absolute difference function which computes absolute
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difference between two angles. Conversely, it gives
more penalty when the angle difference is large. In
this way the angle quantization effect due to the
rectangular grid layout of the pixels is minimized.

(2)e% = ‘edge’ and et = ‘no-edge’. The edge direction
consistency constrains on the ‘edge’ to ‘no-edge’ case
is in general much weaker than the constraint on the
‘edge’ to ‘edge’ case. Training on a set of application
specific images will in general be the best way to
obtain the consistency function. However, for the
purpose of completeness, we suggest a suboptimal yet
general applicable function.

alel = ‘edge’, 0%, £T = ‘no-edge’, 07)

A0+ LOENY g

where N is the adjacent edge position index as shown
below

oW
[ W IV ]
~1 oo —

In a(ek, 0%, e%, 6%), the center position is the position
of pixel with g%, 0%, different positions of pixel with
ek, 0% correspond to different N values.

‘

(3) &% = ‘no-edge’ and €% = ‘no-edge’. For the pur-
pose of completeness, we define

a(e¥ = ‘no-edge’, 0%, eF = ‘no-edge’, 0%) =

max {(1 ~ afe = ‘edge’, 03, 61 = ‘edge’ G’f)),ﬁ}.
(35)

If the edge directions are consistent, the function
returns a low value and vice versa. We set a lower
bound (1/(2n)) for the function to account for the
cases of no-edge pixel pair with consistent edge
direction.

2.4. Implementation considerations

To implement the recursive algorithm for
gu (¥, 0%,), an image column is appended to the left
of the image (we name it column 0) and both
8u, (E¥0 = ‘edge’, 0%c) and gy (e¥o = ‘no-edge’, 67%)
are initialized to 1. Similarly, we append a row at the
top of the image (r=0) and initialize both
gu, (68, = ‘edge’, 0F,) and gy, (e§, = ‘no-edge’, 0F,) to
1. The consistency function g outputs one if its
inputs include at least one appended boundary pixels.

Starting from pixel position (1, 1), gy, (€%, 6%)) can be

recursively determined:

Plkylet,,0%))

ety 01) = 3
&u, (e11,0%1) Plk,,)

P(k,,|e%,,0%
g0, (612, 01) = L1212 00)

Plk;»)
eman] y PuleT,01)
SR Plis)

*a(E?l!GTI!SleoTZ

(36)

There are two (P(k|e*, 0%))/P(k)) ratios, one for edge
state = ‘edge’, one for edge state = ‘no-edge’. Since

Plk) = J P(k|e* = ‘edge’, 0%)
0%
P(0*|e* = ‘edge’)P(edge)d0*
+ j. P(k|e* = ‘no-edge’, %)
9)&

P(U*|e* = ‘no-edge’)P(no-edge)d0*

, fleler) J P(kl|s* = ‘edge’, §%)d0*
2 s

£s (1:;(ed;gg))J P(k|e* = ‘no-edge’, 0%)d0*.
s o* {37)

Let 0% be the 0* which maximizes P(0* ¢*|k) (the
observed gradient direction of a pixel). To simplify
the computation, we define P(k|e* = ‘edge’, 0%) and
P(k|&e* = ‘no-edge’, 0*) such that the summation over
all possible edge direction of the probability is 2z
times the probability as 6* = 6§, or:

J Pk|e*, 0%)d0* = 2aP(k|e*, 0F). (38)
B*
Hence
plk) = P(edge)P(k|e* = ‘edge’, 0F)
+ (1 — P(edge))P(k|e* = ‘no-edge’, 0%). (39)

In the case of ¢* = ‘edge’, the local edge probability
ratio is then

P(k|e* = ‘edge’, 0%)
P(k)
P(k|e* = ‘edge’, 0%)
T P(E)P(k|e* = E,0%) + (1 — P(E)P(k[e* = N, 0%)
(40)

which is
= 1if P(k|e* = ‘edge’, 0f) = P(k|e* = ‘no-edge’, 0F)
> 1if P(k|e* = ‘edge’, 0F) > P(k|e* = ‘no-edge’, 0F)
< 1if P(k|e* = ‘edge’, 0F) < P(k|e* = ‘no-edge’, 0F).

This gives the meaning of this local probability ratio.
If the observed facet parameters of a pixel support in
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favor of ‘edge’ state, the local probability ratio will
be greater than one (neutral). Otherwise, it will be less
than one. When the observed facet data do not
support either state, the probability ratio is one. This
also explains why paths are initialized by the value
one, Similar relationship holds for the ¢* = ‘no-edge’
case.

The implementation of the recursive algorithm for
&g, (¥, 0%F,) is similar to the one we described above.

Tn the derivations we treat context of ‘edge to edge’,
‘edge to no-edge’, and ‘no-edge to no-edge’ equally.
However, in the context of edge lines ‘edge to edge’
consistency is much stronger than ‘no-edge to edge’
and ‘no-edge to no-edge’ consistency. We endeavor
to remedy this unequal strength of context by emphas-
izing the ‘edge to edge’ context. We require that an
edge path possesses all ‘edge’ pixels and on the other
hand, require a no-edge path to have all ‘no-edge’
pixels. Moreover, the g and h functions (see equations
(5) and (17)) are non-zero only when the edge direction
on these functions are the angle % which maximizes
P(0*|k). In order to balance local information and
context information we set limitations on the context
influence. We set a lower bound of influence €,,;, and
an upper bound of influence €, where g,,,;, < 1 < e-
max- Lhe maximum possible value of any g and h
functions are limited to €,,, and the minimum poss-
ible value of any g and h functions are limited to e,;,.

3. GENERAL EDGE EVALUATION

3.1. Edge coherence measure

In order to make decisions about the performance
of an edge operator, its performance score § must be
estimated:

§S= IIl[Z S(e¥;, 0%;,¢;; = ‘edge,

it i

02 (1.j)e A)P(e¥;, 0% ;2 (i, ) e A|E, 6)

ij

+ Z S(e¥;, 0%, 6 = ‘no-edge’,

Eije GU

02 (.j) € AP(eY;, 0% 2 (i, )€ A|E, 9)] (41)

where I is the entire image set, A = {(i,j)|(i,/)e I and
&;="'edge’}, A = — A4,and E and 0 are the observed
edge state and edge direction of the whole image.

The score function we use here computes the score
on a pixel by pixel basis. That is,

X 6101500,
i,f)e
(42)

S(e%,, 0%, 65, 052 (1, ) e T) =

Using a zero—one score function for each pixel, (41)
becomes

1[
=1 ¥ Py
IIl (i.j)ed

= ‘edge’, 0%; = 04| E, 0)

(ij)ed

‘no-edge’, 0%; = 4,/ E, 9):'- (43)

Similar to the definition in (2), we define

8z (e, 0%) = max P(STJ,Bulsk,,Qu (k,)eT) (44)
where T is the best local row monotonically increasing
path in the local neighborhood taking the direction
6%; through (i,j). We can define &y (e7;,6%;) and
gLrj(le,G*) in a similar fashion and express &z, in
terms of g &u, and g,_

gZ“(s?j = Bus u)

i
P(Bu, LJ)
P(Eija IJ‘STJ'S 9*

*gLij(aij = g;,0%; = 0;;).

)gu (et = &, 0%, = 0;)

(435)
Just as in (16), g,,i_j_ can be expressed as

gmvu(ﬁfj = Sfj,g’fj = ij)

Pley, Bulek;, 0F)
Pleg, Ou)

= max
TeU;; %
ﬂ;(,.a” (i, ))eT
(6.j)eT™

* H C(‘STNQTJ!SM: 7:1)

(Lj)eR(T)

(46)

Similar expreselons exist for g, (et = su, ¥ =0
hU (‘!J Flp lj } and hL ('5* —'Ez_p Ufeu)
The edge probablllty Pl(g;;,0;;) can be computed as

P(e;;, 0;) =I Ple;;, 0;;]e%; = ‘edge’, 0% ¥)
o

ij

= ‘edge’)P(e¥; = ‘edge’)d6¥;

l;l o e
+ J Ple;j, 0;51e%; = ‘no-edge’, %)
03;
P(0%;|e*; = ‘no-edge’)
P(e}; = ‘no-edge’)df¥,;. (47

In general there is no favorite edge direction for either
edge or no-edge pixels. Thus

; : 1
P(0%;]e*; = 'no-edge’) = T

(48)

(6%16%; = ‘edge’) =

and (47) becomes

—j Ple;;, 0;e%; = ‘edge’, 0% JP(e}; = ‘edge’)d0¥;

+ an Pley;, byl £¥F; = ‘no-edge’, 6%))
i

P(e%; = ‘no-edge’)d6*;. (49)

The assumption that all the observed ‘edge’ pixels are
true ‘edge’ pixels has been implicitly made in Kitchen
and Rosenfeld’s approach [12]. Although this
assumption is not exactly true, it is in general the best
choice we have for edge detector evaluation. It is not
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feasible to evaluate the goodness of an edge detector
based on a biased prior guess. Using this realistic
choice, (49) becomes

P(g;; = ‘edge’, 0;5)

l
= QELP(F’” -

i

‘edge’, 0;;]e¥, = ‘edge’, 05.)d0%..  (50)

Similar to (38), a probability function is selected to
make
Ple;; = ‘edge’, 0;))
= P(g; = ‘edge’, 0l eF. = "E’, 07, = 0y).
This implies
Ple;; = ‘edge’, 0| e}, = ‘edge’, 0F, = 0;))

= 1,
Ple;; = ‘edge’, 0;))

Similarly, we can derive

P(g;; = ‘no-edge’, 8;;|e¥. = ‘no-edge’, 07, = 0;)

11: re 1.
P(e;; = no-edge’, §;))
(51)
This concludes
ek =g, 0%, =0 max
gt.J( r J ¢ ) TeUy iR
a(el. = e, 0% = 0y, 8%, = &y, 0F; = On). (52)

(52) allows the estimation of the local edge coherence
based on the observed edge data rather than the true
edge data. Although the underlying assumptions are
not mentioned in their paper, Kitchen and Rosenfeld
directly used observed edge data for edge detector
evaluation. Their scheme considers only local edge
coherence of the observed edge pixels and ignores the
observed non-edge pixels. This is the reason why
they need a thinness measure to balance out the
continuation measure and the number of edge pixels.

In the following derivations we consider only the
local coherence of ‘edge’ pixels. However, it is easy to
extend the derivations to include all the ‘non-edge’
coherence in the edge evaluation scheme. The thinness
measure we used which will be described in the next
section is more robust than the one that Kitchen and
Rosenfeld used.

By putting (51) and (52) into (45) we get

s — &5 o -
gz,j(ﬁfc - guv 9 - 8 ) gb’,—j{f‘rc - Ei‘jagrc - Gij)
i~ E L —
*gL;}(Src = Eijs Grr - 81‘}]
= qHdx
el i perery)
a(ﬂf(‘ = &ij ch = 81125* = *khg j = HH)
#* Max
T2€Lij 4 jrer(r
*
a(‘grrfpuﬂ()rr_ Gu?su skho j = le)'
(53)

Similar to the derivations for edge detection, by some
direct substitutions and mathematical manipulations,

both gv[},-j{sfc = Efjegtc = gij) and gLij(sfc = &jjs
0%, = 0;;) can be obtained by a dynamic programming
technique carried out in the local neighborhood
around pixel (i, /). The scheme of Kitchen and Rosen-
feld is just a 3 x 3 case of this general scheme
implemented in a brute force fashion.

3.2, Edge correctness and thinness measure

As we mentioned, Kitchen and Rosenfeld’s edge
evaluator disregards the correct location of the edges.
To resolve this problem, a new scheme is developed in
this section. This scheme considers both the observed
edge data and the original grayscale image. An edge
pixel is considered as having been correctly detected
if its left and right (with respect to edge direction)
regions are homogeneous and possess distinct gray-
scale means. More explicitly, they should satisfy the
following criterion:

max(o?,03) < —— ( ,uz)
g

(54)
where (it,,07) and (i, 03) are the grayscale mean and
variance pairs of the left and right regions; g is a
selected constant reflecting the minimum signal to
noise ratio of any homogeneous regions in the image.

Let T be the best row monotonically increasing
path starting from an upper boundary and ending at
a lower boundary of the neighborhood around the
given pixel (r,c) and T,, and T, be the best row
monotonically increasing paths ending at pixel (r,c)
and starting at pixel (r,¢), hence T=T,uT. To
construct the right and left regions of pixel (r,¢), we
define two vectors u and | as the vectors connecting
the end points of T, and T; and define 8,, 0, as the
angles between u,l and the column axis ¢. Two sets
T% and T¥ are defined by:

Ty=T,T{=T.

Tk+l —
+ 1,0)|¥(r,c)e TY} if0 <6, <225°
+ e+ DVnoeTs if225 <0, <675
if67.5 <0, < 1125

r—1,c+ DIV(r,c)e TS}
r — 1L)|¥(r,c)e Tk}

if 112.5° < 0, < 157.5°

{r
{(r
{(r,c + D|¥(r,c)e T}
{(
i if 157.5- < 6, < 180°

(55)
i =
= LoVmaeT  if0°>0,> —225°
{r = 1,c + DI¥(r, c)ET if —22.5°>6,> —67.5°
{(r,c + 1)[¥(r,0) ET if —67.5°>80,= —112.5°
(r+ 1,e + DIV c}eﬁ} if —112.5°> 0, > —157.5°
{(r + 1,0)|¥(r,0)e TH} if —157.5°>0,= —180°
(56)

where keinteger set N. The set T* is defined as
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Tk U T¥ We can also define 75! and T¢ ! in a
similar fashion. For a selected width d which is smaller
than or equal to the minimum width of any meaningful
region of the image, the pixels belong to the set
Vi TP and U . T' construct the right and the left
regions. The location accuracy measure la of an
observed edge point is defined as

(1, — 4)? }

la = min{i, =
g *max(a,03)

We now introduce the edge thinness measure T.
Let N, be the set of the left adjacent ‘edge’ pixels of
T and N, be the set of right adjacent ‘edge’ pixels of
T:

(57)

Ny = {(L)1(,) e T™" and ¢; = ‘edge’}
N, = {(i.)|(i,j)e T" and &;; = ‘edge’}.

Let {5] represent the number of elements belong to a
set §. A generalized thinness measure T is defined by:

7o g NN 58)
T+ 1T
or
in!
. 2*m]?[|Nll tJNri} (59)
[# ]+

depends on whether we allow the existence of ideal
step edges (two pixel width (use (59)) or not (use(58)).
Figure 2 shows the sets Ny, N,, T!, and T 1.

The overall edge score based on local edge coher-
ence (not including edge position correctness) is a
linear combination of the continuation measure C,
obtained from equation (41), and the thinness measure
T.

E=wT)C +(1—wT)T.

o
1T T
¥ L
EN
e E!
E ] \E]
-l -
L ——
£ L
'E |
1 |
L o
IE |
!
E |
IE I
{——
|E E|
%] = 9 I7'] =12
7] =5 7 =2

Fig. 2. This shows the sets N;, N,, T', and T,

The w we use here is a function of T:

02 f1=T=085
025 if085>T=>073
03 if0.75> T = 0.65.

w(T) = (60)

We do not allow any edge to be thicker than T < 0.65.
When T is small, the image has quite a lot of
redundant edges and the edge evaluation scheme is
not reliable for this kind of image and the only
comment we can make is probably “they are bad edge
images”. In Kitchen and Rosenfeld’s experiment for
edge detection they did not set the lower limit on T,
This results in cases of lower edge scores for higher
SNR images.

4. EXPERIMENTAL RESULTS

4.1. General edge evaluator

We present some experiments to verify the perform-
ance of the general edge evaluator. To permit a
comparison, we use similar edge detection schemes
and the same noise model and test images as those
of Kitchen and Rosenfeld. However we extended the
edge evaluation kernel size from 3 x 3 to 5 x 5.

Three well known edge detectors are used in the
experiments, the Kirsch operator [Kirsch11], the
3 x 3 Sobel operator [Duda and Hart 3], and Neviat-
ia’s compass operator [Neviatia and Babu 17]. Two
test images were used. The first one is a “vertical
edge” image of size 64 x 64 pixels. It consists of a left
panel with grey level 115, a right panel with grey Ievel
140, and a single central column of intermediate grey
level 128. The second one is a “ring” image consisting
of concentric light rings (grey level 140) on a dark
background (grey level 115). This image was originally
generated as a 512 by 512 image with a central dark
circle of radius 64, surrounded by three bright rings
of width 32, these being separated by two dark rings
of the same width, with a dark surround. The decision
as to whether a pixel should be light or dark is based
on its Euclidean distance from the center of the image.
This image was then reduced to size 128 by 128, by
replacing each 4 by 4 block with a single pixel having
the average grey level of the block.

Independent zero-mean Gaussian noise was added
to each of the test images at seven different signal to
noise ratios: 1, 2, 5, 10, 20, 50, and 100. The signal-
to-noise ratio (SNR) is defined by SNR = (h/g)?,
where h is the edge contrast (in this case 25) and ¢ is
the standard deviation of the noise. Figures 3 and 4
show these two test images and their noisy images
with different SNR.

In the experiment, we applied each operator to the
test images at the seven different signal-to-noise ratios,
and at each noise level the threshold was adjusted to
maximize the edge evaluation score E. The local
neighborhood size for edge evaluation is selected as
5 x 5. The size is larger than Kitchen and Rosenfeld’s
scheme which can only deal with 3 x 3 neighborhood.
Figures 5 and 6 show the evaluation results for
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Fig. 3. Vertical edge test image, with various levels of noise.
From left to right, top to bottom: no noise, SNR 100, 50,
20, 10, 5, 2, and 1.

Fig. 4. Rings test image, with various levels of noise. From
left to right, top to bottom: no noise, SNR 100, 50, 20, 10,
5,2, and 1.

different edge operators.

The results based on the local edge coherence
measure give compass edge operator high score over
the other two operators when the noise level is low
to medium. However, as noise goes high the compass
operator becomes the worst one. This is due to the
fact that the Nevitia’s compass edge detection scheme
performs not only edge detection but also edge line
linking. When the image is not too noisy the edge
linking process can improve the edge image. Whereas
the image is pretty noisy, the edge linking process
tends to link wrong edge lines. The Kirsch operator
performs better than the Sobel operator when the
SNR is higher than 10. It performs worse than the
Sobel operator when the SNR is greater than 10. It
is noted that the performance score curves of these

operators for the low SNR images are not as flat as
the curves of Kitchen and Rosenfeld’s evaluator (see
Fig. 5). Because of the lower bound we used for
the thinness measure T. The edge images of these
operators on the vertical edge image are shown in
Figs 7(a), 8(a) and 9(a), respectively. It is noted that a
visual evaluation of these edge images is consistent
with that which we obtained quantitively based on
the evaluator.

The result of the edge position correctness measure
for different operators are shown in Fig. 10. The
figure shows that for this particular image the edge
correctness measure is consistent with the edge coher-
ence measure. Any combination of them will yield
almost equivalent evaluation score of each operator.

The evaluation scores based on the local edge
coherence measure on the ring test images are different
from those of the vertical edge images for the oper-
ators. The Sobel operator has uniformly best scores,
while Nevatia’s compass operator performs the worst.
The low score of the compass operator is partially
caused by the single width edge based edge linking
process and is even further degraded by the non-
equivalent edge directions of adjacent edge pixels.
Since we set the lower bound on the thinness measure
T, the performance score curves of these operators on
the low SNR images are not as flat as the performance
curves of Kitchen and Rosenfeld’s evaluator. The edge
images after applying these operators to the rings
image are shown in Figs 7(b), 8(b) and 9(b), respect-
ively.

The results of the edge position correctness measure
for different operators on the rings images are shown
in Fig. 11. It shows that if we were to combine the
edge correctness measure with the edge coherence
measure, we will increase the score of the compass
operator because its performance is not really as bad
as it appears in the edge coherence score. Thus, a
combination of the two measures provides more
reliable edge score.

4.2, Context dependent edge detector

To understand the performance of the context
dependent edge detector, we examine the behavior of
the context edge detector on one well structured
simulated image and two real images. We then com-
pare the results with the context free second derivative
zero-crossing edge operator [Haralick, 7] to see how
and in what degree the context information can
improve the operator.

The simulated test image is a noisy bar image. The
image size is 100 x 50 pixels. The pixel intensity is O
for dark barsand 175 for white bars. A 2 x 2 averaging
is applied to this image to simulate ideal single pixel
width edge lines. A zero mean Gaussian noise with
standard deviation 40 is then added to this image.
We fit each 5 x 5 neighborhood of the test image by
a cubic polynominal and then apply the context
dependent operator and second derivative zero cross-
ing edge operator to it. In order to quantitively see
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Score

SNR (log scaled)

Fig. 5. The edge coherence score for different edge operators. The test image is the vertical edge image,
where 1 is the score for Sobel operator, 2 is the score for Kirsch operator, and 3 is the score for Nevitia’s
compass operator,

Score

20 50 10

SNR (log scaled)

Fig. 6. The edge coherence score for different edge operators. The test image is the rings image, where 1
is the score for Sobel operator, 2 is the score for Kirsch operator, and 3 is the score for Nevitia’s compass
operator.

the difference in performance of these two schemes,
we measure for the whole image the conditional
probabilities P(E'|E*), P(E*|E"), P(E'|E*), and
P(E'| E*) where E' and E' designate the assigned ‘edge’
and ‘no-edge’ pixel sets and E* and E* designate the
true ‘edge’ and ‘no-edge’ pixel sets. When determining
P(E'| E*) and P(E*|E’), the adjustable parameters of
each edge operator are chosen to equalize these two
conditional probabilities (P(E'| E¥) ~ P(E*|E"). The
performance in terms of P(E'|E*) and P(E*|E') are

shown in Table 1. When determining P(E’|E*) and
PR 23:1/2-B

P(E'E*), the adjustable parameters of each edge
operator are chosen to equalize these two conditional
probabilities (P(E'| E*) = P(E’'| E*)). The probability
(P(E'| E*) for the context free operator is 0.02 while
the probability for the context operator is 0. The
results show that the context scheme performs much
better than the context free operator.

We now apply the context dependent edge detector
to two 3-D range images (128 x 128 pixels) of man-
made objects. To these images a zero mean Gaussian
noise of standard deviation 30 is added. The noisy
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Fig. 7. Edge results from Sobel operator for (a) vertical edge test image and (b) rings test image with
various levels of noise. From left to right, top to bottom: no noise, SNR 100, 50, 20, 10, 5, 2, and 1.

Fig. 8. Edge results from Kirsch operator for (a) vertical edge test image and (b) rings test image with
various levels of noise. From left to right, top to bottom: no noise, SNR 100, 50, 20, 10, 5, 2, and 1.

{a)

Fig. 9. Edge results from Nevitia’s compass operator for (a) vertical edge test image and (b) rings test
image with various levels of noise. From left to right, top to bottom: no noise, SNR 100, 50, 20, 10, 5, 2,
and 1.

(b)

Table 1. P(E'/E*) and P(E*/E’) values of the context depend- images are shown in Figs 12(a), and 13(a). A 5 x 3

ent edge operator and the context free edge operator ?Ubic polynominal fitting is gpp!ied to the noisy
Operator\probability P(E |E%) P(E*|E) images followed by the_apghcatlons of ?)oth the
c Py T—p— 08600 3500 context free second derivative zero-crossing edge
ng:z; frzgen en 0.6950 0.6314 operator and the context dependent edge operator.

The context bounds we used for both images are
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Fig. 10. The edge location accuracy measures on

the vertical edge image for different edge operators.
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Fig. 11. The edge location accuracy measures on the rings test image for different edge operators.

Emin = 0.1 and e_,,, = 10. The results of the context
free edge operator are shown in Figs 12(b), and 13(b).
The results of the context dependent edge operator
are shown in Figs 12(c), and 13(c). It can be easily
verified visually that the edge images of the context
dependent edge operator show better connectivity
and much less noise than the context free edge
operator.

In order to see the performance of the context

dependent edge operator under different noise levels,
the context dependent and the context free edge
operators are applied to images with noises of stan-
dard deviations 10, 20, 30, 40, and 50, respectively.
The general edge evaluator is employed to measure
the performance scores of both edge operators. The
edge results which maximize the edge score are shown
in Fig. 14. It is also easy to verify that the context
edge operator has better performance over the context
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Fig. 12. The noisy object image 1(a), its context free edge
image (b), and context dependent edge image (c). The window
size for cubic polynomial fitting is 5 x 5.

Fig. 13. The noisy object image 2(a), its context free edge
image (b), and context dependent edge image (c). The window
size for cubic polynomial fitting is 5 x 5.

free edge operator by a visual evaluation. The edge
score curves are shown in Fig. 15.

The edge consistency function we used is a linear
combination of the functions d(z, ff) and d,(x, §) which
are defined by (33). In order to see the performance
of the context edge operator when employing different
consistency functions, we use d" and dj to replace d
and d, for the edge consistency function. d' and d;

Fig. 14. Shows the edge images of the context dependent

edge operator and the context free edge operator applied to

the image shown in Fig. 12 with noise standard deviations
10, 20, 30, 40, and 50, respectively.
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Fig. 15. Shows the edge scores of the context dependent

edge operator and the context [ree edge operator applied to

the image shown in Fig. 12 with noise standard deviations
10, 20, 30, 40, and 50, respectively.

are defined as power of d and d,, respectively. Thus,
d'(x f) = (dla, B
and
difon B) = (d (o, B

We apply the context operator to the image shown
in Fig. 12(a) by employing consistency functions of
powers 0.3, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, and 5.0, respect-
ively All the parameter settings except the power of
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the consistency function are kept at the same values
as we used to produce Fig. 12(c). The edge results are
shown in Fig. 16.

Itis found that when the power is small, the detected
edge lines appear very thick and the connectivity of
the edge lines is good. Conversely, as the power of
the consistency function increases, the detected edges
are thin and broken into picces. The best edge image
among them is the image of power one. It is not
difficult to explain this phenomenon. When the power
of the consistency function is small the consistency
function outputs high values in a wide range of angle
differences. Thus, the context information is relatively
strong in the edge detection process and thus links
pixels nearby edge pixels. On the other hand, when
the power of the consistency function is large, the
context information is relatively weak in the edge
detection process and can not fill the gaps in the
middle of the edge lines.

Finally, we apply the context dependent edge oper-
ator to an image corrupted by a signal dependent
noise. The signal dependent noise image is generated
by the function

SDN(f(r,c)) = (f(r o, Jd {” ZAUTI 10),

where N(a, b) returns a normal random number with
mean a and standard deviation b. We apply the signal
dependent noise to object image 1. The noisy image
is shown in Fig. 17(a). We fiteach 5 x 5 neighborhood
of the noisy image by a bivariate cubic polynomial
and apply both the context-free and the context
dependent operators to the fitted image. The edge
results are shown in Figs 17(b) and (c). The edge
image produced by the context dependent operator
appears better than the edge image produced by the
context-free operator.

Fig. 16. The context operator applies to the noisy object

image 1 with different powers of the consistent function. The

powers are from left to right, top to bottom: 0.3, 0.5, 1.0,
1.5, 2.0, 3.0, 4.0, and 5.0,

Fig. 17. The object image 1 corruptcd by a signal dependent

noise (a), its context free edge image (b), and context

dependent edge image (c). The window size for cubic poly-
nomial fitting is 5 x 5.

5. CONCLUSIONS

We have developed an edge detection scheme from
a Bayesian theoretic framework. The edge detection
makes use of the edge context of the entire image.
For a given pixel the edge context of the whole image
related to this pixel is organized as monotonically
increasing paths which begin at any border pixels of
the image above the selected pixel, pass through the
selected pixel, and end at some border pixels of the
image below the selected pixel. We will assign a pixel
edge state ‘edge’ if the edge probability of the best
‘edge’ path is higher than the average probability of
the best ‘no-edge’ paths.

We derived the algorithms of finding the best paths
as a recursive scheme. It starts with a top down left—
right scan of the image followed by a right—left scan.
It then performs a bottom up right—left scan of the
image followed by a left—right scan.

Based on the same framework, a general method
for evaluating the quality of edge detector output
is developed. Threc measures are presented. The
continuous measure evaluates how good the edge is
formed as continuous lines. The thinness measure
evaluates how thin the edge lines are. The location
accuracy measure evaluates the position correctness
of the edge lines. A robust scheme is introduced to
combine the continuous and thinness measures.

The general edge evaluator does not require know-
ledge of the true location of edges and it can make
the evaluation based on local edge coherence in a
larger than 3 x 3 neighborhood. It can be part of a
feedback mechanism which allows automatic adjust-
ment of the parameters, such as thresholds, for opti-
mum detection of edges in real images.
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Experiments were performed to illustrate the val-

idity of the context edge detector and the general edge
evaluator. We have compared the performance of the
context edge detector with the context free second
directional derivative zero-crossing edge operator.
The results show that the context edge detector has
superior performance.

The approach of using full context and local coher-

ence can be extended to the detection and evaluation
of other local image features.
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