
Pattern Analysis & Applications (2000)3:196–208
 2000 Springer-Verlag London Limited

Consistent Partition and Labelling of Text
Blocks

J. Liang1, I. T. Phillips2 and R. M. Haralick3

1MathSoft, Inc., Seattle, WA; 2Department of Computer Science/Software Engineering, Seattle University, Seattle,
WA; 3Department of Electrical Engineering, University of Washington, Seattle, WA, USA

Abstract: This paper presents a text block extraction algorithm that takes as its input a set of text lines of a given document, and
partitions the text lines into a set of text blocks, where each text block is associated with a set of homogeneous formatting attributes,
e.g. text-alignment, indentation. The text block extraction algorithm described in this paper is probability based. We adopt an engineering
approach to systematically characterising the text block structures based on a large document image database, and develop statistical
methods to extract the text block structures from the image. All the probabilities are estimated from an extensive training set of various
kinds of measurements among the text lines, and among the text blocks in the training data set. The off-line probabilities estimated in
the training then drive all decisions in the on-line text block extraction. An iterative, relaxation-like method is used to find the
partitioning solution that maximizes the joint probability. To evaluate the performance of our text block extraction algorithm, we used a
three-fold validation method and developed a quantitative performance measure. The algorithm was evaluated on the UW-III database of
some 1600 scanned document image pages. The text block extraction algorithm identifies and segments 91% of text blocks correctly.

Keywords: Document structure; Hidden Markov Model; Layout analysis; Statistical-based; Text block extraction; UW-III database

1. INTRODUCTION

A document structure analysis system converts a scanned
document page or a document encoded by a Page Descrip-
tion Language (PDL), such as PostScript and Portable Docu-
ment Format (PDF), into a well partitioned hierarchical
representation that reliably identifies the basic document
components and text blocks. This paper presents a text
block extraction algorithm that takes as its input a set of
text lines of a given document, and partitions the text
lines into a set of text blocks, where each text block
has homogeneous formatting attributes, e.g. text-alignment,
indentation. The resulting block structures can be easily
converted into a document markup language, such as a
SGML or HTML file.

Most document structure analysis and understanding sys-
tems [1–13] contain a text line extraction and a text block
extraction module. The performance of their text line
extraction modules are much better than their text block
extraction modules. The reason is simple. A text line extrac-

Received: 17 May 1999
Received in revised form: 7 February 2000
Accepted: 25 February 2000

tion algorithm needs only to consider very restricted local
information, such as text line directions, text line endings
and spacings among the characters within the same text
line. Whereas for a text block extraction algorithm, not
only does it need to consider the local information, but
also the global formatting of the document. Most of these
algorithms are rule-driven, grammar-based or model-based.
All these systems assume some prior knowledge of the
typographical and layout conventions of document. The
required knowledge about the document properties ranges
from very specific and precise to fairly general ideas. One
way of knowledge acquisition is to manually generate the
heuristic rules or grammars by carefully looking through a
set of representative document pages. Not only is this task
tedious and requires much expertise, but the hand-crafted
rules tend to be brittle and only work for a specific kind of
document. This means that these algorithms analyse success-
fully only those documents having previously defined text
block formatting properties, and may fail on documents that
do not meet the formatting criteria. Moreover, most of the
rule or grammar-based algorithms use fixed, global distance
thresholds for merging text lines into text blocks. These
thresholds are either ad hoc given or empirically determined.
However, the measurements made on the document entities

197Consistent Partition and Labelling of Text Blocks

may have errors, and the knowledge about the document
style may be ambiguous. Hence, to build a document struc-
ture extraction algorithm that is error-tolerant and robust
remains a challenging task for the researchers and developers
in the field.

To build an error-tolerant and robust text block extraction
algorithm, it is necessary to replace heuristics by systematics
and rely on mathematical optimisation rather than intuition.
Only the algorithm of Chen [5] takes a systematic approach
to integrating the evidence sources they use. Their algorithm
computes Bayesian estimates of text lines and text blocks
based on parametric models. However, their algorithm’s
underlying models ignore the fact that some of the para-
meters are dependent on the text’s font size. Thus, their
algorithm performs poorly for data that contains documents
of a wide variety of font types and font sizes. Their algorithm
reports a 76% accuracy [14] on the same test data set that
our algorithm described in this paper is tested on.

The text block extraction algorithm described in this
paper is probability based. We adopt an engineering
approach to systematically characterising the text block
structures based on a large document image database, and
develop statistical methods to extract the text block struc-
tures from the image. All the probabilities are estimated
from an extensive training set of various kinds of measure-
ments among the text lines and among the text blocks
which the algorithm is based on. The off-line probabilities
estimated in the training then drive all decisions in the on-
line text block extraction. An iterative, relaxation-like
method is used to find the partitioning solution that maxi-
mises the joint probability.

To evaluate the performance of our text block extraction
algorithm, we used a three-fold cross-validation method, and
developed a quantitative performance measure. The algor-
ithm was evaluated on the UW-III database of some 1600
scanned document image pages. The text block extraction
algorithm identifies and segments 91% of text blocks cor-
rectly.

This paper is organised as follows. In Section 2, a litera-
ture review is given. In Section 3, the problem of consistent
partition and labelling of text blocks is formulated. In
Section 4, our text block extraction algorithm is described.
In Section 5, the experimental protocol for the off-line
probabilities estimation is outlined. In Section 6, the criteria
and measurements for the performance evaluation of our
algorithm are presented. In Section 7, the experimental
results of the algorithm are reported. Section 8 gives sum-
mary of the paper.

2. LITERATURE REVIEW

Most of the current document image analysis algorithms in
the literature can be categorised either by the direction that
the algorithms take to construct document hierarchies, or
by the methods or strategies that the algorithms employ in
constructing the hierarchies.

Algorithms can be classified into two major classes by the
direction the algorithms work to construct the document

hierarchy: bottom-up and top-down. Although there are
algorithms that use a mixture of the two (hybrid), their main
construction directions are still within these two classes.

Algorithms taking the bottom-up approach, by-and-large,
are the majority. The document structure extraction task is
done by recursively grouping smaller document entities into
larger document entities. For example, the characters are
extracted from the connected-components, the basic docu-
ment entities. Extracted characters are grouped into words;
words are grouped to form text lines; and text lines are
grouped into text blocks and text-columns, and so on. For
algorithms using the top-down approach, the segmentation
task is done in a reverse order, i.e. by recursively dividing
the document from larger document entities to smaller
entities. A classic example of this approach is Nagy’s X-Y
tree [2].

By the strategies or methods that algorithms use in their
decision making during the process of dividing or grouping
the document entities, the algorithms can be classified into
two major categories: (1) rule-based/grammar-driven; and (2)
statistical-based (either parametric or non parametric). The
rule-based/grammar-driven algorithms use a set of ad hoc
rules or predefined syntax rules of the grammars to derive
decisions in the process of dividing or grouping document
entities. The number of rules used can range from a few to
a very large set. The ad hoc rules or the syntax of the
grammar can also be very domain-specific. As for the statisti-
cal-based algorithms, the required free parameters that are
used in the process are obtained via an off-line training
processes. The estimated parameters are used in the decisions
which govern the processes of the dividing or the grouping
of the document entities.

The following are a handful of selected algorithms within
the above defined categories. Only Chen’s text block extrac-
tion algorithm takes a similar approach as the algorithm
described in this paper:

I Nagy and Seth [2] discuss a prototype of document image
analysis system for technical journals. They integrate
document layout analysis and commercial OCR to gener-
ate information for document browsing system. The spe-
cific knowledge of a predetermined layout convention for
a specific family of publications are encoded before-hand
as block grammars in the form of a tree. Documents that
satisfy the postulated layout conventions are parsed into
different components.

I Ittner and Baird [3] develop a system for isolating blocks,
lines, words and symbols within images of machine-
printed textual documents. Their algorithm is independent
of language and writing system by using a small number
of nearly universal typesetting and layout conventions.
They use a wide variety of techniques, including Fourier
theory, computational geometry, and statistical decision
theory. The algorithm achieves a measure of robustness
by following a ‘global-to-local’ strategy.

I Dengel and Dubiel [4] develop a system for partitioning
raster images of business letters into logically labelled area
items. It employs various knowledge resources utilising
spatial and geometric characteristics about the formal style

198 J. Liang et al.

of business letters. Due to the unsupervised learning of
document model, the system allows the establishment of
a specific decision tree classifier to generate the know-
ledge representation.

I Chen [5] describes a text word, line and block segmen-
tation algorithm for horizontal rectangular layouts. The
morphological closing transform is applied to the binary
document image. The extracted segments are classified as
words or non-text according to their size. The algorithm
groups extracted words into text lines based on statistical
models of the colinearity and equal spacing of words
within the text lines. The text lines are then merged
into text blocks according to a statistical model of their
homogeneity in height, width, leading and justification
within text blocks.

I Ha et al [6,7] present an algorithm based on recursive
cutting of connected component projection profiles for
segmenting binary document images into zones; zones are
classified as textual and non-textual; then the text zones
are decomposed to text blocks, text lines and words.
Empirically determined thresholds are used at each cut-
ting step.

I Srihari et al [8] develop a postal automation system that
locates and interprets the destination address blocks on
letter mail pieces with a high success rate and speed. The
system is based on data-driven processing. It extracts
primitive information from the image and groups the
information into possible address blocks. The evidence
combination tool integrates pieces of evidence generated
for a block into a single block labelling hypothesis. The
best candidate block is selected by verifying the consist-
ency of labelling hypotheses by using spatial relations.

I Etemad et al [9] present an algorithm for layout-inde-
pendent document page segmentation based on document
texture using multiscale feature vectors and fuzzy local
decision information. Multiscale feature vectors are classi-
fied locally using a neural network to allow soft/fuzzy
multi-class membership assignments. Segmentation is per-
formed by integrating soft local decision vectors to reduce
their ‘ambiguities’.

I Kise et al [10] present a method of page segmentation
based on the approximated area Voronoi diagram. The
Voronoi diagram helps obtain the candidates of bound-
aries of document components from page images with
non-Manhattan layout and a skew. Then, the candidates
are used to estimate the intercharacter and interline gaps
without the use of domain-specific parameters to select
the boundaries.

I Wang and Yagasaki [11] present a page segmentation
method called block selection which segments the page
image into categorised blocks and provides a tree structure
to represent the page blocks for selection. Block selection
identifies the major document elements, such as text,
picture, table, frame and line. The direction of text
could be horizontal, vertical, slanted or mixed. No skew
correction is involved regardless of the document style.

I Jain and Yu [12] use the traditional bottom-up approach
based on the connected-component extraction to

efficiently implement page segmentation and region
identification. A document model which preserves top-
down generation information is proposed. This method is
applicable to documents from various technical journals,
and can accommodate moderate amounts of skew and
noise.

3. CONSISTENT PARTITIONING AND
LABELLING OF TEXT BLOCKS

Given a set of text lines, the problem is to partition the
text lines into a set of text blocks, each block having
homogeneous leading and text alignment, and the attributes
between neighbouring blocks being similar.

Let A be the set of input text lines. Let P be a partition
of A such that each element in P is a text block. A system
P of nonempty sets is called a partition of A if

1. P is a system of mutually disjoint sets, i.e. if C P P, D
P P and C ± D, then C > D = 0/;

2. the union of the sets in P is the whole set A, i.e. <cPP

= A.

Let L be a set of labels, such as text-alignment, inden-
tation, and so on, that can be assigned to elements of the
partition. Function f: P → L associates each element of P
with a label. V: `(A) → L specifies measurement made on
subset of A, i.e. a group of text lines, where L is the
measurement space.

The consistent partition and labelling problem can be
formulated as follows: Given the initial set A, find a partition
P of A, and a labelling function f: P → L that assigns each
text block t P P a label in L, that maximises the probability.

P(V(t): t P P, f, PuA)

=P(V(t): t P PuA,P,f)P(P,fuA) (1)

= P(V(t): t P PuA,P,f)P(fuP,A)P(PuA)

By making the assumption of conditional independence,
that when the label f(t) is known then no knowledge of
other labels will alter the probability of V(t), we can
decompose the probability in Eq. (1) into

P(V(t): t P P,f,PuA) = (2)

P
tPP

P(V(t)uf(t))P(fuP,A)P(PuA)

A brute-force method for finding the optimal solution for
the above equation is to search through all possible par-
titions with all possible labels, and select the configuration
which produces the highest conditional probability in Eq.
(2). The number of partitions of an n-set is called a Bell
number. Fortunately, the entities on a printed document are
usually aligned with certain reading order. For example, text
lines within a text block are within a proximity of one
another. A text line on the top of the document never
needs to be hypothesised as grouped with those text lines
on the bottom of the document. Thus, with the ordering
constraint, the partitioning and labeling problem can be
re-formulated.

199Consistent Partition and Labelling of Text Blocks

Let A = (A1, A2, . . ., AN) be a partially ordered set
where elements in A satisfies a partial ordering relation,
ReadBefore(a, b) (is to be interpretated as a is read before
b). The binary relation ReadBefore is a partial ordering
relation, since if Ai P A and Aj P A, then

1. ReadBefore(Ai, Ai) is false.
2. If ReadBefore(Ai, Aj) → ReadBefore(Aj, Ai) is false.
3. If ReadBefore(Ai, Aj) and ReadBefore(Aj, Ak) →

ReadBefore(Ai, Ak).

Let G = {Yes, No} be the set of grouping labels. Let Ap

, A 3 A be a set of adjacent pairs of text lines, such that
Ap = {(Ai, Aj)uAi, Aj P A, j = i 1 1, and ReadBefore(Ai,
Aj) = True}. Grouping function, g: Ap → G, associates each
pair of adjacent text lines of A with a grouping label (Y or
N), where g(i) = g(Ai, Ai11). Note that corresponding to
each grouping function is a partition. Then, the partition
probability P(PuA) can be reduced to computing the prob-
ability, P(guA), and P(guA) can be expanded as follows:

P(PuA) = P(guA)

= P(g(1), %, g(N − 1)uA1, %, AN)

= P(g(1)uA1, A2) × % × P(g(N − 1)uAN−1, AN)

=P
iPS

P(g(i)uAi, Ai+1), (3)

where S = {ju1 # j # N 2 1, ReadBefore(Aj, Aj11) = True}.
Therefore, the joint probability in Eq. (1) can be further
decomposed as

P(V(t): t P P,f,PuA)

= P
tPP

P(V)(t)uf(t))P(fuP,A) P
iPs

P(g(i)uAi, Ai+1) (4)

Again, in principle, we want to find the joint pair of
functions (g, f) that maximises the conditional probabilities
in Eq. (4). Such a search could be done by brute-force.
Each of the 2N21 different g functions determines a partition.
Once a partition is given, the labeling function f is determ-
ined by maximising the probability PtPPP(V(t)uf(t))P(fuP,
A).

To avoid the exponential search in the space of 2N21,
where N is the number of input text lines, we settle for a
search that finds a local maximum. The next section
describes an iterative search method of order O(N) that
finds the consistent partition and labelling by monotonically
maximising the joint probability in Eq. (4).

4. TEXT BLOCK EXTRACTION
ALGORITHM

An iterative search method is developed to find a consistent
partition and labeling solution that maximises the joint
probability in Eq. (4). First, the set of input text lines A is
arranged to a partially ordered set. Then, for each Ai P A
such that ReadBefore(Ai, Ai11) is true, we compute the
grouping probability P(g(i)uAi, Ai11) for the pair of text lines

Ai and Ai11, by observing the spatial relationship between
the pair.

An initial partition is determined based on the con-
ditional grouping probabilities, P(g(i)uAi, Ai11). Then, we
adjust the partition and assign labels to the members of the
partition, by maximising the labelling and the label context
probability PtPP P(V(t)uf(t))P(fuP, A). At each iteration,
the adjustment that produces the maximum improvement
of the joint probability in Eq. (4) is selected. The iteration
stops when there is no improvement on the joint probability.
Given an n-set, the size of the search space is therefore
decreased to t 3 (n 2 1), where t is the number of
iterations. Figure 1 gives an overview of the processing steps
of the text block extraction algorithm. Algorithm 1 presents
a detailed description of the algorithm.

Algorithm 1 Extract text bock from text lines

1. Compute local grouping probabilities.
For each Ai P A, we search for the text line ‘right
below’ it and rearrange elements in A according to the
ReadBefore partial relation. Given the observed spatial
relationships between a pair of text lines (Ai, Ai11), we
compute the probability that they are within the same
text block:

P(g(i)uAi, Ai+1)
2. Group text lines

Given the linking probability P(g(i)) between a pair of
adjacent text lines Ai and Ai11, if P(g(i) = Y) . P(g(i)
= N), we group the pair into a text block; otherwise, Ai

and Ai11 are in different blocks. During the initial par-

Fig. 1. The process of text block grouping and labelling.

200 J. Liang et al.

tition, P(g(i)) = P(g(i)uAi, Ai11), and this step yields our
initial text block set, B = {B1, B2, . . ., BK}. The details
of this step are given in Section 4.1.

3. Label text blocks
In this step, we compute the probability of an extracted
block Bk having the homogeneous properties of a text
block:

P(V(Bk)uf(Bk))

where the labelling f(Bk) includes homogeneous leading
and the text alignment type. The text blocks within the
same neighbourhood usually have similar alignment type.
The context constraint P(fuB, A) is modeled with a
Markov chain. Given a sequence of extracted text blocks,
we determine labelling f by maximising

Plabel = P
BkPB

P(V(Bk)uf(Bk))P(fuB, A) (5)

A detailed description of computation of the homo-
geneous leading, the alignment, and the context con-
straint probability are given in Sections 4.2, 4.3, and
4.4, respectively.

4. Update linking probability and adjust partition
Given the computed labelling probabilities, we update
the linking probability P(g(i)), between each pair of
adjacent text lines:

P(g(i)) ~ P(g(i)uAi, Ai+1)Plabel (6)
During each iteration, the adjustment which produces
the maximum improvement of the linking probability is
selected. Then, we continue to Step 2, and adjust the
partition according to the updated linking probabilities.
If there is no improvement on the linking probability,
we stop the iteration and return the extracted text blocks.

Figure 2 shows an example of a set of input text lines
on a document image. Extracted text blocks are illustrated
in Fig. 3.

4.1. Group Text Blocks

Figure 4 illustrates a pair of adjacent text lines. Leading is
the distance between baseline of the top text line and the
x-height line of the bottom text line.

For each pair of vertically adjacent text lines Ai and Ai11,
where the text line is represented by a bounding box (x,
yb, w, hx) (yb is the coordinate of the baseline and hx is the
x-height), we make the following measurements (see Fig. 5):

I x-height: hi and hi11

I inter-line spacing: d(i, i 1 1)
I horizontal overlap: o(i, i 1 1)
I left edge offset: el(i, i 1 1) = xi 2 xi11

I centre edge offset: ec(i, i 1 1) = xi 2 xi11 1 (wi 2 wi11)/2
I right edge offset: er(i, i 1 1) = xi 2 xi11 + wi − wi+1

The interline spacing is normalised by the text lines’ x-
height average,

di =
d(i, i + 1)
.(hi + hi+1)

We use ratio of two text lines’ x-height to measure the
difference between their font size,

xi =
min(hi, hj)
max(hi, hj)

The horizontal overlap between Ai and Ai11 is normalised
by hi and hi11, respectively,

oi =
o(i, i + 1)

hi
and oi+1 =

o(i, i + 1)
hi+1

The relative location between the left edges of Ai and Ai11

is defined as

rli = 50 if uel(i, i + 1)u , .(hi + hi+1)
1 if el(i, i + 1) $.(hi + hi+1)
−1 if el(i, i + 1) # −.(hi + hi+1)

The relative location between the centre edges of Ai and
Ai11 and the relative location between the right edges of
Ai and Ai11 are defined in a similar way.

Given the above measurements, we compute the prob-
ability that Ai and Ai11 belong to the same block:

P(g(i)uxi, oi, oi+1, di, rli, rci, rri) (7)

4.2. Homogeneous Text Block Properties

A text block usually has homogeneous inter-line spacing,
and certain alignment type (justification, indentation and
hanging). Given a detected text block B, we compute the
probability that B has homogeneous leading, and certain
type of text alignment,

P(V(B)uTextBlock(B)) =
P(V(B)uLeading(B), Alignment(B))

In this section, we describe the estimation of homogeneous
leading. The text alignment detection method is given in
next section.

Let B = (A1, . . ., An) be an extracted text block. DB =
(d(1, 2), . . ., d(n 2 1, n)) is a sequence of inter-line spaces,
where d(j, j 1 1) is the space between Aj and Aj11. We
compute the median and the maximum value of the
elements of DB. The probability of a text block B having
homogeneous leading is estimated as

P(median(DB), max(DB)uLeading(B)) (8)

4.3. Text Alignment Detection

Figure 6 illustrates four homogeneous types of text block
alignment. The various types of indentation are shown in
Fig. 7. Other types of alignment, such as the justified-
hanging and left-hanging, can also appear in some document
images (see Fig. 8).

A justification and indentation label is assigned to each
possible block using the model shown in Fig. 9. Given a
text block B that consists of a group of text lines B = (A1,
A2, . . ., An), we determine the text alignment of B by
observing the alignment of the text line edges (see Fig. 10).

201Consistent Partition and Labelling of Text Blocks

Fig. 2. A real document image overlaid with the bounding boxes of input text lines.

Let eli be the left edge of the text line Ai and let eci and
eri be the centre and right edges of the line box, respectively.
Let El be the left edges of text line 2 to n, such that El =
{eliu2 # i # n}. Ec is the centre edges of text line 2 to n
2 1, and Er is the right edges of text line 1 to n 2 1. We
first estimate the median of El, then compute the absolute
deviation Dl of the elements of El from its median,

Dl = {diudi = ueli − median(El)u, 2 # i # n}

Similarly, we estimate the absolute deviation of centre edges
and right edges: Dc and Dr. Then, we compute the prob-
ability of B being left, centre, right, or both justified by
observing the mean absolute deviation of left, centre and
right edges,

P(mean(Dl), mean(Dc), mean (Dr)uJ(B)) (9)

where J(B) is the justification type assigned to block B.
For each detected text block, we verify the consistency

of text alignment, by checking the maximum deviation
of text line edges from the corresponding edge of the
text block,

P(max(Dl)uJ(B) = left)

P(max(Dc)uJ(B) = centre)

P(max(Dr)uJ(B) = right)

P(max(Dl, Dr)uJ(B) = both) (10)

Finally, we determine if a left- or both-justified text block

202 J. Liang et al.

Fig. 3. A real document image overlaid with the bounding boxes of extracted text blocks.

Fig. 4. A pair of adjacent text lines and their spatial relationships.

has left hanging on the first text line. Let Dl1 be the
distance from el1, the left edge of the first line, to the
median of El, the hanging probability is

P(Dl1uH(B)) (11)

where H(B) is the hanging label assigned to block B. Fig. 5. The measurements made on a pair of adjacent text lines.

203Consistent Partition and Labelling of Text Blocks

Fig. 6. Four types of text justification. (a) Left justified; (b) right
justified; (c) centre justified; and (d) justified.

Fig. 7. The various types of indentation. (a) Indentation at the last
line; (b) indentation at the first line; and (c) indentation at the
first and the last lines.

Fig. 8. The hanging type alignment. (a) Justified-hanging; (b) left-
hanging.

Fig. 9. The process that determines the alignment type of a text
block.

4.4. Context Consistency of Text Alignment

Given a sequence of hypothesised text blocks B = (B1, B2,
. . ., BM), we use a Markov chain model to represent the
context constraint of the sequence of alignment types f =
f(B1), f(B2), . . ., f(BM). The probability P(fuB, A) requires
specification of the alignment of the current block, as well
as the alignment types of all the predecessor blocks,

Fig. 10. The measurements made on determining the alignment
type of a text block.

P(fuB,A) = P
BtPB

P(f(Bt)uf(Bt−1), f(Bt−2), %, f(B1)) (12)

where P(f(Bt)uf(Bt21), f(Bt22), . . ., f(B1)) is the probability
of f(Bt) under the condition that the alignment types of
the previous text blocks are f(Bt21), f(Bt22), . . ., f(B1). For
a first-order Markov chain, the current state is only depen-
dent on the previous state, i.e.

P(f(Bt)uf(Bt−1), f(Bt−2), %, f(B1)) = P(f(Bt)uf(Bt−1))
(13)

Given this assumption of conditional independence, the
probability in Eq. (12) is simplified as

P(fuB, A) = P
BtPB

P(f(Bt)uf(Bt−1)) (14)

Therefore, the labelling and context consistency probability

P
BtPB

P(V(Bt)uf(Bt))P(fuB,A) (15)

is actually a simple hidden Markov model, shown in Fig.
11. The reader is referred to Rabiner [17] for a tutorial on
the Hidden Markov Models (HMM) and Aas et al [18] for
the use of HMM in image analysis applications. In this
case, the hidden states are the underlying alignment types
f(B) which are not observable. P(f(Bt)uf(Bt21), Bt P B,
are called transition probabilities, and P(f(B1)) are the initial
probabilities. A sequence of observations V(B) is measured
at the text blocks Bt P B, where P(V(Bt)uf(Bt)) are obser-
vation probabilities.

Given a certain partition of text blocks, finding the

Fig. 11. A model of the text alignment consistency.

204 J. Liang et al.

sequence of alignment types which maximises the probability
(15) can be efficiently computed using the Viterbi algorithm
[17]. The recursion formula for computing the highest prob-
ability along a single path, which ends at block Bt with the
alignment type f(Bt) = j, is the following:

dt(j) = (16)

5P(f(B1) = j) P(V(B1)uf(B1) = j) t = 1

[maxidt−1(i)P(f(Bt) = juf(Bt−1) = i)]P(V(Bt)uf(Bt) = j) t . 1

where i and j are the possible text alignment types.
The algorithm can be seen as an application of dynamic

programming for finding a maximum probability path in a
directed graph. We use array ct(j) to keep track of the
arguments which maximised (16):

ct(j) = arg max
i

[dt−1(i)P(f(Bt) = juf(Bt−1) = i)] (17)

At the end of the sequence, a backtracking step is performed
to retrieve the most probable path of text alignment labels.

Figure 12 illustrates the extracted text blocks after the
initial grouping based on local observations. The corrected
text blocks by maximising the labelling and context prob-
ability are shown in Fig. 13.

5. ESTIMATION OF PROBABILITY
DISTRIBUTIONS

The discrete contingency tables are used to represent the
joint and conditional probabilities used in the algorithm.

Fig. 12. A document image overlaid with the bounding boxes of
text blocks after initial grouping.

Fig. 13. A document image overlaid with the bounding boxes of
text blocks after consistent labelling and partition adjustment.

Each variable of the table has a finite number of mutually
exclusive states. If A is a variable with states a1, . . ., an,
then P(A) is a probability distribution over these states:

P(A) = (x1, %, xn), xi $ 0, On

i=1

xi = 1

where xi is the probability of A being in state ai.
Rather than entering the value of each variable for each

individual in the sample, cell count records, for each possible
combination of values of the measured variables, how many
members of the sample have exactly that combinations of
values. A cell count is simply the number of units in the
sample that have a given fixed set of values for the variables.
The joint probability table can be computed directly from
the cell count.

The steps for estimating the conditional and joint prob-
ability tables are as follows:

1. Determine the variables to observe.
2. Collect and record the data observations.
3. Study graphics and summaries of the collected data to

reveal low-dimensional relationships between variables.
4. Choose a model describing the important relationships

seen or hypothesised in the data.
5. Quantise the value of each variable into a finite number

of mutually exclusive states.
6. Compute the cell count table from the data.

A tree structure quantisation is used to partition the value

205Consistent Partition and Labelling of Text Blocks

Fig. 14. A constructed tree-based model used for quantisation.

of each continuous variable into bins. At each node of the
tree, we search through all possible threshold candidates on
each variable, and select the one which gives minimum
value of entropy. In growing a tree, the binary partitioning
algorithm recursively splits the data in each node until
either the node is homogeneous or the node contains too
few observations. To construct the quantised table from the
tree, one follows the path from the root to the leaves within
certain level and record the splits made on each variable.
The bins on each variable form the cells in the space. The
total number of cells, is predetermined based on the memory
limitation and the number of samples in the training set.
Given this number, one can determine how many levels of
nodes will be used to form the cells. For example, suppose
a domain has two variables A and B. First, we collect and
record the data observations. Then, a classification tree
training process is applied to the observed data and the
constructed tree is shown in Fig. 14. If we want to limit
the total number of cells under 20, the nodes with depth
up to three are used to construct the table. In our example,
four thresholds are determined on variable A and the vari-
able B is split three times. Therefore, A and B are quantised
into five bins and four bins, respectively. The constructed
table with 20 cells is shown in Table 1.

The data set we selected to train and evaluate our text
block extraction algorithm is the University of Washington
English Document Image Database-III [15,16] (UW-III). The
UW-III database contains 1600 skewcorrected English jour-
nal document images that come with manually edited
ground-truth data. The ground-truth data includes bounding
boxes for text blocks and the bounding boxes for text lines
within the text blocks. Each text block in the data set is
also associated with a set of formatting attributes, such as
justification and hanging.

We conduct a series of experiments to empirically deter-
mine the probability distributions that we use to extract

Table 1. A cell count table, where the quantisation of vari-
ables is determined using the tree structure shown in Fig. 14

A,1 1#A,2 2#A,3 3#A,5 A$5

B,0.05
0.05#B,0.25
0.25#B,0.5
B$0.5

text blocks. The reader is referred to Liang [19] for the
histogram and quantisation of each variable computed from
the selected samples in the UW-III data set.

6. PERFORMANCE MEASURE

In general, the performance evaluation of any algorithm can
be done by testing the algorithm on a selected testing data
set and then comparing its results against the corresponding
ground-truth of the test set. A large quantity of ground-
truth data, varying in quality, is required in order to give
an accurate measurement of the performance of an algorithm
under different conditions. Performance metrics need to be
defined to measure the quantitative performance of the algor-
ithm.

There are two problems in making the evaluation. The
first is one of correspondence: which entities of the ground-
truth set correspond to which entities of the automatically
produced set. Once this correspondence is determined then
a comparison of detected entities with the ground-truth
entities can proceed.

Suppose we are given two sets G = {G1, G2, . . ., GM} for
the ground-truthed entities and D = {D1, D2, . . ., DN} for
the detected entities. The comparison of G and D can be
made in terms of the following two kinds of measures [14]:

sij =
Area(Gi>Dj)

Area(Gi)
and tij =

Area(Gi>Dj)
Area(Dj)

(18)

where 1 # i # M, 1 # j # N, and Area (A) represents
the area of A. The measures in the above equation constitute
two matrices S = (sij) and T = (tij). Notice that sij indicates
how much portion of Gi is occupied by Dj, and tij indicates
how much portion of Dj is occupied by Gi. Our strategy of
performance evaluation is to analyse these matrices to deter-
mine the correspondence between two sets of polygonal
areas:

I one-to-one match (sij < 1 and tij < 1);
I one-to-zero match (sij < 0 for all 1 # j # N);
I zero-to-one match (tij < 0 for all 1 # i # M);
I one-to-many match (sij , 1 for all j, and SN

j=1 sij < 1);
I many-to-one match (tij , 1 for all i, and SM

i=1 tij < 1);
I many-to-many match (others).

An example of matching between a set of ground truth
entities and the detected entities is illustrated in Fig. 15.
By computing their area overlap, we construct two matrices,
S = (sij) and T = (tij), shown in Table 2. In this example,
we find a one-to-one match (G1 to D1), a one-to-many
match (G2 to D2 and D3), a one-to-zero match (G3 to
nothing), and a many-to-many match (G4, G5 and G6 to
D4 and D5).

Once the matching between detected structures and
ground-truth structures is established, a performance measure
can be computed. A one-to-one match means an object Gi

is correctly identified by the segmentation process as Dj. A
one-to-zero match is the case when a certain object Gi is

206 J. Liang et al.

Fig. 15. Correspondence between ground truth and detected struc-
tures.

Table 2. The area overlap matrices computed from the
example in Fig. 15

D1 D2 D3 D4 D5

G1 0.95
G2 0.45 0.51
G3

G4 0.7
G5 0.37 0.29
G6 0.8

S = (sij)

D1 D2 D3 D4 D5

G1 0.9
G2 0.85 0.91
G3

G4 0.4
G5 0.25 0.3
G6 0.45

T = (tij)

not detected by the segmentation (misdetection), and vice-
versa for the zero-to-one match (false alarm). If an entity
Gi matches to a number of detected entities, we call it a
splitting detection. It is a merging detection when two or
more objects in G are identified as an object Dj. The many-
to-many matches are called spurious detections.

7. EXPERIMENTAL RESULTS

The text block extraction algorithm described in this paper
is evaluated on a total of 1600 images from the UW-III
Document Image Database. A three-fold cross-validation
method is used to estimate the algorithm’s performance. We

partition the data set into three parts, use two parts to do
the training, and use the third part to test and evaluate the
performance. The training and testing procedure is repeated
three times and a different part is used for testing at each
time. Finally, the performance measures from three parts are
combined as the overall performance of the algorithm on
the data set.

Within the 1600 document pages in the UW-III database,
there are total of 21,788 ground truth text blocks. Each
text block is associated with its bounding box information
and a text alignment label.

First, we apply the text alignment detection algorithm to
the ground-truth blocks, and estimate its performance. The
classification contingency table is shown in Table 3. Note
that the classification algorithm rejects a text block when
there are less than three text lines within the block. The
total number of tested text blocks is 11,753. Of them,
11,348 are correctedly classified, and the number of mis-
classifications is 405. The detection rate of our text align-
ment detection algorithm is estimated as 96.55%.

Then, we apply the text block extraction algorithm on
the ground-truth text lines in the UW-III database. The
numbers and percentages of miss, false, correct, splitting,
merging and spurious detections are shown in Table 4(a).
Of the 21,788 ground truth text blocks, 91% of them are
correctly detected, and 2.57% and 5.74% of blocks are split
or merged, respectively.

Finally, the text block extraction algorithm is applied to
the text lines generated by our text line extraction algorithm
[19]. Table 4(b) shows that 88.91% of text blocks are
correctly identified and segmented.

We did a careful examination of all the document pages
on which our text block algorithm had made errors. We
discovered that most of the pages that our algorithm had
failed are in these categories: (1) pages containing nested-
list items; (2) pages containing poorly formatted list items;
(3) pages containing ‘pseudo-codes’; or (4) pages containing
two adjacent text blocks that are not possible to separate
without knowing the text content. Figure 16 illustrates some
of the examples where the text block extraction algorithm
failed to identify text blocks correctly.

8. SUMMARY

In this paper, we formulate the text block segmentation as
a partitioning problem. The goal of the problem is to find
an optimal solution to partition the set of input text lines
into a set of text blocks (with a text alignment label)
that preserves the formatting property of the original input
document. A Bayesian framework is used to assign and

Fig. 16. Examples where the text block extraction algorithm failed
to identify text blocks correctly. (a) Splitting error; (b) splitting
error; (c) merging error; (d) merging error.

207Consistent Partition and Labelling of Text Blocks

Table 3. The text alignment classification results on the ground truth text blocks from the UW-III database. Each text block
has at least three text lines. The mis-classification rate is 3.45%

Justified Left Centre Right Justified-hanging Left-hanging

Justified 8254 129 7 2 5 0
Left 19 747 0 0 1 5
Centre 20 2 122 1 1 0
Right 1 0 1 18 0 0
Justified-hanging 22 1 0 0 1983 128
Left-hanging 4 5 0 0 51 224

Table 4. Performance of the text block grouping algorithm applied on (a) the ground truth text lines, and (b) the detected
text lines

Total Correct Splitting Merging Mis-False Spurious

Ground Truth 21788 19828 560 1250 1 149
(91.00%) (2.57%) (5.74%) (0.01%) (0.68%)

Detected 21709 19828 1219 501 0 161
(91.34%) (5.62%) (2.31%) (0.00%) (0.74%)

(a)

Total Correct Splitting Merging Mis-False Spurious

Ground Truth 21788 19373 826 1298 9 282
(88.91%) (3.80%) (5.96%) (0.04%) (1.30%)

Detected 22180 19373 1999 521 1 286
(87.34%) (9.02%) (2.35%) (0.00%) (1.29%)

(b)

update the probabilities during the text block grouping and
labeling process. An iterative, relaxation-like method is used
to find a partitioning solution that maximises the joint prob-
ability.

The probabilities used within the algorithm are estimated
from an extensive training set of various kinds of measure-
ments of distances between the terminal and non-terminal
entities with which the algorithm works. The off-line prob-
abilities estimated in the training then drive all decisions
in the on-line segmentation module.

The text-alignment detection algorithm and the text
block extraction algorithm were tested on the 1600 pages
of technical documents within the UW-III database. Of the
total of 21,788 text blocks within these pages, the text-
alignment detection algorithm yields a 96.55% accuracy rate,
and the text block partition algorithm exhibits a 91%
accuracy rate.

References

1. Haralick RM. Document image understanding: geometric and
logical layout. Proceedings of the IEEE Computer Society Con-

ference on Computer Vision and Pattern Recognition, 1994:
385–390

2. Nagy G, Seth S. Hierarchical representation of optically scanned
documents. Proceedings of the Seventh International Confer-
ence on Pattern Recognition. Montreal, Canada, 1984: 347–349

3. Ittner DJ, Baird HS. Language-free layout analysis. Proceedings
of the Second International Conference on Document Analysis
and Recognition. Tsukuba, Japan, 1993: 336–340

4. Dengel A, Dubiel F. Clustering and classification of document
structure: a machine learning approach. Proceedings of the
Third International Conference on Document Analysis and
Recognition. Montreal, Canada, 1995: 587–591

5. Chen S. Document layout analysis using recursive morphological
transforms. PhD Thesis, University of Washington, 1995

6. Ha J, Haralick RM, Phillips IT. Document page decomposition
using bounding boxes of connected components of black pixels.
In: Vincent LM, Baird HS (Eds). Document Recognition II.
1995: 140–151

7. Liang J, Ha J, Haralick RM, Phillips IT. Document layout
structure extraction using bounding boxes of different entities.
Proceedings of the Third IEEE Workshop on Applications of
Computer Vision. 1996: 278–283

8. Palumbo PW, Srihari SN, Soh J, Sridhar R, Demjanenko V.
Postal address block location in real time. IEEE Computer 1992:
34–42

9. Etemad K, Doermann D, Chellappa R. Multiscale segmentation

208 J. Liang et al.

of unstructured document pages using soft decision integration.
IEEE Transactions on Pattern Analysis and Machine Intelligence
1997; 19(1):92–96

10. Kise K, Sato A, Iwata M. Segmentation of page images using
the area Voronoi diagram. Computer Vision and Image Under-
standing 1998; 70(3):370–382

11. Wang SY, Yagasaki T. Block selection: a method for segmenting
page image of various editing styles. Proceedings of the Third
International Conference on Document Analysis and Recog-
nition. Montreal, Canada, 1995: 128–135

12. Jain AK, Yu B. Document representation and its application to
page decomposition. IEEE Transactions on Pattern Analysis and
Machine Intelligence 1998; 20(3):294–308

13. Watanabe T, Luo Q, Sugie N. Structure recognition methods
for various types of documents. Machine Vision and Appli-
cations 1993; 6:163–176

14. Liang J, Phillips IT, Haralick RM. Performance evaluation of
document layout analysis on the UW data set. Proceedings of
the SPIE, Document Recognition IV. San Jose, CA, 1997:
149–160

15. Phillips IT, Chen S, Haralick RM. English document database
standard. Proceedings of the Second International Conference
on Document Analysis and Recognition. Japan, 1993: 478–483

16. Phillips IT. User’s Reference Manual for the UW
English/Technical Document Image Database III. UW-III
English/Technical Document Image Database Manual, 1996

17. Rabiner LR. A tutorial on hidden Markov models and selected
applications in speech recognition. Proceedings of the IEEE
1989; 77(2):257–285

18. Aas K, Eikvil L, Huseby RB. Applications of hidden Markov
chains in image analysis. Pattern Recognition 1999; 32: 703–713

19. Liang J. Document structure analysis and performance evalu-
ation. PhD Thesis, University of Washington, 1999

Jisheng Liang received his BS degree from Tianjin University, Tianjin, China,
in 1992, and PhD degree from the University of Washington, Seattle, in 1999,
both in electrical engineering. His research interests include image processing,
pattern recognition, document imaging and multimedia information retrieval. Dr
Liang has published a dozen papers in the area of document image analysis. He
helped design and implement the University of Washington Document Image
Databases. Dr Liang is currently working as a research scientist at the Data
Analysis Products Division of MathSoft, Inc. in Seattle, WA. He has been
involved in several projects concerning character recognition, medical imaging,
and video processing.

Ihsin T. Phillips received her BS, MS and PhD in 1979, 1981, and 1984, all
in computer science, from the University of Maryland, College Park, MD. In
1984, she joined the Department of Computer Science at the University of
Maryland as an Assistant Professor. In 1985, she joined the Department of
Computer Science and Software Engineering at Seattle University, Seattle, WA,
where she was promoted to Associate Professor in 1991 and Professor in 1997.
She is currently the holder of the Thomas J. Bannan Endowed Chair in Engineer-
ing from the School of Science and Engineering at Seattle University. Dr Phillips
has also been an affiliate faculty with the Department of Electrical Engineering
at the University of Washington since 1989, and has served on the graduate
faculty there since 1991. Dr Phillips’ research areas include image processing,
pattern recognition, document image understanding, document image database
design, and performance evaluation of document image analysis and recognition
systems. Her most significant contribution to the field of document image analysis
and recognition has been the leadership role she had in the design and creation
of the three sets of document image databases: UW-I, UW-II and UW-III. Since
their creation, these three databases have been used by researchers and developers
in the field from all over the world for testing and benchmarking their systems.
Dr Phillips served as program committee member for several IEEE and IAPR
conferences and workshop. She also helped lead the first (1995), the second
(1997) and the third (1999) international Graphic Recognition System Contests
on Engineering drawings. She is currently the chairwoman of the IAPR technical
committee on performance evaluation. She is a member of IEEE and the IEEE
Computer Society.

Robert M Haralick occupies the Boeing Clairmont Egtvedt Professorship in the
Department of Electrical Engineering at the University of Washington. He was
responsible for developing the grey scale co-occurrence texture analysis technique
and the facet model technique for image processing. He has worked on robust
methods for photogrammetry and developed fast algorithms for solving the consist-
ent labelling problem. He has developed shape analysis and extraction techniques
using mathematical morphology, he developed the theory for the morphological
sampling theorem, and fast recursive morphology algorithms. In the area of
document image understanding, Professor Haralick, along with Professor Ihsin
Phillips, developed a comprehensive ground-truthed set of some 1600 document
image pages, most in English and some 200 pages in Japanese. He has also
developed algorithms for document image skew angle estimation, zone delineation,
word and text line bounding box delineation. Professor Haralick is a Fellow of
the IEEE for his contributions in computer vision and image processing, and a
Fellow of the IAPR for his contributions in pattern recognition, image processing,
and for service to IAPR. He has published over 500 papers and has just completed
his term as the president of the IAPR.

Correspondence and offprint requests to: Dr IT Phillips, Department of Computer
Science, Software Engineering, Seattle University, Seattle, WA 98122, USA.
Email: yun@george.ee.washington.edu

