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A Context Classifier

ROBERT M. HARALICK, reLLow, IEEE, AND HYONAM JOO, STUDENT MEMBER, IEEE

Abstract—All other things being equal, context classifiers have a
higher identification accuracy than pixel independent classifiers. This
paper discusses a classifier whose context for each pixel is the best row
monotonically increasing path including the given pixel. Use of such a
context results in a twe pass algorithm in which both the top down and
bottom up pass require only two rows of data and whose computational
complexity per pixel is constant independent of the size of image or the
length of the best context path including the given pixel.

I. INTRODUCTION

CONTEXT CLASSIFIER is characterized by the fact

that it classifies an unknown pixel using the entire
context of the image or a substantially sized context
neighboring the pixel. Basically, the effect of context is
that a pixel’s most probable interpretation when viewed
in isolation changes when viewed in some context. One
might expect the classification accuracy to be higher if an
unknown pixel is classified using context rather than when
it is classified using only the measurement made on that
pixel without context. This is true in most cases. For ex-
ample, a single pixel is not likely to be classified as water
if it is surrounded by pixels classified as ground in a re-
motely sensed data set. The classification result of the
conventional context free classifier leaves many isolated
pixels and many small groups of pixels not connected with
the blob to which they belong. Thus, in the last few years
there has been a trend to increase the use of context in
classification.

The use of context in pixel labeling can be found in
many papers. The dominant contextual technique has been
one of cooperative processing of neighboring pixels by a
relaxation technique. Toussaint [7] presented a tutorial
survey of techniques for using contextual information in
pattern recognition emphasizing the problem of text rec-
ognition, and Haralick [4] gave a survey of decision mak-
ing in context. Tilton [6] and Swain [5] use a p-context
array which contains spatial information of (p-1) pixels
surrounding and neighboring the current pixel in the con-
text pixel classification process. They derived the optimal
decision rule using the context array and focus their at-
tention on finding an unbiased estimate of the context
function which is a statistical characterization of the con-
text to be used in the decision rule. Yu and Fu [9] also
noted that the spectral information of the surrounding pix-
els is correlated with the center pixel being considered.
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They investigated the spatial correlation between pixels
and developed a spatial stochastic recursive contextual
classification method. Wharton [8] presented a contextual
analysis procedure based on the local frequency distribu-
tion of scene components and showed a two-stage contex-
tual classifier.

In this paper, we present a theory and an algorithm of
a new context classifier that assigns each pixel the highest
probability label given some substantially sized context
involving the pixel. The algorithm takes the form of a
recursive neighborhood operator and turns out to be a two-
pass algorithm first applied in a top down scan of the im-
age and then in a bottom up scan of the image.

Section II describes the new context classifier algo-
rithm. Section III gives the results of the new classifier
when applied on the simulated images and the real im-
ages. Conclusions are given in Section IV.

II. ConTEXT CLASSIFIER

The most desirable kind of labeling process would give
each pixel the highest probability label given the entire
context of the image. The next most desirable kind of la-
beling process, and the one developed in this paper, gives
each pixel the highest probability label given some sub-
stantially sized context neighboring the pixel. We show
that such an algorithm takes the form of a recursive neigh-
borhood operator first applied in a top down scan of the
image and then in a bottom up scan of the image. The
algorithm itself is related to a forward dynamic program-
ming algorithm put in a two-dimensional mesh setting.

To explain the meaning of what the algorithm pro-
duces, select any pixel in the image. Now consider all the
row monotonically increasing paths that begin at any bor-
der pixel of the image above the selected pixel, go through
the selected pixel, and end at some border pixel of the
image below the selected pixel. Each such path represents
a context for the pixel. Corresponding to each path and
the observed pixel data on the path, there is an associated
highest probability label for the given pixel. Among all
the paths there is some best path whose associated highest
probability label is higher than the highest probability la-
bel of every other path. In two scans of the image, the
context algorithm described in this paper is able to assign
to each pixel of the image the highest probability label
coming from its best path. Then, for the context used by
the algorithm, the percentage of misclassified pixels is
minimized.

The theory for the algorithm requires two distinct ideas.
The first idea produces a decomposition for the problem.
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Fig. 1. The set U, and L,.: U, is the set of all row monotonically increas-
ing paths beginning on a border of the image above or to the left of the
pixel (r, ¢) and terminating at the pixel (r, ¢) and not containing any
pixel on row r beyond column e. L,. is the set of all row monotonically
increasing paths begining at the pixel (r, ¢) and terminating on the border
of the image below or to the right of the pixel (r, ¢). § and E designate
the possible starting and ending pixels of a path; respectively.

Finding the highest probability label given the best path
passing through the pixel can be accomplished by finding
two probabilities, the probability for each possible label
given the best path beginning above the pixel and termi-
nating at the pixel and the probability for each possible
label given the best path beginning at the pixel and ter-
minating below the pixel. Finding these probabilities is
what the algorithm accomplishes in the top down scan and
the bottom up scan. The decomposition tells how to com-
bine these probabilities to determine the highest probabil-
ity label given the context of the best path through the
pixel. The second idea produces a recursive decomposi-
tion which tells how to determine the conditional proba-
bility for each label given the data on the pixel’s best up-
per (or lower) path. The decomposition bears a definite
similarity to the one used in forward dynamic program-
ming and as well bears some similarity to the iteration
technique employed in some relaxation methods.

A. Notational Conventions

We now present basic concepts and notation conven-
tions in order that we have a precise framework within
which we can describe the algorithm.

1) A path means any connected sequence of pixels,
each pixel neighboring its successor, in which the path
does not intersect itself. A row monotonically increasing
path is a path in which each successor pixel is on the same
row or one row below its predecessor.

2) The set U,. designates the set of all row monotoni-
cally increasing paths that begin at some border pixel of
the image above or to the left of pixel (r, ¢) and terminate
at pixel (r, ¢). The set U, is not permitted to contain any
pixels on row r beyond column c.

3) The set L,. designates-the set of all row monotoni-
cally increasing paths that begin at (r, ¢) and terminate at
some border pixel below or to the right of pixel (7, c).
The set L,, is not permitted to contain any pixels on row
r before column c. These are illustrated in Fig. 1.

4) The set Z,. designates the set of all row monotoni-
cally increasing paths beginning from a border of the im-
age passing through pixel (r, ¢) and continuing to another
border pixel of the image. Thus, Z,. is just the join of all
paths in U,. with the paths in L.

C L

5S5555558555555555558858

5 S

s S

s Uz, s

s s

s s

] E S|r r|E 3 E
E E
E E
E L, E
E E
E E
EEEEEEEEEEEEEEEEEEEE

Fig. 2. Theset U} and L}: U? is the set of all row monotonically increas-
ing paths beginning on a border of the image at the same row or above
pixel (r, ¢) and terminating at pixel (r, ). LY is the set of all row mono-
tonically increasing paths beginning at the pixel (r, ¢) and terminating
at some border pixel at the same row or below pixel (r, ¢). § and E
designate the possible starting and ending pixels of a path, respectively.

5) The set U} designates the set of all row monotoni-
cally increasing paths that begin at some border pixel of
the image above or to the left of pixel (r, ¢) and terminate
at pixel (r, ¢) coming to (r, ¢) from the left, from the
right, or any neighboring pixel above (r, ¢). The differ-
ence between the set U} and the set U, is that the set U,
does not include paths which contain any pixels on the
same row r beyond column ¢ while the set U# does.

6) The set L} designates the set of all row monotoni-
cally increasing paths that begin at pixel (r, ¢) and ter-
minate at some border pixel at the same row or below
pixel (r, ¢). While the set L,. does not include paths which
contain any pixels on the same row r before column ¢, the
set L does include those paths. This is illustrated in Fig.
2.

Let X;; designate the measurements of the pixel (i, j).
Let Q be any path. P(X;; (i, j) € Q) designates the joint
probability of all the measurements taken from the pixels
on the path Q. For pixel (7, c), let e,. be the correct but
unknown label at pixel (7, ¢). Then P(e,.| X;;; (i, j) € Q)
designates the conditional probability that the pixel (r, ¢)
takes the label e,. given that the joint measurements made
for the pixels on the path Q are {X;; (i, j) € Q}.

We define f, (e,.) to be the probability that pixel (r, c)
takes label e,. given that the joint measurements on the
best row monotonically increasing path Q is {X,; G, j)e
Q}. Thus

fZ,—(-(erc) = max P(er(" X'ys (is .]) € Q)

€l

(D

Just as f7, (e,) designates the probability of label e,. given
the joint measurements {X;; (i, j) € Q} arising from the
best row monotonically increasing path Q in Z,., let
8u.le..) designate the probability of label e,. given joint
measurements {X;;; (i, j) € Q} arising from the best row
monotonically increasing path in U, and let g, (e,.) des-
ignate the probability of label e,. given joint measure-
ments {X;;; (i, j) € Q} arising from the best row mono-
tonically increasing path in L,..

B. The Top-Bottom Decomposition

In this section we demonstrate the conditions under
which f; (e,.) has the decomposition
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1 |
fZR-(er{-) =

A | P(X e 8u.(er) g:.,:.(en-)} (2)

where A’ is a normalizing constant that will be discussed
later.

This decomposition requires some assumptions on the
conditional probability of the labels given the measure-
ments and the joint probability of the labels. By Bayes’
formula

Pley; (i, J) € Q| X5 (1, ) € O
= P(Xy; (i, ) € Qley; (i, j) € O)

« Ple;; (i, J) € Q)
PXy; G.He@

Assuming that the measurements at each pixel depend
only on the true label at that pixel and the measurement
noise for one pixel does not influence the measurement
noise for another pixel, we have

P(X;; (i, )) € Oley; (1, /) € Q) = (;EQ P(X; ley).

(3)

This assumption is really an idealization. It corresponds
to a reality in which independent randomness is super-
imposed on the ideal signal. The degree to which texture
dominates is the degree to which this idealization does not
hold.

The probability P(e;; (i, j) € Q) is the joint prior prob-
ability of having the true labels for each pixel (i, j) on the
path Q be ¢;. This probability encodes all the information
we have about context. If for example, we had indepen-
dence

H%xnne®=G£QP%a

we would discover that the highest probability assignment
we could make using the context is precisely the highest
probability assignment we could make using only the lo-
cal pixel information.

The simplest assumption of higher order independence
is a Markov-like assumption in which the joint prior prob-
ability becomes a function expressible as the product of
functions whose arguments are the label pairs for succe-
ssive pixels in the path Q. Letting R(Q) designate the set
of all pairs of succesive pixels in the path Q, we have

Pley; (i,j))eQ) = Ale, ey). (@)
(), (k1)ER©)

Using the two assumptions described above, we will de-
compose fz (¢,.) into two components as suggested by (2).

fZ,-.-(err) = rQnaZx P(erc‘X{p (‘[s j) € Q)
= max 2 P(€g|iji(isj)EQ) (5
QeZe e

.jleQ"

where O~ designates the set of all pixels in path O except
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the pixel (r, ¢) and the summation over all e; where (i, j)
€ O~ designates an iterated summation, one sum for each
pixel (i, j) € @, the sum taken over all possible values
for the label the pixel (7, j) can take.

Substituting (3) and (4) into (5), we have

1
fz.(e,) = max —
QeZr

e Uj)e (7)) k1) eR(Q)
e

[ 3 IIQP(XU|eEj) 11 Aley, ek,):l

(6)

where
A= P e
2 Pley, Xy G, ) € Q)

éij
(i.j)e@

2 II PX;ley
ej (i,))e@
(hje@

. Ale;;, ey).
(@), (k1) eRQ)

It is obvious that A is a normalizing constant that makes
the sum of the terms inside the bracket of (6) divided by
A over all e, to be one.

Since Z,,. can be decomposed as the join of U, and L.,
there results

fZ,f(err) =

Qrelr, Q2€Lre ei e (i, e

max ! [P(Xn.|em) 2 2 1l

i.yeQ, GieQy

FPXyley) 11 P(Xyley)
(i.j)eQ2 ((i.1). (k. 1) e R(Q1)

' A(e.ijs ek,’) .
((6.)), k. 1) eR(Q2)

A(e,‘j, ek[)] .
Rearranging the above equation, we can group all expres-
sions involving Q, together and all expressions involving
Q, together, and we obtain

1 1 1
e =—'| o= % max {— 2 I
fZI‘ A I:P(chlerc) QieUrn A] ej (.j)e
(i.j1e0,

. P(X e..)
iles (G.1). o) ERQY)

Aley, ekr)}

1
X max {— 2 1l P(X;le;)
Qrelee | Ay ey ()02 iles
i j)e@;

4 H A(e-- € )
s Crl
@)k j)ER(Q2) .

1 1
= 5 {m gu.(erw) gL,f(en-)}
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where
A = A,AIAZ
A, = 2 I PX;le) II Ale:, ey),
& e G.))e0m ileg (@) DyeR@Em U R
(i, j)EQm
form =1, 2.
Thus if
3Un:(erc) = max
QlEUrr
B 0 ihi
e P(Xy| €;) : A(er'js )
Ay e G)Ed (), kN ERQY)
(.)eQy
and if
gr.(e) = max
QZELm
E H P( ) H A(E", e;d)
{Az e (L)e02 ile G ner@y Y
. )eQs

we have the decomposition suggested in (2).

C. The Recursive Decomposition

In this section we give a recursive decomposition of
gy, in terms of the neighboring gy, , and hy: .,
hy:_,. and hy:_, ., where the Ay function will be defined
in the next paragraph. The recursive decomposition of
g... 1s similar. By definition

Sunler) = max Ple.| X3 (1, ) € Q)
eUrc
= max 2 Pley: (i) € 01X () € O)
i.)e@"

=maxi 2 1T P&X;ley

I1
({6, (kD) ERQ)

QelUr A] eij (I.j)E
ij)eQ”
« Aleyj, en)- (7N

Just as gy, designates the probability of label e,. given
measurements {X;;; (/, j) € Q} arising from the best row
monotonically increasing path in U,., let hy» designate
the probability of label e,. given measurements {X;;; (i,
j) € Q} arising from the best row monotonically increas-
ing path in U¥.

Then, by definition

hy: (e = é“dx P(e, | X i (i,j) e Q)
el re
= max Z Pley; (i, j) € Q| Xy (G, j) € Q)
QelUre
(U)EQ
1
= max — 2 1l PX;le II
oeUr AY & Gjeo Xy ley) (.}, 1) ER(Q)
ti.j)eQ"

- Aleyi, ey). (8)
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e—1 c ce+1

r—1,¢-1 r—1,¢+1

T r,ce—1 r, C

Fig. 3. The decomposition for g, : The best path to (r, ¢) must have come
from(r,c— 1D, (r—=1,c—=1,(r—=1,¢),or(r — 1, ¢c + 1) where (r,
¢) means the location of the pixel in the image at row r and column c.

where A} is computed similarly as A,.

To do the decomposition for gy, we need to recognize
that whatever the best path is, the best path to (¥, ¢} must
have come from (r,c — 1), (r — 1, c = 1), (r — 1, 0,
or (r — 1, ¢ + 1). Because the best path cannot cross
itself, if the best path came from (r, ¢ — 1), then the path
must be in U,._,. However, there is no damage of the
path crossing itself if the best path comes from (r — 1,
¢ — 1). Hence, such a path must be in U} ,._,. Like-
wise, a best path coming from (r — 1, ¢) must be in
U#*_ . and a best path coming from (» — 1, ¢ + 1) must
be in U*_,,. .. This is illustrated in Fig. 3.

Using these ideas, we can rewrite (7) as

2 Wi(Q)) Alese_1, €,

gu.(e,) = max [ max

Qi Qrelre -1 erc-1
max 2 Wy(Q;) Ale,—ic1s €n),
Q2eUr—jp- Er=lc~1
max 21 Wy(Q3) Ale,— 1> €,
Q3elUf- e er-lc
max Z W4(Q4) A(er— le+1s erc):|1 (9)
QaeUr—je+1 €r—le+1

where, form =1, --- ,4
P(chlerc) Z H
m\xm P )Q &
(Q ) Ai'11 eij  (I,))EQm ( ji j)
ijeQ,
Aley, ey).

(i) (k, D) ER(Qm)

Examining the first term in the maximization of (9) and
comparing it to gy,._,(e,—,) as defined by (7), we dis-
cover that the expressions are almost identical. The only
difference is that the expression for gy,._,(e,.—) involves
a summation iterated over all (i, j) € O~ while the first
expression in the maximization involves a summation it-
erated over all (i, j) € Q. Let M be the number of possible
labels for a pixel at any position (i, j). Then at (7, ¢), we
have M best paths one for each possible label and a cor-
responding maximum conditional probability. Let O* be
the best path for label e} where g, (e) is maximum. For
this path and this label e¥, define a conditional probability
for label ef by
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Ple.| Xy; @, j) € O%).

Similarly, define the conditional probability Ay (e,|ek) of
label e, at (r, ) given the best path Q* by

Ple.| Xy; G, j) € O%).

Now, if the best path for label e, at (r, ¢) comes from (r,
¢ — 1), it should come from one of those M best paths
computed at pixel (r, ¢ — 1). Therefore, the first term of
(9) can be rewritten as

max Wl (QI)A(erc— 1» erc‘)
Qreln -1

i:'I)(erlerC)

gUrp(ercleﬁrc:)

hU:r(ef'C‘l B,’.‘;

= max

erc—

X E U - |(erc—lierc—])A(erc-17 rc)}

1 €rc—1

A similar argument applies for the second, third, and
fourth terms of the maximization. After comparing them
with hys_ .., hys_,., and hy;_ .., and using the same rea-
soning, this results in

gUn-(err) = max

[max EM )3
ee—1 Al

erc—1

Sthz 1(erc - lwefﬁt‘ - I)A(erc— 1» err)}

max

*
€r—lc—1

P(X."E erc) o
{ AI 2 hU;_“__I(e,A,IC,]]e;"_ le—1)
2 er—1le—1

X A(ér, le—1» erc)}

P(X. |e.)
max[ ; - Z hU.— 1((er—lc|er*lc)A(e —le» rc)
er—1c 3 er—lc
P(XrL'!err)
max { A Z hU;—er(er*]c+]|e;k—1c'+l)
er—le+1 4 er—lc+1

(10)

'A(er— let+1s erc)]:|-

Equation (10) says that for each label value e,., the con-
ditional probability of e,. given {X;;; (i, j) € O, the path
giving the highest conditional probability} can be ob-
tained on the basis of the just previously computed g, _,
and the previously computed hy:_,._,, hys_\., hyr_,..,
coming from the row above the current row r (see Fig. 4).

So providing we can demonstrate a way to compute
hys., (10) specifies a recursive neighborhood operator that
scans the image in a top-down left-right scan to produce
8u,(e,.) for each pixel (r, ¢) and for each label e,..

Fortunately, we are able to provide an algorithm for
computing hy;. Its development proceeds along similar
lines to that of gy,.. For a path from U% to such (r, ¢), it
must first have gone through (r, ¢ — 1), (r, ¢ + 1), (r —

¢c—1),(r—1,¢),or(r — 1, ¢ + 1). Furthermore, if
it went through (r, ¢ — 1), since the path cannot cross
itself, it must be a path in U,._,. Thus we have

1001
c—1 ¢ c+1
r=1 hu;_,., hu:_,, hus i
T U,y gu..

Fig. 4. The computation of gy, : Using hy. values computed in the row
above the current row, gy, can be computed recursively from hy: .,
hyt_ i By ..,» and the just previously computed gy, _, in the left to right
scan of the image.

hU:f-(erc) = max |:gU,—c(erc)7

max 2 Wy(Q@y)A(e, 11, en.)}. (11)
Q2eUrc 1 ere+l

In a similar manner as in the development of (10), we can

rewrite (11) as

hb'?c(erc) = max [gb'n-(erc)’

{P(erlerc) Z hUn + |(erc+ 1 |erc+ l)A(erc +1, € ﬂ‘)z:|

max
Az €re+1

erc+ |

(12)

Equation (12) states that Ay can be recursively computed
from gy, and the previous hys_,, in a right-left scan of a
row done after g, has been computed. To start the re-
cursive calculation (12) we take hy(e,.) = gy,.le,.) for
that column position ¢ that is the rightmost column posi-
tion.

In summary, (10) and (12) give the following algorithm
for the computation of g, (e,.). From (10) we perform a
top—down left-right scan of the image recursively com-
puting gy, from the previous gy, and the hy: .,
hy:_,.. and hy:_ ., which had been computed on the pre-
vious row. Following the computation of gy, for all pixels
on row r, we perform a right-left scan of row r using (12)
to compute hy;. An obvious mirror image derivation ap-
plies to g;,.. To compute it, we perform a bottom-up
right-left scan of the image recursively computing g,
from the previous g, ., and the Ay, _, by, ., and
Rz, 1.1 Which had been computed on the previous row
from the bottom-up scan. Following the computation of
&1, for all pixels on row r, we perform a left-right scan
of row r and compute /1;; .

As soon as g, (e,.) has been computed, it can be com-
bined with gy, (e.) as given in (2) to compute f; (e,.).
Then the label e,., which maximizes f;, (e,.), can be de-
termined and pixel (r, c) labeled with this label.

III. EXPERIMENTAL RESULTS AND DISCUSSION

To show the increase in classification accuracy of the
new context classifier, several experiments were per-
formed on the images. First, two types of simulated im-
ages are used to examine the accuracy improvement of the
new classifier as compared to the pixel independent Bayes
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quadratic classifier, given that the class conditional mean
vectors, covariance matrices, and class prior probabilities
were known. Then it is applied to real images to investi-
gate its performance in a more realistic case. We also pre-
sent one experiment on a thermal image to compare the
ability to detect an object in the image and two experi-
ments on Landsat data to compare the classification ac-
curacy.

In the derivation of the new context classifier algo-
rithm, we used a Markov-like assumption and expressed
P(ey; (i, j) € Q) as the product of functions whose argu-
ments are the label pairs for successive pixels in the path
Q, (4). To compute the function A(e;, ey) for the testing
purpose in this paper, we assumed a Gaussian stationary
two-dimensional process. Here, stationary means that the
correlation between neighboring pixels is position in-
dependent in the image. The function A4 is estimated for
four directional pairs of pixels: horizontal, vertical, and
two diagonals. We approximate A by the observed fre-
quency distribution of each pair of labels in all four di-
rections from the ground truth data.

The first simulated image is generated from a real Land-
sat image following the method used by Swain et al. [5].
From the sample image and the ground truth data, we first
estimate the mean vectors u; and the covariance matrices
L, for each class i. Measurement vectors for each pixel on
the simulated image are produced by a pseudo-random
multi-dimensional Gaussian random number generator
having the required means and covariances. Then a sim-
ulated image with the following characteristics is created.

1) Each pixel in the simulated image represents the
same class as in the ground truth data.

2) Each class has a multi-dimensional Gaussian normal
distribution having the mean and covariance matrix
estimated from the sample image.

3) All pixels are class-conditionally independent of ad-
jacent pixels.

The real image consists of a subimage collected by the
Landsat multispectral scanner (MSS), which has known
ground truth. This is a 151 X 151 subframe of a scence
of Roanoke, VA, taken on April 13, 1976 (shown later in
Fig. 13) that contains five ground cover classes

class 1:
class 2:
class 3:
class 4-:
class 5:

urban or built-up land
agricultural land
rangeland

forest land

water.

It has four spectral bands. The ground truth data and the
first band of the simulated image are shown in Figs. 5 and
6, respectively. Due to the small sample size, ground
cover classes 3 and 5 are not used in the simulated image.

The pixel-independent Bayes classifier and the context
classifier are applied on the simulated image and the re-
sults are shown in Figs. 7 and 8. Contingency tables of
the classified images are given in Table I. The overall
classification accuracy is measured as the ratio of the
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urban or
built-up

agricultural

forest

Fig. 5. Ground truth data of the simulated image 1.

Fig. 6. First band of the simulated image 1.

urban or
built-up

agricultural

forest

Fig. 7. Classified result of the simulated image 1-classified by the Bayes
classifier.
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urban or
built-up

agricultural

forest

Fig. 8. Classified result of the simulated image 1—classifed by the context
classifier.

TABLE 1
CONTINGENCY TABLES FOR CLASSIFICATION RESULTS OF
SIMULATED IMAGE 1
(Column = assigned class, row = true class, URB = urban or built-up
land, AGR = agricultural land, FST = forest land. Scale factor for the
number of pixels = 10.)

(a) Bayes classifier resuit

class URB AGR FST total Acc(%)*
T;TRB 1315 7% 46 1437 91.5
AGR 462 88 29 579 15.2
FST 20 9 167 266 62.8
total 1867 173 242 2282 68.8+%
(b) Context classifier result
class URB AGR FST total Ace(%)*
URB 1421 10 6 1437 98.9
AGR 400 163 16 579 28.2
FST 34 3 229 266 86.1
total 1855 176 251 2282 79.4%*

* percent of correct classification

** overall classification accuracy : ratio of the number of correctly elassified pizels

to the total number of classified pizels

number of correctly classified pixels to the total number
of classified pixels and Table I shows that the context
classifier gained 10.6-percent increase in overall classifi-
cation accuracy over the pixel-independent Bayes classi-
fier.

The second type of simulated image is generated by ex-
tending the method suggested by Devijver [1] to the two-
dimensional space. We use a simple two-dimensional
Markov source model, which is a six-state model with
transition probabilities parameterized by p, 0 < p < 1,
defined by
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Fig. 9. Markov pseudo-random image as a ground truth data for the sim-
ulated image 2: Transition probability p = 0.7 and SNR = 16.

Ple;lei—yj, €5-1) = Peji|e;— \j)P(e;le;— 1)

where
P, if € = e,-;lj
Pei. &:i_1:) = l —
( j! i-1)) “?—, otherwise
D, lf e,;,- = eijfl
Plejley-) =11 —p

——.,  otherwise

5
A pseudo-random Markov image which is used as a
ground truth image for the simulated image is generated
as follows:

1) The top left-most pixel in the image is assigned ran-
domly with equal prior probability for each possible
class.

2) The selection of class assignments for successive
pixel positions is performed in a top to bottom and
left to right scan of the image.

3) The class of each pixel at (i, j) is determined by the
transition probabilities given the labels of the neigh-
boring north (i — 1, j) and west (i, j — 1) pixels.
The unit interval is partitioned proportional to the
transition probability P(e;le;_,;, e; j—1) for each
class e;;. A pseudo-random number between 0 and 1
is generated and the class is chosen according to the
subinterval in which the pseudo-random number
falls.

One of the simulated images with p = 0.7 generated by
such a method is shown in Fig. 9.

The class conditional distributions of the measurements
are chosen to be two-dimensional normal with covariance
matrices being each the identity matrix. The mean vectors
of the classes are located at the vertices of a regular hex-
agon inscribed within a circle of radius R. Ignoring con-
text, the signal to noise ratio (SNR) is measured by the



Fig. 10. Test image 1:8-12-um thermal image of size 200 X 200 taken
at Grafenwoehr, Germany. This image contains one object (white) at the
center.

TABLE II
OVERALL CLASSIFICATION ACCURACY OF THE BAYES CLASSIFIER AND THE
CoONTEXT CLASSIFIER WHEN APPLIED TO THE SECOND TYPE OF SIMULATED
IMAGES WITH DIFFERENT SNR AND TRANSITION PROBABILITY PARAMETER p,

p=102 p=04 p=204 p=0.17
SNR=16 SNR=16 SNR=9 SNR=16

Bayes classifier 96.12 95.88 86.96 96.28
Context classifier 96.40 96.88 89.16 98.24

ratio of the traces of the between class and within class
covariance matrices. In our configuration SNR = R2.

Four 50 x 50 images are generated and classified by
the pixel independent Bayes quadratic classifier and the
context classifier. The performance of the two classifiers
are shown in Table II in terms of overall classification
accuracy. We can clearly see the improved accuracy in
the result of the context classifier.

Now we extend the test to two real data sets. The first
is an 8-12-um thermal image of size 200 x 200 taken at
Grafenwoehr, Germany which contains one object in the
center (see Fig. 10). For the classification of the image,
the two texture features of entropy and inverse difference
moment are measured from the image [3]. The original
measurement in the thermal image and the two texture
features compose the measurement vector. Training sam-
ples are selected randomly from the image and mean vec-
tors and covariance matrices are estimated assuming that
the underlying class conditional probability is multidi-
mensional normal. Figs. 11 and 12 show the result image
classified by the pixel-independent Bayes classifier and
the context classifier, respectively. We can see the effect
of the context classifier by noting the difference in the
boundary lines of the classified object between Figs. 11
and 12. Compared to the smooth boundary lines in the
result of the context classifier, the pixel-independent
Bayes classifier leaves uneven boundary lines.

To give the numerical comparison of classification ac-
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Fig. 11. Classified result of test image 1—classified by the Bayes classi-

fier.

Fig. 12. Classified result of test image 1—classified by the context clas-
sifier.

curacy, two digital remote sensing data sets that have
known ground truth data are classified by both the pixel-
independent Bayes classifier and. the context classifier.
The first image is the one used to generate the first sim-
ulated image. It has four spectral bands and the first band
of the image is shown in Fig. 13. The objective of the
analysis was to discriminate three ground cover classes 1,
2, and 4. Classified results of both classifiers are shown
in Figs. 14 and 15 and the contingency tables are given
in Table III. The overall classification accuracy in Table
IIT is again measured as the ratio of the number of cor-
rectly classified pixels to the total number of classified
pixels. It shows that the context classifier gained 3.5-per-
cent increase in overall classification accuracy over the
pixel-independent Bayes classifier. Examining the result
of the context classifier (Fig. 15), it can be seen that within
each class it assigns the ambiguous noisy pixels to their
most likely class, leaving almost homogeneous regions
for each class. Also, it smoothed noisy boundaries be-
tween each class.
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Fig. 13. Test image 2: 151 X 151 subframe of MSS scene of Roanoke,
VA, taken on April 13, 1976 (first band). Longitude from 79°52' to
80°00" W, latitude from 37°15" to 37°23"' N.

urban or
built-up

agricultural

forest

Fig. 14. Classified result of test image 2—classified by the Bayes classi-
fier.

urban or
built-up

agricultural

forest

Fig. 15. Classified result of test image 2—classified by the context clas-
sifier.

Fig. 16. Test image 3: First band of 200 X 150 subimage of LANDSAT
image showing the Clarke, OR, 7.5--min U.S. Geological Survey quad-
rangle map taken in June 1979.

TABLE 111
CONTINGENCY TABLES FOR CLASSIFICATION RESULTS OF TEST IMAGE 2
(Column = assigned class, row = true class, URB = urban or built-up
land, AGR = agricultural land, FST = forest land. Scale factor for the
number of pixels = 10.)

(a) Bayes classifier result

class URB AGR FST total Ace(%)*
URB 1233 172 31 1436 859
AGR an 168 39 578 29.1
FST 79 7 166 252 65.9
total 1683 347 236 2268 69.2%%
(b) Context ciassifier result
class URB AGR FST total Acc(%)*
URB 1222 192 23 1437 85.0
AGR 295 248 35 578 42.9
FST 67 7 178 252 70.6
total 1584 447 236 2267 72.7**

* pereent of correct classification
** overall classification accuracy : ratio of the number of correctly classified pizels

to the total number of classified pizels

The second real data set is a four band image of size
200 X 175 taken July 1979 over Clarke, Oregon. The
area corresponds to the Clarke, OR, 7.5-min U.S. Geo-
logical Survey quadrangle map. Figs. 16 and 17 show the
first band of the image and the ground truth data. This
image contains eight ground cover classes.

class 1: wheat class 5: beans

class 2: alfalfa class 6: apples

class 3: potatoes class 7: pasture (irrigated)
class 4: corn class 8: rangeland
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Fig. 17. Ground truth data for test image 3.
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Fig. 18. Classified result of test image 3—classified by the Bayes classi-
fier.

One forth of the image is randomly selected as a training
set to estimate the class-conditional covariance matrices
and mean vectors. Because of the small sample size, class
6 and 7 are excluded from the ground truth data, and the
classifiers are applied to separate classes 1 through 5 and
class 8. Figs. 18 and 19 show the classified results of the
pixel-independent Bayes classifier and the context classi-
fier. Their contingency tables are given in Table IV. Jen-
son [2] also tested this image and reported the overall
classification accuracy of 64 percent for AMOEBA and
65 percent for ISOCLS. Since we used more extensive
ground truth data than did Jenson et al. in their experi-
ment, a direct comparision cannot be made. However, we
find that the new classifier (73.2-percent overall classifi-
cation accuracy) gained a 4.l-percent increase in the
overall classification accuracy over the pixel-independent
Bayes classifier. We performed more tests on Landsat im-
ages and consistently found that the new context classifier
gained 3-8-percent increase in overall classification ac-
curacy compared to the pixel independent Bayes classifier
under Gaussian distribution assumption.
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Fig. 19. Classified result of test image 3—classified by the context clas-
sifier.

TABLE IV
CONTINGENCY TABLES FOR CLASSIFICATION RESULTS OF TEST IMAGE 3
(Column = assigned class, row = true class.)

(a) Bayes classifier result

class  WHT ALF POT CRN BNS RNG total Acc(%)*
WHT 10234 427 561 20 4 626 11872 86.2
ALF 1252 2405 2073 18 11 913 6672 36.0
POT 745 470 4872 5 1 431 6524 4.7
CRN 83 40 85 98 44 432 782 44.8
BNS 17 77 24 10 16 337 481 33
RNG 154 261 208 18 10 3274 3925 83.4
total 12485 3680 7823 169 86 6013 30256  6O.1**

(b) Context classifier resuit
class WHT ALF POT CRN BNS RNG total Acc(%)*
WHT 10620 317 333 78 24 500 11872 89.5
ALF 901 2286 2190 49 616 630 6672 34.3
POT 306 324 5547 37 43 267 6524 85.0
CRN 89 14 23 250 154 252 782 32.0
BNS 16 15 7 68 275 100 481 57.2
RNG 176 156 240 25 152 3176 3925 80.9
total 12108 3112 8340 50T 1264 4925 30256  73.2%*

WHT :wheat CRN : corn

ALF : alfalfa BNS : beans

POT : potatoes RNG : rangeland

* percent of correel classification
** overall classification accuracy : ratio of the number of correctly classified pizels

to the total number of classified pizels

The increase in classification accuracy and efficiencies
can be compared to the other context classifiers proposed
by several authors. Yu and Fu [9] used a stationary sto-
chastic process on a two-dimensional plane as a model
to extract the spatial correlation parameters, which is the
context information used in their recursive context clas-
sifier. When tested on a real image, their results gained
about a 7-percent increase in classification accuracy over
the conventional Bayes classifier. Tilton et al. [6] and
Swain et al. [5] derived an unbiased estimate of the con-
text distribution G(67) they used in the context classifier.
The function G(6”) is the relative frequency with which
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87 occurs in the array 6, where 8”7 is the true label of the
p-context array 6 and the p-context array is a local con-
text, a set of pixels neighboring the pixel in consideration.
The optimal estimate of G(6”), designated by Ty.(X), is a
function that minimizes the mean squared error E[7},(X)
— G(6M)°. They reported 2—-6-percent improvement in
classification accuracy over the noncontext maximum like-
lihood classifier.

From the above descriptions, the computation cost of
those two contextual classifiers increases exponentially as
the size of the context increases. In comparison, the new
context classifier gives about the same improvement in
classification accuracy but requires only a fixed amount
of computation per pixel. Further improvements can also
be made in the context classifier described in this paper
by obtaining a proper model for computation of the func-
tion A(ey;, ey).

IV. CoNCLUSIONS

A context classifier was designed so that it gives each
pixel the highest probability label given some substan-
tially sized context including the pixel. Applied on a sim-
ulated image, the context classifier shows better classifi-
cation compared to the pixel-independent Bayes classifier.
On real images, it was observed that the context classifier
gained 4-8-percent increase in overall classification ac-
curacy over the pixel-independent Bayes classifier under
Gaussian distribution assumption.

Using assumptions (3) and (4) we were able to derive
a two-pass algorithm that can be expressed as in (10) and
(12). Even though we used a simple frequency-measuring
method to estimate the joint probability of label pairs for
successive pixels in the path, we obtained a higher classi-
fication accuracy for the context experiments. We also
compared the improvement in overall classification ac-
curacy to the other context classifiers developed so far and
found comparable results.
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