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Abstract -- A procedure is developed to extract numer-
ical features which characterize the pore structure of reservoir
rocks. The procedure is based on a set of descriptors which give
a statistical description of porous media. These features are
evaluated from digitized photomicrographs of reservoir rocks
and they characterize the rock grain structure in term of
(1) the linear dependency of grey tones in the photomicrograph
image, (2) the degree of "homogeneity" of the image and (3)
the angular variations of the image grey tone dependencies.
On the basis of these textural features, a simple identification
rule using piecewise linear discriminant functions is developed
for categorizing the photomicrograph images. The procedure
was applied to a set of 243 distinct images comprising 6
distinct rock categories. The coefficients of the discriminant
functions were obtained using 143 training samples. The
remaining (100) samples were then processed, each sample
being assigned to one of 6 possible sandstone categories.
Eighty-nine per cent of the test samples were correctly identified.

Introduction

In recent years, high speed digital computers have
been widely used in the implementation of two-dimensional
image processing and classification techniques. These digital
techniques are currently used in a variety of applications in
the fields of biomedical image processing, remotely sensed
radar and multispectral scanner imagery analysis and other
fields (Hall et al. [1], Rosenfeld [2], Andrews [31 and NASA
[4] and [5]). In this paper we present a procedure for auto-
matic analysis and identification of digitized photomicrographs
of the pore structure of reservoir rocks.

The analysis of the pore structure of the reservoir rock
is important to geologists and petroleum engineers, who are
interested in obtaining a series of numerical descriptors or
features which statistically describe porous materials. If these
features are valid, they may eventually be used for the pre-
diction of the physical properties of porous media including
porosity, specific permeability and formation factor which are
important components in production studies.

In recent years, several investigators had attempted to
evaluate and numerically characterize porous media. Pereze-
Rosales [6,7], Davis [8], Preston, Green and Davis [9], Preston
and Davis [10] have developed techniques to obtain features
of photomicrographs of porous media to describe their charac-
teristics .

Preston, Green and Davis [9] characterize the pore
structure of rocks using values of the discrete power spectrum
of specially prepared thin sections from reservoir sandstones.
Their work is an extension of an earlier suggestion by Fara
and Scheidegger [11] who stated that pore-grain geometries
could be characterized by Fourier series fitted to a special
function obtained from photomicrographs of sections through
the rock. Preston, Green and Davis conclude that power
spectra are statistically appropriate numerical descriptors of
pore-grain geometry of porous media. In our present work, we
use the textural features of the digitized photomicrographs
of porous rocks to characterize and identify these photo-
micrograph images.
Manuscript received September 11, 1972, revised January 30,
1973.

An overview of the automatic image analysis scheme
is shown in Figure 1 .

Figure 1 . Block Diagram of Automatic Image Analysis Scheme.

The photomicrograph of the rock sample to be analyzed is
first digitized to yield a digital image which is stored as a two
dimensional array. Each entry in the digital array represents
the average grey level of the corresponding cell of the original
image. The digital image contains a large amount of redundant
information. While this large amount of information in imagery
data may be necessary for preserving the visual quality of the
image, all of this information in general is not necessary for
discriminating between various image categories. For
discrimination purposes it may be sufficient to consider a small
set of image descriptors (i.e., features).

Feature Extraction Procedure

Other than some work with the Fourier, Hadamard
Transforms and the autocorrelation function, there exists
little or no theory to aid in establishing what the textural
features should consist of. Rather, the feature extraction
operation is determined intuitively, rationalized heuristically
and later justified pragmatically and empirically. For auto-
matic analysis of photomicrograph, and other imagery we have
developed a procedure to extract features from the spatial grey
tone dependence matrix which is computed for each photo-
micrograph image.

Spatial Grey Tone Dependence Matrix

Let L = f1,2,...,N } and L =1,2,. ...N } be
the x and y spatial domains an'd L x LY be the set of
resolution cells. Let G ={O,I.Y. Nx } be the set of possible
grey tones. Then a digital image I is O9function which assigns*
some grey tone to each and every resolution cell; I:L x L -*G.

Y x

An essential component of our conceptual framework
of texture is a matrix or more precisely, four closely related
matrices from which all texture-context features are derived.
These matrices are termed angular nearest neighbor grey tone
spatial dependence matrices.

The spatial domain L x L consists of ordered pairs whose
components are rowm colu respectively. This cpn-
ven ion ponfor wi thAesua' two subscript row-column
designation used IniOn TRA .
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Figure 2. Distance 1 neighbors. Resolution cells number 1
and 5 are the 0-degree (horizontal) nearest
neighbors to resolution cell ', resolution cells
numbers 2 and 6 are the 135-degree nearest
neighbors, resolution cells 4 and 8 are the 45-
degree nearest neighbors to '*' . (Note that this
information is purely spatial, and has nothing to
do with grey tone values).

We assume that the texture-context information in an
image I is contained in the over-all or "average" spatial
relationship which the grey tones in image I have to one
another. More specifically, we shall assume that this texture-
context information is adequately specified by the matrix of
relative frequencies P.. with which two neighboring resolution
cells separated by dist'cnce d occur on the image, one with
grey tone and the other with grey tone j (see Figure 2).
Such matrices of spatial grey tone dependence frequencies
are a function of the angular relationship between the neighbor-
ing resolution cells as well as a function of the distance
between them. The set of all horizontal neighboring resolution
cells separated by distance 1 along with the image grey tones
will be used to calculate a distance 1 horizontal spatial grey
tone dependence matrix. Formally, for angles quantized to
450 intervals the unnormalized frequencies are defined by:

P(i,j,d,0°)= #I((k,I),(m,n)) E (LyxLx)x(LyxLx)I k-m=0, 11-nH=d,
1(k,i)=i, I(mn)=iS

P(i, j,d,450)= # ((k, 1), (m,n))E (LyxLx )x (LyXLx) (k -frd, I-n= -0

or (k-rrn -d, I-n=d), I(k,l)=i, I(m,n)=j}

P(i,ij,d,90o)= '4((kc,01,(rn,n)),E (LyxLx)x(LyAL)J ik-m| =d, 1-n=0,

I(k,l)=i, 1(m,n)=ji(
P(i, j,d, 1350)= #I ((k, I), (m,n*) (LyxLx)x(LyxLx )I (k-m-d, 1-n=d)

or (k-mr= -d, I-n= -d), I(k,l)= i, I(m,n)=-f

Note that these matrices are symmetric; P(i,j; d,a)
P(,i; d,a). The distance metric p implicit in the above
equations is the 1w norm and can be explicitly defined by [12]:

P((k,l), (m,n)) ={lk-ml'+ 1-n c}c
which reduces to

P((k,l), (m,n)) = max Ik-ml , Il-niL.
Consider Figure 3-a, which represents a 4 x 4 image

with four grey tones, ranging from 0 to 3. Figure 3-b shows
the general form of any grey tone spatial dependence matrix.
For example, the element in the (2, 1) position of the distance
1 horizontal P matrix is the total number of times two grey
tones of value 2 and 1 occurred horizontally adjacent to each
other. To determine this number, we count the number of pairs
of resolution cells in R such that the first resolution cell of the
pair has grey tone 2 anA the second resolution cell of the pair
has grey tone 1. In Figures 3-c through 3-f we calculate all
four distance 1 grey tone spatial dependence matrices.

° 2 |2 T2 Grey
2 |2 3 3 Tone

Figure 3-a. Figur

00 / 2 10\

P -2 4 °pH =1 0 6

\00 1 2

Figure 3-c.
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1350 1 2 1
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Figure 3-e.

Grey Tone
0 1 2 3

0 (0,0) #(0, 1) #(0,2) #(0,3)
1 #(1,0) #(1,1) #(1,2) #(1,3)
2 #(2, 0) (2,1) #(2,2) #(2,3)
3 j(3,0) (3,1) #(3,2) #(3,3)

re 3-b. This shows the general form of
any grey tone spatial dependence
matrix for an image with integer
grey tone values 0 to 3. #(i,j)
stands for number of times grey
tones and have been neighbors.

90O /6 0 2
0 4 2

PV (2 2 2

0 0 2

Figure 3-d.

2

0/

450 1 1

RD 0 2 4 1!
0 0 1

Figure 3-f.

The appropriate frequency normalization for these matrices
can be easily computed.

Textural Features and Their Significance

From each of these four grey tone dependence matrices
we extract four texture context teatures of the following
forms:

Ng Ng s P(a,b);2
#R , the angular second moment (ASM);

Ng Ng ab P(a,b)
g #R aa 5Jb

COV a=l b=l
VAR aa a b

N N

-a=lI b=lI

N
9

b=l

a P(a,b)
(R

b P(a,b)l
#R

the correlation bet-
ween neighboring
grey tones (COR);

IN N N 1/2
00

9 9 2 P(a,b) -(~z
9

a P(ca,b
a=l b= #R =1b=i #R jd

N %N Nb 1/2
atz = 9 9 b2 P(a,b)_ b

aPl1 a
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N
g /P(a,b)\ log / #R \

#R lgP(a,b)J
N -1
g 2

n=l-N
g [ J2

Pfa,
rR

I the entropy (ENT);

I the contrast (CONT);
a-b
a-b=n

Note: #R is the number of neighboring resolution
cells.

To explain the significance of these measures let us consider
the kinds of values they assume on different types of photo-
micrograph images. Figure 4 shows two types of images and
their textural feature values. The image of the Dexter sand-
stone has fewer dominant grey tones and fewer dominant grey
tone transitions compared to the image of the Upper Muddy
sandstone. Accordingly the P matrix for Dexter image will
have fewer entries of larger magnitude and the P matrix for
Upper Muddy sandstone image will have a large number of
small entries. Hence the ASM feature, computed using the
squared values of the entries in the P matris, has a larger
value for the Dexter imoge than for the Upper Muddy sandstone
image. The entropy feature for the Dexter sandstone imoge has
a lower value since the Upper Muddy sandstone matrix has
more small values.

The grain structure for the Dexter sandstone appears to
be packed more orderly compared to the grain structure of the
Upper Muddy sandstone. The orderly packed grain structure of
the Dexter sandstone leads to higher value for the (COR)
correlation feature which gives an idea of the linear grey tone
dependencies in the image.

The various features which we suggest are all functions
of distance and angle. The angular dependencies present a
special problem. Suppose image A has features a, b, c, d for
angles 00, 450 900 and 1350 and image B is identical to A
except that B is rotated 900 with respect to A. Then B will
have features c, d, a, b for angles 0°, 450, 900 and 1350
respectively. Since the texture context of A is the same as the
texture context of B, any decision rule using the angular
features a, b, c, d must produce the same results for c, d, a,
b or for that matter b, c, d, a (450 rotation) and d, a, b, c
(1350 rotation). To guarantee this, we do not use the angularly
dependent features directly. Insteod, we use two symmetric
functions of a, b, c, d, their average and their range. These
features can be represented in vector form F = [f ,f2, . . .,f ]T,
where fI, f2. ... n are the values of the features, T denotes
the transpose.

The usefulness of these features for numerical char-
acterization of the pore structure of reservoir rock can be
analyzed by using these features to categorize the photomicro-
graph images. A high identification accuracy will indicate
that these features adequately describe the pore grain geometry
of reservoir rocks. Since the physical properties of rocks such
as porosity are related to the grain structure of the rocks, these
features may be used in a regression model to predict the
physical properties of porous media including porosity, specific
permeability and formation foctor.

Digitized Photomicrograph of
a. Dexter Sandstone

ASM

00 0.0182

COR ENT ASM

Digitized Photomicrograph of
b. Upper Muddy Sandstone

COR ENT

0.8093 4.8091 0.0068 0.6532 5.1906

450 0.0148 0.7098 4.9884 0.0054 0.4657 5.3536

900 0.0212

1350 0.0144

Average 0.0171

0,8522 4.7133 0.0068 0.6463 5.1938

0.7031 5.0023 0.0053 0.4247 5.3740

0.7561 4.8782 0.0061 0.5449 5.2780

Figure 4. Textural Features of Two Different Photomicrograph Image Samples.
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Identification Procedure

The problem of developing procedures for categorizing
environmental units consists of the following:

With reference to Figure 5, the universe U consists of
environmental units (for example rocks) U1,U21.. .,UT which
belong to one of R possible categories C1, C21.. .,CR (dif-
ferent rock categories). Of the large number of environmental
units present in the universe, we observe a smaller subset of
units U1,U21.. .,UN. Our observations consist of a set of
measured values of n features f, f2, ....,f for each unit U
sampled. Based on the information contained in the feature
vectors F1, F I F., for which the categories of the
environmentaFunits which produce these measurements is
known, we want to develop an algorithm to identify the
categories of new units based on the measurements they produce.

Nonlinear

Universe U Feature Space F Transformed _Identification
~~~~~~~~Fpnttjrp Snnr-e X

Uij= {Ul,U2,...,UTT
F = {Fl,F21.../FT} ; F = [fI f2 "' fn]
X= {X,X *...X}; X =[X1X2 T12 T xm] th

The vectors F. ard X. are usually referred to as the ith feature
vector and thle it pattem vector respectively.

Figure 5. Identification Scheme.

The decision rule which assigns categories based on the
values of features may be implemented in the feature space F by
partitioning F into various regions and assigning categories to
new units based on the regions to which their feature vectors
belong. Efficient partitioning of the feature space may require
complicated nonlinear decision boundaries (discriminant
functions). Instead of deriving a decision rule in the feature
space F, we may transform the feature vectors into a new
space X and implement a decision rule in the new space X.
By using appropriate nonlinear transformations, we may be able
to implement nonlinear decision boundaries in F as linear
decision boundaries in X. Several procedures are available
for deriving linear decision boundaries for partitioning X into
various regions, based on the information contained in a set

of sample patterns X1X2, ...,XN whose categories are known.

Identification Algorithms

In a widely used algorithm (Fukunaga [13], Fu and
Mendel [14], Miesel [15], the pattern space X is separated into
a number of regions using a set of hyperplanes (decision
boundaries) whose locations are determined by the sample
patterns. Each region is dominated by sample patterns of a
particular category. When a new pattern is presented for
identification, it is assigned a category depending on the region
in which it belongs. If the new pattern X is located in a
region dominated by sample patterns of category C., then X
is classified as coming from category Cj.

For the multicategory problem involving N categories,
a total of NR(N -1)/2 hyperplanes are used to parXtion the
pattern space. These hyperplanes are defined by a set of weight

vectors W.(i = 1,2..,NR i= 1,2 N*Y j i-hch
separates J the sample patferns belonging to the t and jth
categories. A regression type algorithm given in Fukunaga
(Chapter -4) was used to obtain the weight vectors. After
the location of the hyperplanes are determiried, the classi-
fication of new patterns is done as follows. For each category
Ci, the number of hyperplanes, V., which give a positive
response when the new pattern X is presented are determined
us ing

NR
V.M-=Zi W.. Z ;

I j=i 2 {lj jT7

12,2,..N
I\

where Z is the augmented pattern vector obtained by adding
a component of value 1 to X, i.e.,

X is assigned to category C.i if

V. = max t V.i

If there is a tie bet een categories C andFn, then X is
assigned to C if W'Z >OortoC mf mn 0.
Several modiecations of the linear discriminant function method
and a multitude of otherclassification procedures may be found
in the references cited.

Identification Experiments

Samples Used: The feature extraction and identification
procedures were applied to a set of 243 photomicrograph images
obtained from seven porous sandstone samples. The rock
samples were impregnated with a special epoxide plastic that
is very fluid and yet very hard when catalytically cured. A
red dye was added to the plastic and the impregnated chips
were used to make conventional thin sections which were then
contact printed on to Kodalith film. Because this film is
insensitive to red, it is exposed by light shining through the
grains but not that shining through the red plastic filled pores.
A high contrast pore-grain image is thus created on the film.
Enlargements of films of the seven samples are shown in Figure
6. These were made at a magnification 3x directly from the
images of the 35mm film.

The geological description and the physical properties
of the sandstone samples are presented in table 1. The Dexter
sandstone samples used in our study were obtained from widely
separated locations in Texas. An inspection of the Dexter
images 6a, 6b, 6c and their physical properties reveals that
the characteristics of the Dexter sample shown in 6b are quite
different from the characteristics of samples 6a and 6c.
Accordingly, the Dexter samples were treated as two distinct
categories for identification experiments. The highly porous
Dexter sample shown in Figure 6b was labeled as Dexter-H and
the Dexter samples 6a and 6c with low porosity were labeled
as Dexter-L. The two samples of St. Peter sandstones have
identical characteristics and hence were treated as one category.

The high contrast film images were optically digitized,
by measuring the optical transmission of the film at 8X1 spots
spaced on a 24v x 24ii grid across the film. The digital array
was of size 1024 x 1024. Each of the 1024 x 1024 images were
divided into 64 non-overlapping sections of size 128 x 128.
Samples of 128 x 128 sections from the middle of each of the
seven larger images were used for developing and testing the
identification procedure. Thirty-six samples were taken from
each of the images, except from the St. Peter image 6e and the
Gaskel image 6g from which 33 and 30 samples respectively
were taken.
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TABLE 1. Geologicol Description m,d Properties of
Sandstone Samples

Figure Fonsotion Location
(Depth)

6. Dexter Denton Co. Texm
(out-roP)

6b Doxter Dent-n Co. Texm
(outcrop)

6c Dexter

6d St. Peter

Denton Co. Texm
(out-rop)

Redfield, lowr
(1,758')

6e. St. Peter Redfield, Iowa
(1,75V)

6f Upper Muddy Gms Dro-field
Wyoming (7,366')

Average Average
Porcsity % Peaesdbility sed.

17.30 21.50

26.20 8.0

17.90 20.70

19.23 987.00

19.00 1,112.00

12.70

69 Goskel Coolingo Noe Field 7.32
Coliforia (7,500')

84.00

8.30

Figure 6c. Dexter sandstone, section T-1-R-30, courtesy of
Professor Charles F. Dodge, API Project 91A,
magnification 3x, File 3.

Before the textural features were extracted, the 128 x
128 arrays were compressed to 64 x 64 arrays by averaging
4 elements in non-overlapping 2 x 2 sections. The grey
levels in the 64 x 64 array were normalized using equal
probability quantization with 16 levels. This normalization
eliminates the variations in the grey levels which might have
resulted from variations in lighting, lens, film, developer and
other processing variables.

Figure 6d. Saint Peter sandstone, section C-S2, magnification
3x, File 4.

Figure 6a. Dexter sandstone, section P-IAV-01, courtesy
of Professor Charles F. Dodge, API Project 91A,
magnification 3x, File 1.

Figure 6e. Saint Peter sandstone, section C-S3, magnification
3x, File 5.

Figure 6b. Dexter sandstone, section T-1-R-83, courtesy of
Professor Charles F. Dodge, API Project 91A,
magnification 3x, File 2.
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The set of 243 samples was randomly divided into two
groups. A group of 143 samples was used to develop the
identification algorithm and the remaining 100 samples were
used for testing the identification scheme. A total of 10
hyperplanes were wsed for separating the training patterns
pairwise. Using a majority vote on these hyperplones, each of
the 100 test patterns were assigned to one of the five categories:
Dexter L (low porosity), Dexter H (high porosity), St. Peter,
Upper Muddy and Gaskel Sandstone. The results of classification
are shown in table II and 111.

Table 11. Contingency table of true category versus assigned category. Variables
used: f1, f2, f, f4, f5, F6, f7 and f8
Identification accuracy = 89%.

Figure 6f. Upper Muddy sandstone, section E-58, magnification
3x, File 6.

ASSIGNED CATEGORY

Dexter- L Dexter-H St. Peter Upper
Muddy

Gaskel

Totol
Samples
Identified

Dexter-L 29 0 1 0 30.

O Dexter- H 0 15 0 I 0 0 15

. St. Peter 2 0 22 4 0 28

- Upper
jOC Muddy 0 0 4 11 0 15
I_-

Gaskel 0 0 0 0 12 12_
100

Table 111. Identification accuracy with polynomial discriminant functions.

Figure 6g. Gaskel sandstone, section A-S4, magnification
3x, File 7.

Results of Identification Experiments

For each of the 243 image samples,
of 8 features were obtained:

the following set

Variables used in Identification
Accuracy on

Features Polynomial Test Samples

fY' f3' f5 fl' f3, f5, fl2, f32, f52 86%

fIf3' fIf5' f3f5

fil f3' '5' '7' fl
2 f32, f52'

2 f'7 ' fIf3' Y5' Y7' f3f5'
f3F7' f5f7

88%

ASM

ENT

COR

average

range

average

ronge

average

range

(Distance 1)

(Distance 1)

(Distance 1)

average
CONT (Distonce 1)

range

Along with the features f f f , second degree
polynomiols (Nilsson [16]1) oz the features (e.g. f12,2
were also used in the identification algorithm.

The identification accuracy achieved with a linear
fI discriminant function on the 8 features was 89 per cent on the

test samples. Table I shows the details of the identification
f2 performance. The identification experiment was repeated with

polynomial discriminant functions, achieving up to 88 per cent
correct identification rate on the test samples. The classifier

f3 was also asked to identify the trqining samples which were used
in deriving the discriminant functions. The identification

f4 accuracy on the training samples was 93 per cent for the linear
discriminant function and, 91 per cent and 92 per cent
repectively for the two nonlinear discriminant functions listed in

f5 Table 111.

f6 Most of the feature extraction and classification
algorithms were programmed on a PDP-15 computer with 12K
words of memory. These programs may be implemented on any

f7 medium sized general purpose digital computer. Complete details
f of the programs may be found in Haralick [17].
8

Discussion

A procedure has been presented to numerically charac-
If2)' terize and identify photomicrogrophs of reservoir rocks. A set of

243 samples of digitized photomicrograph images were analyzed

126
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automatically. Identification accuracy of 89 per cent was
achieved when the training and testing of the classifier are
done using different sets of images. When the training and
testing were done on the same data set, 93 per cent accuracy
was achieved. The high accuracy of classification indicates
that the textural features are useful for describing the pore-
grain geometry of natural porous materials. Since the physical
properties of porous materials are a function of the pore grain
geometry, it is our conjecture that the textural features may
eventually be used in a regression model for predecting the
physical properties of porous sandstones including porosity,
specific permeability and formation factor which are important
in production studies. It may be possible to increase the
identification accuracy by using additional features (Haralick
[17], Rosenfeld [18] and by using more powerful identification
methods.
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