Computer Architecture for Solving Consistent Labelling
Problems

JULIAN R.ULLMANN
Department of Computer Science, University of Sheffield

ROBERT M. HARALICK

LINDA G. SHAPIRO
Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061

Consistent labelling problems are a family of NP-complete constraint satisfaction problems such as school timetabling,
for which a conventional computer may be too slow. There are a variety of techniques for reducing the elapsed time to
find one or all solutions to a consistent labelling problem. In this paper we discuss and illustrate solutions consisting of
special hardware to accomplish the required constraint propagation and an asynchronous network of intercommunicating

computers to accomplish the tree search in parallel.

1. INTRODUCTION

School-timetabling, subgraphisomorphism, graphcolour-
ing, propositional theorem proving, and scene labelling
problems can be formulated as special cases of the
consistent labelling problem.! The consistent labelling
problem is NP-complete, which means that in the worst
case we may have to resort to exhaustive enumeration in
order to find a solution, and the time needed for this
enumeration may increase exponentially with the number
of variables. Despite the possibility of this combinatorial
explosion, problems such as school timetabling have to
be solved in practice. Haralick and Elliott> have shown
that the combinatorial explosion of consistent labelling
can be mitigated by pruning the search tree.

The present paper is theoretical, and its primary
purpose is to show how the successful tree-pruning
technique of Haralick and Elliott can be implemented
using various forms of parallelism to reduce the elapsed
time for solving consistent labelling problems. The
present paper also generalises the formulation of the
consistent labelling problem as an N-ary constraint
satisfaction problem, where N may be different for
different constraints. In previous papers (Haralick and
Shapiro, 1979),1 N has been the same for all constraints.

Earlier papers on special architecture for solving the
consistent labelling problem include Cherry and Vaswani,
who had actually built special architecture for a boolean
satisfiability problem3 (which is a consistent labelling
problem (Haralick and Shapiro, 1979)).! We believe,
however, that the general possibilities of using special
architecture to soften the practical effects of the
combinatorial explosion have not previously been
explored adequately. Forexample, Schmidtand Strohlein*
remark that ‘recent developments in computer technology
and software engineering have not yet reached the area
of timetable programming’.

2. AFORMULATION OF THE
CONSISTENT LABELLING PROBLEM

Let U be a set of objects called units, and L be a set of
possible labels for those units. Let T = {f| f < U} be the
collection of those subjects of units from U that mutually

constrain one another. That is, if /= {u,;, u,, ..., u;} 1s an
element of T, then not all possible labellings of u,, ..., u;
are legal labellings. Thus there is at least one label
assignment /,, J,, ..., [, so that u, having label /;, u, having
label I,, ..., u; having label /, is a forbidden labelling. T
is called the unit constraint set. Finally, let R = {g|g <
Ux L, g single-valued, and Dom (g)e 7'} be the set of
unit-label mappings in which constrained subsets of units
are mapped to their allowable subsets of labels. If
g = {(uy, 1), (uy, 1), ..., (uy, 1)} is an element of R, then
Uy, Uy, ..., U are distinct units, {u;, us, ..., 1} is an element
of T meaning u,,u,,...,u;, mutually constrain one
another, and u, having label /;, u, having label /,, ..., and
u;, having label /, are all simultaneously allowed.

In the consistent labelling problem, we are looking for
functions that assign a label in L to each unit in U and
satisfy the constraints imposed by 7 and R. That is, a
consistent labelling is one which when restricted to any
unit constraint subset in T yields a mappingin R. In order
to state this more precisely, we first define the restriction
of a mapping. Let 4: U — L be a function that maps each
unit in U to a label in L. Let f < U be a subset of the
units. The restriction A|; (read ‘h restricted by f’) is
defined by k|; = {(u,/)e h|ue f}. With this notation, we
define a consistent labelling as follows.

A function h: U — L is a consistent labelling if and only
if for every fe T, h|; is an element of R.

A simple example
Suppose the inputs to the problem are as follows:
U={1,2,3,4,5}

L={a,b,c}

T={{1}, unary constraint
{1,2}, binary constraints
{2,5},

{1,3,4}} ternary constraint
R ={(1,a)}, {(1,0)},

{(1,9), 2,0)},

{1,9, 2,5)},

unary constraint

binary constraints

THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985 105

= W Rl

J.R.ULLMANN, R. M. HARALICK AND L.G. SHAPIRO

{(1,0), (2,b)},
{@2,a), (5, 9)},
{@2,0), (5,0},
{(1,a), (3,a), (4, 0)},
{(1,0), 3, 0), (4,)}

Then / ={(1,a) (2,a) (3,a) (4,¢) (5,a)} is a consistent
labelling. To see this note that

hlgy ={(,a)}, hly, o ={(1,a),(2,a)}, hlg, 5 =1{(2,a),
(5,a)}, and

hla,s,q =1(1,a), (3,a), (4,c)} are all elements of R.

ternary constraints

Simplified examples of practical consistent labelling
problems

In the Appendix we show that a school timetabling
problem and a three-dimensional packing problem can be
formulated as consistent labelling problems. Further
examples of consistent labelling problems are given by
Haralick and Shapiro.!

The practical usefulness of a consistent labelling
formulation depends on the actual constraints that are
employed. Subgraph isomorphism is an example in which
careful scrutiny of graph-theoretic factors has experimen-
tally yielded greater efficiency than can be obtained using
the simplest consistent labelling formulation.® The
formulations given in the Appendix to the present paper
are merely simple examples; and we are not now
concerned to explore application-specific refinements
that may enhance efficiency. Instead we are concerned, in
Sections 4, 5 and 6, with introducing parallelism to reduce
elapsed time for all consistent labelling problems.

In the next section we introduce a natural generalisation
of the forward checking algorithm of Haralick and
Elliott.> Our algorithm is identical to the forward
checking algorithm in the case where every constraint
involves exactly two units.

3. A CONSTRAINT PROPAGATION
ALGORITHM FOR CONSISTENT
LABELLING PROBLEMS

In principle consistent labellings can be found by
exhaustively checking whether each possible assignment
of exactly one label to each unit satisfies all the
constraints. This inefficient brute-force method can be
organised as a backtrack search.

To improve efficiency we check for satisfaction of
constraints after each successive unit has been instantiated
(i.e. has had a single label assigned to it) in the course of
a backtrack search. For the simple example given above
in Section 2, suppose that the units are instantiated in the

Table 1. An example of the relation H

Unit Label

a,b,c
a,b,c
a,b,c

VAW —

sequence 1, 2, 3, 4, 5. After units 1 and 2 have been
instantiated, the labels currently permitted for each unit
might, for example, be as shown in Table 1.

In Table 1, units 3, 4 and 5 have not yet been
instantiated: that is why they have more than one label.
If at this stage the constraints cannot be satisfied then we
can omit that part of the tree search which would proceed
to instantiate units 3, 4 and 5. Our algorithm uses this
principle to prune the search tree.

The unit that has just been instantiated is the current
unit; and units that have not yet been instantiated are
future units. We denote the set of future units by UF. After
the current unit has been instantiated, we check only for
satisfaction of constraints belonging to a set Q defined by

Q={feT|(fnUF) # 0 and f contains the current
unit}

Thus Q is the subset of T in which each constraint
includes the current unit and at least one future unit.

We denote by H, H < U x L, the relation or unit-label
table of possible label assignments currently permitted for
each unit. Table 1 is a simple example of a relation H.
If a unit u is not in UF then

(1) (u,1)€ H implies that / is the instantiated label for
unit u.

(2) (u,l)e H and (u,n)e H imply n = [, since only one

label can have been assigned to an instantiated unit.
If ue UF then u is a unit yet to be instantiated, and H(u)
is the set of labels still permitted for unit u. The algorithm
is designed so that H is always defined everywhere; that
is, every unit always has at least one possible label
(H(u) # 0 for every u).

After instantiating the current unit, the result of
constraint checking is to delete labels that cannot possibly
belong to any consistent labelling that is a subset of the
current H. The result is a new H given by

H:= ﬂ R(H, f)
feQ
where R(H, f) is the set of unit-label pairs that constraint
fdoes not rule out. That is,

RH, [) ={w,))eH|(u¢f) or (uef)
and there exists
geR with (u,l)eg,
satisfying
dom(g)=f and gc H}

Ifue fthen (u,/) e R(H, f) only if / belongs to at least one
of the labellings of all the units in f allowed by R and
included in H.

From the definition of consistent labelling it immedia-
tely follows that a function A: U — L satisfies

H=)RM,/)
feT
if and only if 4 is a consistent labelling. When the
algorithm yields a relation H that comprises exactly one
label for each unit, H is recognized as a consistent
labelling. At an intermediate stage, before there is exactly
one label for each unit, the current H must contain all the
consistent labellings that can possibly be produced from
it. If there were any unit in A having no label then no
consistent labelling could possibly be produced from H;

106 THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985

SOLVING CONSISTENT LABELLING PROBLEMS

and our algorithm would therefore not try further
instantiation within H. Our algorithm is a constraint
propagationalgorithm because deletion of oneinconsistent
label ‘may cause deletion of another, which may cause
deletion of another, and so on.

The algorithm can be implemented using a recursive
procedure TREESEARCH for which the inputs are

UF: the set of units requiring labels (initially all the units),
T: the unit constraint set,
R: the allowable unit-label mappings, and
H: the partial or incomplete labelling (initially
H = {(u,])e Ux L|(u,!) is not ruled out by any
constraint in R}.

Note that all unary constraints have been removed from
T and used to produce the initially constrained H.

The predicate ISEMPTY returns true if its argument
is the empty set and false otherwise. The predicate
DEFINED _EVERYWHERE returns true if its argument
is a set of unit-label pairs including every unit and false
otherwise. The procedure OUTPUT outputs a mapping.
The function DELETEFIRST removes and returns the
first element of its argument set. The function RESTRICT
inputs a binary relation H, a unit # and a label / and
returns a subset of H consisting of all pairs (v, m) such
that if v = u, then m = [. Procedure TREESEARCH is

given below.

procedure TREESEARCH (UF, T, R, H)
local »,Q, S, H,, ;, H’
by-reference 7, R, H,
by-value UF
u := DELETEFIRST(UF):
Q:={feT|fnUF#pand uef}
S:={l|(u,)eH};
while not ISEMPTY(S) do
begin
| := DELETEFIRST(S);
H, ;:= RESTRICT(H,u,1)

H := ﬂ RH, 1)

€
if DEFfII%ED_EVERYWHERE (H)
then if SINGLE_VALUED(H")
then OUTPUT(H")
else call TREESEARCH(UF, T, R, H’) endif
endif;
end;
return;
end TREESEARCH

For the simplified example of Section 2, we have
initially
UF=U={1,2,3,4,5},
T= {1,2},{2,5},11,3,4}}
(the unary constraints have been removed,
since they will be used to determine the initial
H),
R= {{(1,a), 2,0}, {(1,a), (2,b)}, {(1,b), (2,D)},
{2,a), 5,a)}, {(2,0), (5,0)}, {(1,a), (3,0),
@, o)}, {(1,0), (3,a), (4, 0)}}
(the unary unit-label pair sets have been
removed here also),

H= {(,a),(1,b),(2,a),(2,b),3,a), (4,a), (4,0),
(5, @), (5,0)}

(the initial R was used to determine the legal
labels for each unit).

In the first call to TREESEARCH, u is set to 1, UF to
{2,3,4, 5}, and S to {a, b}. Next /s set to a, S reduced to
{b}, and H, ; becomes {(1,a), (2,a), (2,b), (3,a), (4,a),
4,c), (5,a), (5,¢c)}. Now the constraint propagation
calculates
R(Hu,, 4] {1’ 2}) = {(19 a)’ (2’ a)9

(2,0), 3,a), 4,a), (4,¢), (5,a), (5,0)}

R(Hy, 1, {2,5) = {(1,a), (2, 0),
(2,0), B,a), (4,a), (4,0), (5,a), (5,)}

R(Hu, b {la 39 4} = {(1’ a), (29 a)’
(2,0), (3,a), (4,0), (5,9, (5,)}

Thus the intersection H’ becomes
H' ={(1,a), (2,a), (2,b), (3,a), (4,¢), (5,a), (5,0)}

Since H’ is defined everywhere but not single-valued,
TREESEARCH is called again. This time we have

UF ={2,3,4,5}, T and R remain the same, and
H={(1,a), (2,a), (2,b), (3,a), (4,¢), (5,a), (5,0)}.
In this activation, ¥ becomes 2, UF becomes {3, 4, 5},
S becomes {a, b}, | becomes a, Sis reduced to {b},and H,, ;

becomes {(1, a), (2, a), (3, a), (4, c), (5, a), (5,c)}. Now the
constraint propagation calculates
R(Hy,1,{2,5) ={(1,a), (2,a), (3,a), 4,0), (5,a)}.

R(H, ;, {1, 3,4})is not calculated since unit 2 is not an
element of {1,3,4}. The intersection H’ becomes
{(1,a), 2,a), (3,a), (4, ¢), (5,a)}. It is defined everywhere
and single-valued, so a consistent labelling has been
found. The procedure will go on to find a second
consistent labelling also.

The next section introduces various forms of parallelism
for speeding up the solution of consistent labelling

problems.

4. COMBINATIONAL CONSTRAINT
CIRCUITS

In procedure TREESEARCH, the computation of
R(H, ;, f) involves at least wy,=|f|x|{geR and
dom (g) = f}| logic operations. Thus the computation of

ﬂ R(H, ., 1) involves X wy

feQ feQ
logic operations, normally done serially. To speed up the
computation, these logic operations can be done in
parallel outside the CPU in a combinational constraint
network as shown in Fig. 1. This network is of interest
because of its simplicity.

We implement A as a bit matrix that has one row per

unit and one column per label. The bit in row u and
column / is a predicate

H(u,l) = (u,l)eH.

Corresponding to each ge R the network contains an
AND gate whose output is

g(H) = AND (H(u,1))
(u,leg

=gc<c H.

THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985 107

J.R.ULLMANN, R. M. HARALICK AND L. G. SHAPIRO

LDMA controll?l

Memor;I

CPU [

Status
circuits

Hyge [Constraint H'
network ™

Fig. 1 is a schematic diagram that includes a combinational
constraint network that can perform logic operations in
parallel outside the CPU.

Corresponding to each triple (f,u,/) the network
contains an OR gate whose output is
Su, (H) = OR

(g(H))
{gl(u,l)eg and dom(g)=f}

= there exists geR with (u,])eg
satisfying dom(g) =f and g< H.

This definition can easily be related to our definition of
R(H, f). If f,, ,(H) = P, then constraint f has ruled out
(u,)eH.

The output of the constraint network is a bit matrix H’
that has the same dimensions as H. There is one AND
gate for each bit in H’; and the bit in row « and column
/ of H' is the predicate

H'(u,l)= AND (f, (H)) 6]
{feT|uef}
= {(v,n)e H |(v,n) has not been ruled out by
any constraint feT.}.

It is easy to see that H' is exactly the H’ computed within
the procedure TREESEARCH, although the network
does some unnecessary but harmless extra work. For
example, if u is the current unit, then the procedure
TREESEARCH intersects R(H, f) over f€ Q whereas the
network ANDs f, ;, (H) over {feT|ue f} which is a
superset of Q. ANDing over Q is all that is really
necessary, but the network is simplified by omitting the
condition f'n UF # .

H'’ is a matrix of product-of-sum-of-product functions
of H. This structure makes the constraint network an
obvious candidate for programmable logic array imple-
mentation. If the PLAs are electronically re-program-
mable,® then our constraint network can be re-used for
different consistent labelling problems provided that the
dimensions of H are adequate.

Referring now to Fig. 1, H' is the bit matrix of outputs
from the constraint network. All the bits of H’ are input
to status circuits whose two outputs are the predicates
DEFINED EVERYWHERE(H’) and SINGLE_
VALUED (H’) that we have defined and used previously.
The provision of these simple status circuits is intended
to save CPU time.

Hy e is a two-dimensional register that sometimes
stores H and sometimes stores H, ;, as we shall explain.
Recursive CALLs of TREESEARCH automatically
stack H’, and RETURN:S restore the previous H. In Fig.
1, Hg gg and H’ are hardwired to the constraint network,

and it is therefore expedient to handle the stacking and
unstacking of bit matrices explicitly. For this purpose the
memory in Fig. 1 includes, along with the program and
variables, blocks (or bit planes) C,,C,,...,C,,...,Cy,
where N is the number of units. Each of these blocks has
the same dimensions as H. At the time of the initial call
of the procedure, block C, contains the initial H.

To explain how the CPU actually uses the external
hardware we now give an appropriately modified version
of TREESEARCH with explanatory comments enclosed
between ‘(*’ and ‘*)’. UF is implemented as a bit vector
that has one bit for each possible label. Hy i[u] is the row
of Hyy that corresponds to unit w.

procedure EXTREESEARCH(UF);
u := DELETEFIRST(UF);
Hyge := C,; (*block transfer done by DMA*)
S:= Hyygglu]; (*bit vector copied from Hyge to
memory*)
For each / in S do
begin
B := bit vector comprising the selected / in S with all
other bits of B reset to 0;
Hygg [u] := B; (*in effect Hg g := H,, ;*)
(*constraint network computes H’ using contents of
Hygg as a new H*)
if DEFINED EVERYWHERE(H’) (*CPU gets this
from status circuits*)
then if SINGLE_VALUED(H’) (*CPU gets this from
status circuits*)
then OUTPUT(H ") (*CPU reads and encodes H'*)
else
begin
Cyuy41:= H’; (*done by DMA¥*)
CALL EXTREESEARCH (UF);
Hgge := C,; (*done by DMA¥*)
end
endif
endif
end;
return;
end EXTREESEARCH

This formulation is simplified in that complete transfer
of blocks, e.g. Hg ¢ := C,, is unnecessary when u > [.
Becauseunits 1, 2, ..., u— 1 have already been instantiated
we only need to keep copies of rows u,...,N of H.
Otherwise if, for example, u = 6, then the first four rows
of C, will be identical to the first four rows of C,. We can
eliminate this inefficiency by appropriate elaboration of
EXTREESEARCH.

5. ARRAY PROCESSOR
IMPLEMENTATION

School timetabling and most of the consistent labelling
problems reviewed in Haralick and Shapiro! can be
formulated such that the cardinality of f is two for all
feT. Subject to this restriction on 7 we now introduce
a parallel (SIMD) array processor algorithm for
computing H’ from H. This is faster than a conventional
computer implementation, but with greater storage
requirements than the Fig. 1 implementation. The array
processor implementation has no problem of re-
programmability and could easily run on many of the

108 THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985

SOLVING CONSISTENT LABELLING PROBLEMS

SIMD processors that are commercially available or
described in the literature.” 8

Our array processor algorithm processes each (u, /) e H
in turn to evaluate H'(u,[). At any given time, variables
u and [have had values assigned to them by this
sequential process. If ge R contains (u,/)e H; that is
g ={w1), W,1I)}, and H(u,l) = 1, then

g(H) = H(u,l) AND H',I’)
=H®W,!l),

and for f={u,u’}eT, we have

Ju, (H) = OR Hw,l)) Q)

(/.1 b, @', U)er}
For given f, ;(H), is fixed, so (2) can be rewritten

Su, (H) = 9612 (H@',I') AND ((w, 1), (', I'))€R)) (3)
Expression (1) can be rewritten
H'(u,l) = AND ((u,u)¢ T OR f, ((H)) @
u’eU

To manipulate this into a useful form, note that for any
given u’

OR (H(', 1)

leL

has truth value 1, so we can write
(u,)¢ T = (OR (H(u', 1)) AND ((u,u) ¢ T)
leL

Substituting this into (4), using (3) and factoring we
obtain

H'(u,l) = AND (OR (H(u/,l’) AND ((u,u')¢ T OR
uelU el
(1), W,I))eR)))...

Our array processor implementation uses | U | x | L| bit
matrices K,, ; whose contents remain unchanged during
the entire tree search. Each matrix K,, ; is such that

K, (', l) = ((w,w)¢ T)OR ((u,]), ', I'))€R)

Substituting this into (5),
H’(u,l) = AND (OR (H(u,I')AND K,, ,(«/,1')))
ueU leL

= DEFINED.EVERYWHERE(HANDK, ;)
©)

where the AND is of corresponding bits in H and K, ;.
Thus DEFINED EVERYWHERE is evaluated by
ORing over each row and ANDing these ORs over all
rows. In our array processor implementation H’ is
computed by

for each ue U do

for each /e L do
evaluate (6).

Evaluation of (6) is fast because K, ; is simply obtained
from memory, and the AND operation is a parallel AND
operation on bit planes.

This implementation is slower than the Fig. 1 system

because it processes all (u,/) pairs serially. The Fig. 1
system does not require storage of bit planes K, ;, but
instead uses a substantial number of combinational gates.

6. NETWORK COMPUTER
IMPLEMENTATION

Even with the use of parallel hardware, the execution time
may be intolerably slow for man-machine interactive
school timetabling or for real-time control of an
automatic packing machine. To reduce elapsed time for
finding consistent labellings, we can subdivide the search
tree into M subtrees and use M separate processors to
search these subtrees simultaneously, with no need for
any synchronisation between these fully independent
processors. Each processor could have its own constraint
propagation hardware as discussed in the previous
section, or several processors could share the same
constraint propagation hardware.

A specific method for this is to partition the label set
L into M subsets, L,, ..., L,,. The first processor would
try to solve the consistent labelling problem, restricting
the label assigned to the first unit to come from L,. The
second processor would try to solve the consistent
labelling problem, restricting the label of the first unit to
come from L,, and so on. Each processor would, to avoid
memory access delays, have its own memory containing
copies of all required data and code, and would execute
the backtrack algorithm of section 4, thus searching a
disjoint subtree.

Unfortunately this simple idea may not make optimal
use of the M processors to find all consistent labellings
in minimal elapsed time. For it is the case that even if each
of the M subsets contains the same number of possible
labels, the M processors may not all take an equal amount
of time to complete their subtree search, exactly because
of differences in the effectiveness of tree pruning.
Practical experience with algorithms of this type suggests
that the elapsed time for one processor may turn out to
be many times greater than that for another. Processors
that have finished their work may wait idly for others to
finish. Thus by using M parallel processors we may not
succeed in reducing the overall elapsed time by a factor
of M.

Overall elapsed time could be further reduced by
interconnecting the M processors in a computer network
as in ref. 2. One of the many possible operating policies
is that when a processor completes its subtree search it
interrogates all other processors that are still searching
and then takes over half of the remaining search of the
processor whose search is furthest from completion,
leaving this processor to complete only the other half of
its subtree search. When this network starts operating,
with all processors searching (hopefully) equal-sized
subtrees, there is at first no delay due to exchange of
messages between processors. When more and more
processors finish searching subtrees, more and more
messages are exchanged, and this eventually constitutes
a significant overhead. To prevent this overhead from
exploding, we impose a restriction that no processor ever
starts searching a subtree of less than a threshold size: if
no subtree greater than or equal to this size is available
for a processor than this processor becomes idle and is
in effect deleted from the network. The threshold size

THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985 109

S SR T e T —

———

J.R.ULLMANN, R. M.HARALICK AND L. G. SHAPIRO

should of course be chosen so as to minimise overall
elapsed time.

This networking policy depends on splitting the subtree
whose search is furthest from completion. How far a
processor is from completion of a subtree search is easily
determined by the number of as yet uninstantiated units.

Simulation of a variety of network architectures
uniformly indicates that all other things being equal, (1)
processors should execute the search in a depth-first
rather than breadth-first manner so that there are as large
subtrees as possible that the busy processors can give to
a free processor, (2) busy processors should first hand off
subproblems to the free processors least centrally located
in the network wherever there is a choice.

7. CONCLUSIONS

In this paper we have given several examples of consistent
labelling problems and have generalised the original fixed

dimensional relational form of the consistent labelling
problem. Using this generalised form, we described a
forward-checking-like constraint propagation technique
to help perform the tree search required to solve a
consistent labelling problem. Then we sketched the design
of some special-purpose parallel hardware that executes
the constraint propagation. Finally we indicated how the
entire design could be done in a multiple CPU network.

Because solving consistent labelling problems is so
closely allied to solving general combinational reasoning
problems, parallel algorithms and associated computer
architectures for their fast solution are important to have
in our toolbox. Knowledge of them will be of definite help
in creating the parallel algorithms and associated parallel
computer architectures for efficiently solving the most
general predicate calculus types of problems. The efficient
solution of this kind of problem will be the hallmark of
the next generation of smart computers. We shall be
discussing these issues in a future paper.

REFERENCES

1. R. M. Haralick and L. G. Shapiro, The consistent labelling
problem, part 1, IEEE Transactions Pattern Analysis and
Machine Intelligence PAMI 1, 173-184 (April 1979); part
IT PAMI 2 (3), 193-203 (1980).

2. O. 1. El-Dessouki and W. H. Huen, Distributed enumera-
tion on network computers, IEEE Transactions, Computers
C 29, 818-825 (1980).

3. C. Cherry and P. K. T. Vaswani, A new type of computer
for problems in propositional logic, with greatly reduced
scanning procedures. Information and Control 4, 155-168
(1961).

4. G. Schmidt and T. Strohlein, Timetable construction — an
annotated bibliography. The Computer Journal 23, 307-316
(1980).

5. R. M. Haralick and G. L. Elliott, Increasing tree search
efficiency for constraint satisfaction problems. Artificial
Intelligence 14, 263-313 (1980).

6. M. Tanaka, S. Ozawa and S. Mori, Rewritable program-
mable logic array of current mode logic. IEEE Transactions,
Computers C 30, 229-234 (1981).

7. A.P. Reeves, A systematically designed binary array
processor. IEEE Transactions, Computers C 29, 278-287
(1980).

8. H. J. Siegel, L.J. Siegel, F. C. Kemmerer, P. T. Mueller,
H. E. Smalley and S. D. Smith, PASM: a partitionable
SIMD/MIMD system for image processing and pattern
recognition. JEEE Transactions, Computers C 30, 934-947
(1981).

9. G. Fowler, R. Haralick, F. G. Gray, C. Feustel and C.
Grinstead, Efficient graph automorphism by vertex
partitioning. Artificial Intelligence 21, 245-269 (1983).

APPENDIX A

A school timetabling problem

We consider the scheduling of lessons over a fixed period
such as one week, assuming that instructors have already
been assigned to lessons. The problem is to assign, to each
lesson, a time and classroom satisfying the constraints
that (1) any pair of lessons attended by the same
instructor or same student must be at different times, and
(2) no distinct pair of lessons is assigned to the same time
and room. This problem fits the consistent labelling
model as follows.

U is the set of all lessons. For example, if there are three
history lessons then for each of these there is a separate
element of U. L is a set of pairs of the form (time,
classroom) which includes all possible lesson times and,
for each time, all possible classrooms available at that
time. The unit constraint set 7' consists of unary
constraints and binary constraints. The unary constraints
are for those lessons that a priori cannot be scheduled in
a particular (time, classroom) pair. The binary constraints
consist of all pairs of distinct lessons since (1) these are
constrained not to meet in the same classroom at the same

110 THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985

time, and (2) a subset of these are constrained not to meet
at the same time. From this we get

T=n{T,

where T, ={{u}|lueU and u cannot be scheduled at
time ¢, classroom c for some pair (¢,c)e L}

and T, = {{u, u,}|u,,u,eU and u; # u,}.
Furthermore, R = R, Ry, () R, where

R, ={(u,D}|{u}eT, and a priori knowledge
says that label / can be assigned to u}.
Roy = {(uy, 1), (up, L)} [{uy, w5} € T, and [# 1},
and Ry, = {{(uy, 1), (up, Ip)} | {uy, us} € T,, there exists a
person who must attend both %, and u,, and
time(/,) # time(/,)}.

Other constraints can be added to the model as
required. For instance, if there are pairs of lessons that
must be given in consecutive hours, we can define

T, = {{(uy, o} | uy, u, € U and u, must be scheduled
the hour after u,}

SOLVING CONSISTENT LABELLING PROBLEMS

and Ry = {(uy,), (uy, 1)} [{uy,u,}€ T; and
time(/,) = time(/,) plus one hour},

and the unions T and R are augmented to
T=T,T,UT, and R=R1UR21UR22UR3.

A three-dimensional packing problem

The problem is to fit a given collection of solid objects
into a box. Some of these objects may be placed on top
of others. For simplicity, we partition the inside of the box
into unit cubes, designated by the coordinates of their
centres, and assume that all objects are made up of
uniquely named unit cubes whose sides will always be
parallel to the sides of the box.

For this problem, we let U be the set of unit cubes that
make up the objects and let L be the set of possible (x, y, z)
coordinates specifying those positions in the box that can
coincide with unit cube centres. The unit constraint set
T consists of two kinds of constraint. First, for each
object, there is a set of unit cubes representing that object.
For each such element of 7, there are in R mappings
corresponding to each positional shift and each allowed
rotation of the object represented by that element. If, for
example, we wish to prevent a particular object from

being packed upside down, then we allow in R no
mapping of the unit cubes of this object to coordinates
that place the object in an upside-down position. The
second kind of constraint in T is that all pairs of units
are constrained not to have the same label. Thus we have

T =T, T,, where

T, = {{uy, uy, ..., "n,} | uy, s, ..., Uy, are the unit cubes of
the ith object} and

712 = {{uj’ ulc} I uj9 Ug€ Us.] # k}

for unit constraints. For allowed mappings, we have

R = R,|J R,, where

Rl = {{(ulr ll)a ('u'z, 12)’ ceey (u"z’ lni)} I {ula uz, ey u”i} € T,
and positioning the centre of cube u, at location
1,, the centre of cube u, at location I, ..., the
centre of cube u,, at location /, represents an
allowable placement of object i in the box}
and

R, = {{(uj9 lj)9 (s)} | {“j, ugteT and lj # b}

We can determine how to pack the box by finding a
consistent labelling. If no consistent labelling can be
found, then it is not possible to pack all of the given
objects in the box.

Short Notes

A Note on Broyden’s Mark Scaling Algorithm

Broyden® has described an alogorithm ‘designed
to compensate for the varying difficulty of
examination papers when options are per-
mitted>. We propose a modification which
would allow his algorithm to be applied to assess-
ment schemes where the maximum possible
marks for each component of the scheme are
not all equal.

Interpreting sets of examination marks, par-
ticularly when projects and optional subjects
are involved, is notoriously difficult. Broyden*
has suggested an interesting algorithm which
takes account of the varying difficulty of the
components contributing to a set of examina-
tion marks. His algorithm obtains scale factors
for each component of the assessment scheme
under the assumption that the aggregate totals
of each of the raw and scaled marks are the
same.

It appears that, in order to apply the
algorithm successfully, each contributing com-
ponent to an assessment scheme ought to have
the same maximum possible mark. In our
experience this is often not the case. Hence,

when this situation arises, before the algorithm
is applied all the marks must be scaled so that
each component has the same maximum
possible mark. Further, after applying the
algorithm, the resulting marks must be scaled
again to return the maximum possible marks
to their original values.

Unfortunately, the two additional scaling
processes needed when not all the maximum
possible marks are equal can result in the total
aggregates of the final set of scaled marks and
the raw marks not, necessarily, being equal. To
overcome this problem we suggest the follow-
ing modification to Broyden’s algorithm. In
describing the modification we shall follow
Broyden’s notation and equation numbers,
except that X will be the matrix of adjusted raw
marks.

Suppose the maximum possible marks for
each of the n components of an assessment
scheme are T, ..., T,. Then the raw marks will
first have been adjusted so that each com-
ponent has the same possible maximum, T

say. Letting
T;
w; = 7f and W = diag(w;)

the total aggregate M of the raw marks may
be preserved by writing equation (12) as
eTXWf=M.
Equations (13) and (14) then take the form
Kf+WXTeq=0

and
q=—M/(Ee* XWKWXT¢),

respectively.

D. J. COLWELL (author for correspondence)
and J. R. GILLETT

Mathematics Department,

North Staffordshire Polytechnic,

Beaconside,

Stafford ST18 0AD,

UK

Reference

1. C. G. Broyden, A mark-scalingalgorithm.
The Computer Journal, 26 (2), 109 (1983).

THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985 111

Using Semantic Concepts to Characterise Various Knowledge
Representation Formalisms: A Method of Facilitating the
Interface of Knowledge Base System Components

R. A. FROST
Department of Computer Science, University of Glasgow

Currently, there are a number of research groups working on various components for knowledge base system (KBSs). As
example: (a) novel hardware is being developed for mass storage of simple facts, (b) machines are being built to speed
up reasoning with rules expressed in languages such as PROLOG and LISP, (c) algorithms have been designed for
automatic maintenance of semantic integrity and for deductive question answering, (d) logical systems are being
axiomatised which can accommodate time, beliefs, non-monotonic reasoning and other aspects of knowledge which
cannot be handled by classical truth-functional predicate logic, (¢) methods are being developed to support multiple
user-views of knowledge stored in some canonical form, and (f) some progress has been made in providing

natural-language interfaces to knowledge base systems.

Integration of such components is problematical for a number of reasons, not the least of which is due to the different
terminologies and knowledge representation formalisms which are used by the various components. A possible solution to
this problem is to identify a commonly used set of semantic concepts and then employ this set of concepts to characterise
the type of knowledge which is processed by the various components. An example of a semantic concept is logical negation
(i.e. not). Some knowledge representations, such as those used in classical logic, can accommodate logical negation
whereas those used in conventional database systems are unable to represent logical negation other than by omission in

conjunction with the closed-world assumption.

Choice of an appropriate set of semantic concepts should be based on pragmatic criteria rather than philosophical
argument, otherwise it is unlikely that agreement will be reached on what concepts to include. In this short paper we
present a version (0) set of concepts which was chosen intuitively. We illustrate how this set might be refined by

application to example components of KBSs.

This paper is a revised version of a paper presented at the 2nd Alvey-sponsored Workshop on Architectures for Large
Knowledge Bases (WALKB?2) held at Manchester University and organised by Simon Lavington. At that workshop it
was agreed to pursue the approach outlined in this paper by setting up a study group consisting of representatives from
industry and academic institutions. The remit of this group is to refine the set of semantic concepts by application to a
range of knowledge representations including those used in database models, various formal logics, semantic nets,
production systems, logic programming languages, hardware-based systems and so on. The initial output from this group
will be the version (1) set of well-defined semantic concepts which all knowledge base research groups will be encouraged
to use to characterise the particular components which they are developing. The version (1) set of semantic concepts is

scheduled to be available mid 1985.

1. KNOWLEDGE BASE SYSTEMS

A knowledge base is a collection of simple facts such as
‘John works for IBM’ together with general rules such
as ‘all humans are either male or female’. A knowledge
base system (KBS) is a set of resources: hardware,
software, and possibly human, whose collective respon-
sibilities include storing the knowledge base, maintaining
security and integrity, and providing users with the
required input/output routines, including deductive
retrieval facilities, so that the knowledge base can be
accessed as required. Knowledge base systems, as
currently discussed in the literature, are distinct from
conventional database systems in four ways:

(@) knowledge bases contain explicitly represented
rules as well as simple facts;

(b) knowledge base storage structures have low
structural semantic content compared with database
structures;

(c) knowledge base systems include components for
the automatic maintenance of semantic integrity in
addition to components for syntactic checking as found
in conventional database systems;

(d) knowledge base systems include components
which can make inferences over the knowledge base,
thereby providing a deductive retrieval facility.

112 THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985

KBSs are also distinct from expert systems which are
typically designed for specific tasks such as mineral
prospecting, medical diagnosis, fault-finding and mathe-
matical theorem proving. KBSs might be used as
components in expert systems. However, their use is not
limited to this. They can be used as general-purpose
sophisticated database systems or as components of
‘special function’ systems such as pattern-recognition
systems.

The distinction between KBSs and fifth-generation
database systems, as defined by Nijssen is not so clear.!
A reasonable solution is to regard fifth-generation
database systems as belonging to a particular type of KBS
in which the rules are relatively few and relatively static.
The notion of conceptual schemas in fifth-generation
database systems reflects the stability of the general rules
and the use to which the rules are put.

2. CURRENT DEVELOPMENTS IN KBS
COMPONENTS

Research groups are currently working on various
aspects of KBSs. These include the following.

(a) Hardware is being developed for the mass storage
of simple facts represented in data structures with low
structural semantic content.2 3.4

