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Constrained Transform Coding and Surface Fitting

LAYNE T. WATSON, ROBERT M. HARALICK, SENIOR MEMBER,
IEEE, AND OSCAR A. ZUNIGA

Abstract—A constrained transform coding procedure is developed
which is a combination of transform coding with differential pulse
code modulation. The algorithm avoids block boundary mismatch
errors, yet retains the coding efficiency of transform coding. A gen-
eral theory of constrained transform coding is developed which in-
cludes the discrete cosine transformation and tensor products of
splines as special cases. Results using the cosines and splines are given
for two images. A complete discussion of the necessary linear algebra
background is also given.

I. INTRODUCTION

The constrained transform coding technique grew out of a
search for the correspondences between transform coding, sur-
face fitting, and approximation theory. The viewpoint is that
of function approximation and sophisticated numerical linear
algebra is used. All theorems shown pertain to only one-band
imagery. There is a natural and straightforward extension to
multiband imagery. In this paper, we illustrate that transform
coding is nothing more than least squares surface fitting, albeit
on a piece-by-piece basis. When transform coding is put into
this framework, the reason why errors occur at block bound-
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aries in the highly compressed transform coded images is ap-
parent: there has never been any constraint in transform
coding that the surfaces must match up at the block bound-
aries.

If a picture is transform coded block by block in a left-to-
right, top-to-bottom scan, such a surface matching constraint
requires that when the current block’s surface is extended to
the block on its left and to the block above, then these sur-
faces must match. We can, of course, extend the matching
concept to making the surfaces match up to an nth deriva-
tive. In any case, requiring that the left and top edges match
leaves us in a situation where, knowing nothing more than the
left and top boundaries of the current block’s surface, we may
interpolate or estimate the remainder of the block’s surface.
As in differential pulse code modulation, the differences be-
tween the actual surface and the estimated surface can be
transmitted. However, these differences do not have to be
transmitted in a pixel-by-pixel manner as in differential pulse
code modulation. Rather they are transmitted parametrically
as surface differences. The parameters are exactly analogous to
the coefficients transmitted in a transform coding procedure.

Thus, what has happened is this: we have defined a con-
strained transform coding procedure which by its nature is a
combination of transform coding with differential pulse code
modulation. The new procedure has the property that there
will be no block boundary mismatch errors and it retains the
coding efficiency advantage of transfrom coding.

The use of transforms for image data compression was intro-
duced by Andrews, Kane, and Pratt [4]. They advocated the
Hadamard transform applied to the entire image. Tasto and
Wintz [19], Habibi and Wintz [11], and Wintz [21] sug-
gested breaking the image up into blocks and transform
coding each block. Various kinds of quantizations were ap-
plied to the transform coefficients. Various kinds of basis
functions were used. Anderson and Huang [2], [3] sug-
gested the discrete Fourier basis. Pratt, Chen, and Welch
[16] suggested the slant transform. Rao, Narasimhan, and
Revuluri [17] suggested the Haar transform. Ahmen, Natara-
jan, and Rao [1] suggested the discrete cosine transform.
Habibi [10], [12] suggested combining a transform tech-
nique by line with a DPCM technique by column. Haralick and
Shanmugan [14] experimented with a block transform tech-
nique followed by DPCM. .‘ndrews and Patterson [5] il-
lustrated the computationally expensive singular value decom-
position technique for data compression.

More recent advances in image data compression have been
achieved by adaptive quantization techniques. Chen and Smith
[6] discuss adaptive quantization of monochrome and color
images with a transform coding technique. Zschunke [22]
discusses adaptive quantization in conjunction with a DPCM
data compression technique. Habibi [13] gives a survey of
adaptive image coding techniques. Haralick and Zuniga [15]
illustrate how a rate buffer can be integrated into an adap-
tive quantizing for DPCM or transform coding data com-
pression.

In order to describe this constrained transform coding pro-
cedure in detail we need to use some concepts and theorems
about orthogonality and orthogonal projection operators. The
Appendix contains a concise, yet complete, review of the
necessary definitions and theorems from linear algebra. The
following sections use the terminology and theorems of the
Appendix. Section II shows how surface or function approxi-
mation in the discrete least squares sense corresponds to ortho-
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gonal projection. Section III applies the surface fitting and
orthogonal projection ideas to constrained transform coding
data compression and illustrates how the combination is a mix-
ture of transform coding with differential pulse code modula-
tion.

II. DISCRETE LEAST SQUARES AND ORTHOGONAL

PROJECTION
In this section, we illustrate that discrete least squares fit-
ting a set { (x;, ¥;); i = 1, =+, K} of points, whose x coordinate

is the independent variable and whose y coordinate is the de-
pendent variable, with respect to a set of functions { f,,(x); n =
1, -, N} is exactly the same problem as taking the orthogonal
projection of the vector

onto the space spanned by the vectors

fn(xl)

.
. >

fn(xK)

n =1, N. It is assumed that N <K, and that the functions
fn(x) are independent with respect to the points x;. Precisely,

N
Y fix) =0
i=1

fork=1,, K implies oy = =0y = 0.

Imagine the data points (x;, y;) as lying on the graph of
some function g(x), and let L be a vector space (of functions)
containing g and fy, ***, f,,. Define an inner product on L by

(h, kY= h(xk(x;).

i=1

K

(1
(Actually, this may only be a positive semidefinite hermitian
form, but this technical subtlety is irrelevant for our pur-
poses.) The problem of finding the best approximation £ to g by

a linear combination of f;, *, f,, with respect to this inner
product is
N 2
min || g — a,-fi
@ i=1

M=

N
o;fi, & — E aifi>
i=1

=min { g —
o i

K N 2
min Z <yk —E aifi(xk)>
a k=1

1

i=1

(2

= min ||y — Ba|l3,
a
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where
oy f1(xq) oo fn(xq)
o= E " B = S E
oy 1(xk) oo fyv(xg)

and ||*]l, is the ordinary length in EX . This shows that the
function approximation problem with respect to the inner
product (1) is equivalent to an ordinary least squares problem
in EX. By Proposition 3 the (unique) solution

N
§=E &f;
i=1

is the orthogonal projection of g onto the subspace M with
basis f1, =, fv- g is called the best discrete least squares ap-
proximation to g. It also follows from Propositions 3 and 4

that

and
$=Ba=B(B'B)" !By

is the vector of fitted values at xy, =*, xx. Hence, y is the
orthogonal projection of y onto the column space of B.

[II. CONSTRAINED TRANSFORM CODING

Let T be a matrix whose columns are the desired basis vec-
tors of some transform coding scheme. The columns of T need
not be orthonormal. Let y be the vector representing the
pixels in the block currently being transform coded and let «
be the vector representing the transformed coefficients for the
block y.

In accordance with the identity between discrete least
squares function fitting and orthogonal projections, each
column of T is a function sampled at the same specified values,
which for the case of transform coding is just the spatial co-
ordinates of the pixels in the block of y, and Ta is the sam-
pled values of the fitted surface at the pixel locations on
the block. Now, these functions which are sampled to form
the columns of T can be sampled at each of the spatial co-
ordinates of the exterior top and left borders of the block y,
thereby defining a matrix S having the same number of
columns as T and having one row for each exterior top or left
border pixel. The extrapolation of the estimated surface of the
block y to the coordinates at the exterior top and left border
pixels of y is then given as Sa.

Let z be the vector specifying the values of the surface at
the exterior top and left border pixels of block y. Constraining
the fitted surface to match at the top and left border of the
block amounts to requiring that & minimize ||z — Sa||. There-
fore, the constrained transform coding problem is determining
the coefficient vector a which minimizes ||y — Ta|l, subject to
the constraint that & minimizes ||z — Sa|| first.

The next proposition specifies that the a which achieves
this constrained minimization can be represented as ap+ oy
where @), is any vector minimizing ||z — Sa, || and Tay, is the
orthogonal projection of y — Tay, onto T ker S. This leads to,
of course, the procedure for determining a.

Proposition 8: Let T be a K X N matrix, S an m X N ma-
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trix, m <N < K, rank T = N, rank § = r < m, y a K-vector,
and z an m-vector. Then, the solution to

min ||y — Tall, § ={a|aminimizes ||z — Sa ||},

aEeEN

has the form a = o, + @, where o, € Q and Tay is the or-

thogonal projection of y — Ta,, onto T ker S.
Proof: Let ap € Q be fixed. Then, every a € £ has the
form o = @, + oy, a, Eker S (ker S # ¢ since m < N). Now

lly — Tell=ly — T(a, + an)ll

=|(y — Tap) — T, || = || (v — Tey) — TBB ||

where B is a matrix whose columns are an orthonormal basis
for ker S. Now, clearly ly — Tall, @ € Q, is minimized for
some § such that TB§ = Tay, is the orthogonal projection of

y — Tay, onto T ker S. Q.E.D.
Using Proposition 4 an explicit formula for a, is
ay, = B[(TB)'TB] ~}(IB)'(y — Tay). (3)

Corollary 9: If the columns of T are orthonormal, then aj
is the orthogonal projection of Ty — a, onto ker S.
Proof: Using the fact that the columns of B and T are
orthonormal in (3) gives

ap = BB (T"y — &),

from which the corollary follows by Proposition 6. Q.E.D.

As alluded to earlier, @, and @y, should not actually be cal-
culated by formulas such as (3), which are notoriously inac-
curate. Numerically accurate and stable computations of op
and oy, are based on the matrix decompositions given in the
next two propositions.

Proposition 10: Let A be an n X k matrix, k < n. Then,
there exists a;l n X n orthogonal matrix Q such that

04 =R

is upper triangular.
This is called the QR factorization of 4, and is extremely

important in the numerical calculation of eigenvalues and the
numerical solution of least squares problems. The calculation
of 0 and R is numerically stable, and can done accurately and
efficiently using Householder reflections. For the details see
[20], the bible of numerical linear algebra. Examining the for-
mula 4 = Q'R column by column shows that the first &
columns of Q7 are an orthonormalization of the columns of 4,
and thus, Proposition 10 provides a proof for Proposition 5.

If A has less than full rank the appropriate decomposition is
the following. :

Theorem 11: Singular Value Decomposition. Let A be an
n X k matrix, k < n. Then, there exist an n X n orthogonal ma-
trix U, a k X k orthogonal matrix ¥, and an n X k diagonal
matrix £ with diagonal elements 0, = g, = 2 0 = 0 such

that
Ulav = 3.

The numbers 0y, -, Oy are called the singular values of 4,
and are uniquely determined (although U and V are not




720
unique). Observe that

rank 4 = rank I,

and, thus, the o; are good indicators of the “independence” of
the columns of 4. The numerical calculation of the singular
value decomposition is also based on Householder reflections,
and is numerically stable although relatively expensive [20].

Now these results will be applied to the transform coding
scheme. Consider the problem of finding ker'S. Then, the fol-
lowing equivalent statements:

x Eker S,

Sx =0,

x is orthogonal to the row space of S,
x € (column space of S') l,

show that ker S is the orthogonal complement of the subspace
spanned by the columns of S?. Using Proposition 10,

S'=0R

where Q is an N X N orthogonal matrix and R is upper trian-
gular (assume, without loss of generality, that the first » =
rank S’ columns of R are independent). As observed earlier,
the first » columns of Q are an orthonormalization of the
columns of S?. Since the columns of Q are an orthonormal
basis for EN, the last N —  columns of Q are an orthonormal
basis for the orthogonal complement of the column space of
ST, Therefore, an orthonormal basis for ker S is the last N — 7
columns of Q. By Proposition 6, this will be particularly nice
for computing projections onto ker S.

Now let 4 be an n X k matrix, n =k, b € E” and consider
the least squares problem

min ||Ax — b ||.
pe

The computation of both @, and é(ah =B é) reduces to such a
problem. By Proposition 3, this is equivalent to finding the
projection of » onto the column space of 4. There are two rea-
sons for not using the explicit formula for the projection op-
erator in Proposition 4. First, the formula requires 4 to have
full rank. Secondly,AtA is typically extremely ill conditioned,
which may result in a serious loss of accuracy in the calcula-
tion of (4°4)™! and x = (474)~ 1 4%p. By Theorem 11,

0, O

where r = rank 4. Using Proposition7,[|Adx — b || = || UZV"x -
bl| = IZV'x — U || = || =% — b|| where # = V'x and b
U'h. Now, clearly || % — b || is minimized when x;= 13,-/0,-, i =
1, =+, r, and fi =0,i=7r+1, -, k. It is also clear that x is
unique if rank 4 = r = k, and that if rank 4 < k the above %

I
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is the unique solution of minimum norm. These statements
apply also to the solution x = V¥ to the original problem.

This completes the description of the numerical calcula-
tion of &, and q,.

To simplify the discussion, assume that the columns of T'
are orthonormal. The argument for the general case is ana-
logous. By the representation of &, we have actually shown
how to mix transform coding with the differential pulse cod-
ing scheme. However, our differential pulse coding will not be
on a pixel-by-pixel basis. It will be by surface parameters of a
block, making it, therefore, very efficient. To see how this can
work, consider the situation at the transmitter and receiver at
the time block y is being encoded. Its top and left exterior
border pixels z are known t® the receiver from the trans-
mission of the previous blocks. The matrices T and S are also
known to the transmitter and receiver. The vector @y, is any
vector which minimizes ||z — Sa, ||. Since the number of
columns exceeds the number of rows in S, there are many such
a,, vectors. Since z and S are known to the receiver, it can de-
termine an @,. As in differential pulse code modulation, the
transmitter can mimic the receiver and construct this same Q.

Now by Corollary 9 a, is given by

ap =BB'(T'y — a,) = B[B (T"y - a,)].

The transmitter can now send B’(Tty — @p). Multiplying this
by B the receiver obtains ay. The receiver then adds a, to oy
to obtain & and produces the reconstructed block at Ta, Ta =
Toy, + Tay,.

T @, is the receiver’s interpolation estimate of the block
using the top and left exterior border z. TTty — Tozp is the dif-
ference between the best fit sampled surface of y according to
the column space of T and the sampled surface the receiver has
estimated. T7y — » is the same difference except it is in the
parameter space of the surface rather than in the values of the
surface points. The transmitter sends the orthogonal projec-
tion of T?y — @, onto ker § instead of the difference 'y —
a, in order that the reconstructed surface at the receiver
match its top and left borders.

To see how this works in an example problem with num-
bers, consider a block which is 16 X 16. The y is a 256 X 1
vector. The top and left border pixels number 33. Hence,
z is a 33 X 1 vector. Suppose we approximate the surface of
the extended 17 X 17 block by a 49-dimensional surface.
Then a is a 49 X 1 vector. The matrix S takes & into z, soit
must be a 33 X 49 matrix. Ker S has dimension 7 => 49 — 33 =
16. The matrix B, therefore, is 49 X r. The matrix T takes o
into y, so it must be a 256 X 49 matrix. The transmitter and
receiver both construct the same a,. The transmitter sends
Bt(Tty — @p). This is an r X 1 vector. The receiver multiplies
what the transmitter sends by B obtaining

ap = B[B'(T'y — ap)].

Then, it adds @, and o to obtain & and finally reconstructs
the block as Ta. The achieved component compression ratio is
256/r = 16:1. (The matrices B, S, and T are fixed, and only
two matrix multiplications are needed to reconstruct the
block. With an array processor, this is feasible in real time.)

The above discussion assumes an ideal channel and no quan-
tization error. Further compression can be achieved by quan-

tization and Hufman encoding (which was done in the experi-
ments), but the intent here is to study the effect of constrain-
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ing the transform coding, and not the secondary effects of
quantization error, interpolation errors, or noisy channels.

IV. SURFACE APPROXIMATION BY COSINES (DCT)

Consider an L-by-L block as lying in the unit square in the
plane, with pixelsat the x-y coordinates ((2i — 1)/2L, (2j — 1)/
2L), i, j=1,-, L. The basis functions for the surface approxi-
mation discussed in Section II are taken to be

cosrmx cossmy, r,s=0,1,,L—1.

This gives K = L? independent functions, and the grey tone
surface is to be approximated by some linear combination of
N < K of these functions. In some fashion, order the L2 pixel
coordinates, calling them Py, ---, Py, and similarly order the
basis functions, calling them f7, -, fx. These cosine functions
have the extremely useful property of being discretely or-
thogonal with respect to the pixel points, i.e., the vectors

fi(Py)

fiPx)

are mutually orthogonal. This can be shown by observing that
the pixel coordinates in the x and p directions are related to
the zeros of the Lth Chebyshev polynomial T (x) = cos (L
cos™! x), and then using the fact that the first L Chebyshev
polynomials are discretely orthogonal with respect to the zeros
of the Lth Chebyshev polynomial. Let g(#;) be the grey tone
at pixel point P;, let

f1(Py) *** fn(P1)

f1(Px) *=* fn(Px)
be the matrix of sampled basis functions, let

441

R
Il

L%

be the (unknown) vector of coefficients of these basis func-
tions, and let

&(Py)
y=1
&(Pk)

be the vector of grey tone values. Then, the least squares sur-
face approximation problem is

min || Ta—y||.
[+7

Since the columns of T are orthogonal, computing the projec-
tion of y onto the column space of T is trivial. This projection
calculation for a is precisely the discrete cosine transforma-

tion of y.
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V. SURFACE APPROXIMATION BY CUBIC SPLINES

Consider a block as lying in the unit square in the plane,
with corner pixels having coordinates (0, 0), (1, 0), (1, 1),
(0, 1). Let P be a positive integer, x; = i/P, y; = i/P,i = =3,
-2, =, P+ 3. Let By(x), k= —1, -, P+ 1 be the cubic B-
splines defined at the knots x;, and similarly for By (y) at y;.
The By, are defined by [8]

4
By(s) = ;(x" 3%k 2, Xk_ 1, Xga2 ]

The P + 3 B-splines B_(x), -, Bp4+(x) are a basis for the

linear space of all cubic splines with knots at xq, -, xp [7].
The intent is to approximate (in a discrete least squares

sense) the grey tone surface over the block by a tensor product

of cubic splines [8],

p(x) ®q(y)

where p(x), q(y) are cubic splines with knots at x;, y;, respec-
tively (i = 0, *=-, P). By the preceding remarks, a basis for all

such splines is
Bi(x) @ Bi(y), —1<i,j<P+1.

Denote the pixel coordinates (in the block under considera-

tion) by (u;, v;) and the grey tone at (u;, vj) by g(u;, vj), i,/ =

1, =+, L where K = L? and N = (P + 3)? are the same as in

Section II. Then, the least squares surface approximation prob-

lem is

L P+1 2
min E< E ak,Bk(ui)®Bl(v,~)~g(u,-,v,~)>

@ jj=1\k,l=—1
or

min || Ta — y ||?
[+7

where y is the vector of grey tones g(u;, ”/') and each column
of the K X N matrix T is one of the basis functions By(x) ®
B(y) evaluated at all the pixel coordinates (u;, v;).

VI. RESULTS

Fig. 1 shows the original of an aerial image, an RADC pic-
ture. Fig. 2 [Fig. 2(b) is a blowup of a portion of Fig. 2(a)]
shows the result of applying an unconstrained DCT to the
RADC image where 16 coefficients are retained. Fig. 3(a) and
3(b) are analogous to Fig. 2(a) and (b), except 25 coefficients
are retained. Both Figs. 2 and 3 have the same compression
ratio, 30:1. Comparison of Figs. 2 and 3 shows that trans-
mitting more coefficients with less accuracy on each is better
than transmitting fewer coefficients with more accuracy on
each. This can be explained as follows. The image in a block
is given exzctly by

K
> i
i=1

where [}, -+, fx are basis vectors. For the DCT case, the latter
f; represent higher frequencies, and thus, typically, the o;
decrease in magnitude as i increases. The image is approxi-
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Fig. 1. Original “RADC” picture, 8 bits/pixel.

(b)

Fig. 2. (a) Reconstructed picture obtained by retaining 16 coef-
ficients of an unconstrained discrete cosine transformation. Equal
interval quantization. Hufman encoding. Compression ratio = 30:1,
0.27 bits/pixel. {b) Reconstructed picture obtained by retaining 16
coefficients of an unconstrained discrete cosine transformation.
Equal interval quantization. Hufman encoding. Compression ratio =
30:1, 0.27 bits/pixel.
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(b)

Fig. 3. (a) Reconstructed picture obtained by retaining 25 coefficients
of an unconstrained discrete cosine transformation. Equal interval
quantization. Hufman encoding. Compression ratio = 30:1, 0.27
bits/pixel. (b) Reconstructed picture obtained by retaining 25 coef-
ficients of an unconstrained discrete cosine transformation. Equal
interval quantization. Hufman encoding. Compression ratio = 30:1,
0.27 bits/pixel.

mated by

N
E a;f

i=1

and the error is roughly the order of magnitude of the first
omitted term, oy fy4 1. If Vis too small, apy 4 is larger than
the quantization errors in oy, =+, apy, and their high accuracy is
wasted. On the other hand, if V is too large, the quantization
errors in the first few o; overwhelm the last few a; transmitted,
and these latter coefficients are wasted. An interesting prob-
lem is to determine the optimal N for a given compression
ratio.

Fig. 4(a) and (b) [Fig. 4(b) is a blowup of Fig. 4(a)]
shows the constrained DCT applied to the RADC image, where
16 coefficients were retained and the compression ratio is
30:1. Comparing Fig. 2(b) to Fig. 4(b), note that the blocking
in Fig. 2(b) is much worse. Fig. 4(b) is fuzzier, but since there
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(a)

(b)

Fig. 4. (a) Reconstructed picture obtained by retaining 16 coefficients
in the original space (nine coefficients in kernel space) of a con-
strained discrete cosine transformation. Equal interval quantization
in the kernel space. Hufman encoding. Compression ratio = 30:1,
0.27 bits/pixel. (b) Reconstructed picture obtained by retaining
16 coefficients in the original space (nine coefficients in kernel
space) of a constrained discrete cosine transformation. Equal in-
terval quantization in the kernel space. Hufman encoding. Com-
pression ratio = 30:1, 0.27 bits/pixel.

are obviously gross block boundary mismatches in Fig. 2(b),
its sharpness is specious. The effect of the constrained trans-
form coding algorithm is to remove the block boundary mis-
matches, at the expense of slightly defocusing the image
within each block.

Figs. 5, 6, and 7 also illustrate the effect of constrained
coding. Fig. 5 is the original of a girl picture. Fig. 6(a) and
(b) [Fig. 6(b) is a blowup of 6(a)] shows the unconstrained
DCT applied to the girl image, where 16 coefficients are re-
tained and the compression ratio is 30:1. Fig. 7(a) and (b)
[Fig. 7(b) is a blowup of 7(a)] is the constrained analog of
Fig. 6(a) and (b). The blocking in Fig. 6 is particularly objec-
tionable, whereas Fig. 7, although more blurred, has a much
better overall quality.

Compared to the DCT, the performance of the cubic
splines was disappointing. There were two noticeable dif-
ferences between the images reconstructed from cosines and
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Fig. 5. Original “girl” picture, 8 bits/pixel.
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(b)

Fig. 6. (a) Reconstructed picture obtained by retaining 16 coef-
ficients of an unconstrained discrete cosine transformation. Equal
interval quantization. Hufman encoding. Compression ratio = 30:1,
0.27 bits/pixel. (b) Reconstructed picture obtained by retaining 16
coefficients of an unconstrained discrete cosine transformation.
Equal interval quantization. Hufman encoding. Compression ratio =
30:1, 0.27 bits/pixel. :

ﬁ«
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(a)

(b)

Fig. 7. (a) Reconstructed picture obtained by retaining 16 coefficients
in the original space (nine coefficients in kernel space) of a con-
strained discrete cosine transformation. Equal interval quantization
in the kernel space. Hufman encoding. Compression ratio = 30:1,
0.27 bits/pixel. (b) Reconstructed picture obtained by retaining 16
coefficients in the original space (nine coefficients in kernel space)
of a constrained discrete cosine transformation. Equal interval quan-
tization in the kernel space. Hufman encoding. Compression ratio =
30:1, 0.27 bits/pixel.

cubic splines. For a given compression ratio, the cosine images
are better. Also, the equal interval quantization had a more
pronounced effect on the spline images than the cosine images.
This is illustrated by Figs. 8 and 9. Fig. 8 is a constrained
spline image based on 36 coefficients. Fig. 9 is the result of
quantizing those coefficients used to construct Fig. 8. Note
that some blocking has been introduced by the quantization.
However, there are many ways to set up a spline approxima-
tion, and the particular scheme described in Section V (com-
bined with equal interval quantization) may just be a poor
choice. Another possible explanation may lie in the fact that
for a Toeplitz image covariance matrix, the DCT is a good
asymptotic approximation to the Karhunen-Loeve transform
which is optimum in the two-norm.

Fig. 10 shows the unconstrained spline transformation ap-
plied to the girl image,using 36 coefficients with a compression
ratio of 15:1. Fig. 11 is the counterpart to Fig. 10 for the con-
strained spline transformation. The effectiveness of the con-
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Fig. 8. Reconstructed picture obtained by retamg coefficients in
the original space (25 coefficients in kernel space) of a constrained
splines transformation. No quantization.

Fig. 9. econstructed picture obtained by retaining 36 coefficients in
the original space (25 coefficients in kernel space) of a constrained
splines transformation. Equal interval quantization in the kernel
space. Hufman encoding, compression ratio = 14:1, 0.57 bits/pixel.

Fig. 10. Reconstructed picture obtained by retaining 36 coefficients
of an unconstrained splines transformation. Equal interval quanti-
zation quantization. Hufman encoding. Compression ratio = 15:1,
0.53 bits/pixel.
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Fig. 11. Reconstructed picture obtained by retaining 36 coefficients
in the original space (25 coefficients in kernel space) of a constrained
splines transformation. Equal interval quantization in the kernel
space. Hufman encoding, compression ratio = 15:1, 0.53 bits/pixel.

strained algorithm in alleviating the block boundary mis-
matches is not limited to the cosine basis functions (DCT),
as Figs. 10 and 11 show.

Several issues remain to be resolved. From a function
approximation theoretic viewpoint, some bases are better than
others, e.g., cubic splines and Chebyshev expansions are usually
better than cosines. Whether there is something special about
image data which makes the cosine basis especially good, or
whether other bases have not been systematically investigated,
should be explored. Constrained transform coding is clearly
superior to unconstrained transform coding with respect to
block boundary errors and storage (everything can be recon-
structed from the kernel coefficients, and there are fewer of
them than transform coefficients). The effect of different
kinds of quantization on the reconstructed constrained images
is not well understood, and seeking an optimal quantization
scheme for use with constrained transform coding appears
worthwhile.

APPENDIX
LINEAR ALGEBRA

The facts reviewed here are standard in numerical analysis
and approximation theory, and proofs can be found in the
textbooks [18], [7], or [9], the latter being the most ad-
vanced.

Let £ denote the real numbers, E” be n-dimensional Eucli-
dean space (all n-tuples of real numbers), L be a finite dimen-
sional real vector space, and M a subspace of L. An inner prod-
uct (also known as a positive definite hermitian form) on L is a
function which assigns to every pair of vectors x, y €L a real
number (x, y) such that

1){x, y)=(y, x)forallx, y €EL;

2){ax, y)=alx, y)forallx,y EL, a €E;

3)(x+w, yy=Lx, p)+<(w, y)forallx, y, wEL;
4){x, x)>0forall x #0in L.

For L = E" | the standard inner product is (x, y) = Sy Xy
An inner product {(x, y) always leads to a norm on L de-
fined by

Fx Il = Ax, x).
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A norm has the properties

1) [} x 1> 0 with equality if and only if x = 0;
2) llax ll=lalllx llforallx €L, a EE;
Mx+ylI<I x|l +lyllforalx,y€L.

Not every norm arises from some inner product, but those

that do have nicer properties.
Vectors u, v € L are orthogonal if {u, v) = 0. A set of vec-

tors {uy, =, up } is orthonormal if
wpuy=oy=1 7
u.’ u~ = . =
v v 0, i#j,

A vectorv € L is orthogonal to the subspace M if (v, x) = 0 for
all x € M. The orthogonal complement of M, denoted by M,
is the set of all vectors orthogonal to M:

M ={y €L |y, w=0forallw€ M}

Proposition 1: Every vector x € L has a unique representa-
tion of the form

x=u+v, u€M, veEM.

This is sometimes expressed by saying L is the direct sum of M
and MJ', denoted L = M ® M*. Note that u and U are unique,
and (u, v) = 0. u is called the orthogonal projection of x onto
M. An elementary proof of Proposition 1 is by constructing
orthogonal bases for M+ and M, but an elegant proof which
does not depend of the existence of orthogonal bases is known
[9].

Proposition 2: Let x =u + vEL, ueEM, vEM? . Then the
map x = u defines an operator P which is linear

P(ay + fz) = aPy + Pz,
symmetric

(Py,z)=(y, Pz),

and idempotent

PPy = Py.

Conversely, any linear, symmetric, idempotent operator P on
L is a projection onto M = range P.

When L = E", a matrix P is a projection operator if and
only if PP =P (symmetry) and PP = P (idempotent). Projec-
tion operators are intimately related to least squares problems,
as shown by the following.

Proposition 3: Let P be the projection operator onto the
subspace M, and fEL. Let f=u + v, u€ M, veM*. Then there
is a unique closest point in M to f, namely u = Pf, and the
distance from fto M is ||v||. In other words, the approxima-
tion problem

min ||y — £]|
YEM

has the unique solution u = Pf and the minimum is | |v || =

[T —=P)fI].
For L = E" and (x,)) = Z L, x;»;, projection operators
have an explicit representation.
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Proposition 4. Let L = E", (x,y) = 27, x;y;,and B
be a matrix whose columns are a basis for a subspace M. Then
the projection operator P onto M is given by

P=B(B'B)"'B".

This explicit representation is convenient for theoretical.

purposes, but serious roundoff error due to the ill conditioning
of B'B makes it computationally impractical. However, if the
columns of B are orthonormal, then B'B = Iis perfectly con-
ditioned and there are no numerical difficulties. The existence
of orthonormal bases is shown by the following.

Proposition 5: Let uy, **+, u, be independent vectors in L.
Then there exist orthonormal vectors ¢y, ", ¢, such that the
subspace spanned by uy, ***, U is equal to the subspace span-

ned by ¢y, -+, ¢ foreachk =1, n.

This is usually proved by constructing the ¢; with the
Gram-Schmidt process. The Gram-Schmidt process will not be
elaborated on, because it is numerically unstable, and there is a
numerically stable construction of the ¢; (when L = E Y based
on the QR factorization.

Besides maintaining numerical stability, orthonormal bases
make the calculation of projections trivial, as shown by the
following. ‘

Proposition’6: Let L = E", (x,y) = X7, %y, xEL,
{4y, **, ¢} be an orthonormal basis for M, and B the matrix
with columns ¢y, * **, ¢5. Then

k
u = Px = (BB")x = B(B'x) = E (x, ¢;
=1

is the projection of x onto M, where P = BB! is the projection
operator onto M.

Note that the projection Px is completely specified by its
Fourier coefficients (x, ¢;), and it is these which are actually
transmitted (since usually k < n).

An n X n matrix Q is orthogonal if 0'0 = I, where I is
the identity matrix. Note that Q is orthogonal if and only if
Qt is orthogonal, and Q’1 = Qt. Orthogonal matrices are
extremely important in matrix calculations, because multi-
plication by orthogonal matrices does not magnify roundoff
errors.

Proposition 7: If Q is an n X n orthogonal matrix, then

Hox|l=llx|l forallx€EE"

where

n
Nyl =D »2.
i=1

The QR and SVD matrix factorizations used in Section 11
are based on orthogonal matrices, and thus because of Proposi-
tion 7 are very stable numerically.
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