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There are two different sources of information in relaxation labeling processes: the initial
certainty factors of the labels and the compatibility coefficients. In this paper we examine two
ways in which the compatibility coefficients influence the fixed point achieved: (1) we
demonstrate how the coefficients can bias the process toward the instantiation of a subset of
the labels, and (2) we show how the coefficients precisely define the set of possible fixed
points. We also indicate how eigenanalysis of the derivative of a relaxation labeling process at
a fixed point can be used to study the stability of the fixed point. Finally, we present an
empirical comparison of two statistical interpretations of the compatibility coefficients.

1. INTRODUCTION

Relaxation labeling processes are a class of parallel, iterative algorithms for
reducing the sets of labels attached to nodes in a graph. They have most commonly
been applied in computer vision problems, with the nodes indicating entities of
some kind, and the labels indicating assertions about those entities. For example,
the entities might be picture points, and the labels assertions about the presence of
edges [3] or interpretive classifications [2]. (For a recent review of vision applica-
tions, see [9].) More recently, they have been applied in other domains such as
handwriting analysis [5] and traffic light control [1].

The essential idea behind relaxation is the iterative use of context to effect the
ambiguity reduction. In the continuous case, this is accomplished by updating label
certainty factors on the basis of compatibility relationships between n-tuples of
labels on m-tuples of neighboring nodes. (In this paper we consider pairs of labels
on pairs of nodes; for a discussion of the full generality in the discrete case, see [4].)
Thus, there are two ways in which information can enter a relaxation process:
through the initial certainty factors and through the compatibility relationships. In
this paper we are primarily concerned with the constraints that compatibilities
exert on the final distribution of label certainty factors. Our discussion will end
with a precise characterization of the fixed points (i.e., final certainty factor
distributions) for a class of relaxation processes in terms of these compatibilities.
First, however, after introducing relaxation more formally, we briefly discuss the
importance of proper compatibility functions together with an associated design
criterion.

2. RLPs WITH BALANCED COMPATIBILITY FUNCTIONS

The relaxation labeling process (RLP) that we consider here was suggested by
Rosenfeld, Hummel, and Zucker in [10]. To define it, we use the random variable
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notation often employed in statistics. Let p’ (i = A) be the certainty with which
node i has label A at iteration ¢. If there are / nodes with the label set A at each
node, then the relaxation process defines how to compute {p'*! (i=1A), i =
L2,..,5A=12..., |Al}from {p' (i=A),i=12,..., A=12,..., |A]}.!
The process is based on predefined and fixed node-label pair compatibility
coefficients, (i = A, j = A’), which indicate the compatibility between label A on
node i and A’ on j. The compatibilities are bounded within [ —1, + 1]. Furthermore,
if nodes i and j do not constrain each other in any way, then r (i =A,j=A) =0
for each label pair (A, X).

The supporting evidence, or contextual influence, given to label A on node i by
node j is given by

2 r(i=A,j=X)p'(j=X).
NEA

If we further let C;; be the influence that node j can have on node /, where

0<C;<1 and 2C;=1,
J

then the supporting evidence given to A on / by all nodes is given by
gi=A)=2C,2r(i=\j=N)p'(j=N). (2.1)
J A

The new label probabilities can be defined in terms of supporting evidence and the
old label probabilities:
i=A1+4'(i=A
prii=N) = Pi=M144gi=M)] . (2.2)
2pi=m[1+4q'(i=n)]
n

Since the updating rule defined by Eqgs. (2.1) and (2.2) uses arithmetic averages, we
refer to it as the arithmetic rule; for a discussion of families of related rules, see
[13].

The two sources of information in the arithmetic rule are the initial certainty
factors, p°(-), and the compatibility matrices. Clearly, when the initial certainty
factors are such that they contain no information, then the iterations (2.2) will be
determined solely by biases introduced through the compatibility functions. If
these compatibilities are also intended to introduce no explicit biases, then we have
the:

Necessary design condition. An RLP with (i) unbiased compatibility functions
and (ii) no information introduced through the initial probabilities should be at a
fixed point. [

More precisely, the requirement of no information in the initial certainty factors
translates into the uniform distribution:

p°(i=A)=1/|A| foralliandA, (2.3)

1| 4| designates the number of elements in the set A.
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when there are | A{ possible labels. For (2.3) to be a fixed point, we must have

[=2q(i=p)=q(i=A) forall iand A. (2.4)
I

Notice that the left-hand side of (2.4) is only a function of i, which means the
supporting evidence for each label of node i must be the same. By substituting
the expression defining ¢ in Eq. (2.1) for the right-hand side of (2.4), we obtain the
constraint

= 2CXr(i=MA,j=X) (2.5)

A

for all i and A. This constraint over the node interaction and the compatibility
weights is sufficient to meet our necessary design criterion.

A simpler form of the constraint (2.5) arises for homogeneous RLPs.

DEFINITION. A relaxation labeling process is said to be homogeneous when each
node has identical label sets, initial certainty factors, identical neighborhood
relations, and identical compatibility functions. []

In this case, since the relationship to each neighbor is identical, the constraint
(2.5) reduces to

By = S r (i = A= Y (2.6)
=

For the remainder of this paper, it is more suitable algebraically to consider
compatibilities in the range [0,1] rather than [— 1,1]. To emphasize this difference,
we denote such compatibilities by p (i = A|j = \’), indicating again the compatibil-
ity between A on i and A’ on ;. If the r (i = A,j = A’) have already been specified,
then the p (i = A|j = \) can be obtained by the mapping:

pli=Alj=X\)= ij

1+ r(i=\,j=\) @
» :

for a suitably defined constant «. In this case we obtain,
L+¢'(i=N) =1+ 3G, r(i=A,j=\)p'(j=N)
J A
=aX Xp(i=Alj=N)p'(i=N\),
J N

which, when substituted into Eq. (2.2), gives

Pi=0N2 %p(i = Ai=X)p(j=N)

prIi=2) =

. (2.8)
Zpi=mZ %P(f =nlj=N)p'(j=N)

It is this form of the arithmetic rule that we use to characterize the fixed points.
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However, before proceeding, we would like to remark that compatibilities of this
form suggest interpreting them as conditional (or subjective) Probabilities [7,14].
For this to be the case, we must also have

Spli=Aj=N)=1  foreveryi,j,N,
A
which implies the further constraint (with Eq. (2.7)):
2C1+r(i=Aj=N)]=a foreveryi,j,\.
A

This is a significant constraint since the left-hand side is, in general, a function of i,
j, and A’, while the right-hand side is a constant.

It should be stressed that, although statistical interpretations of the compatibility
functions are possible, they are not necessary. However, if one wishes to adopt such
a viewpoint, then it can be used to derive updating rules of similar (but not
identical) form. For a discussion of one such derivation, see Peleg [7].

3. THE TRIANGLE LABELING EXAMPLE

In order to illustrate the ideas of the previous section, as well as to provide an
example around which several new ideas can be motivated, consider the triangle
labeling problem for a line drawing (see also [10, 12, 13]). In this example, which is
a simplified Waltz-like line labeling problem [11], a line drawing is given of some
real world scene. The problem is to interpret each line segment in the drawing with
one of four interpretations: occluding edge, forward object above (A,); occluding
edge, forward object below (A,); convex fold (A;); and concave fold (A,) (see Fig.
1.) In one part of the line drawing there is a triangle. The triangle labeling problem
is to label or interpret the sides of the triangle. Interpretation of the triangle sides is
possible because of constraints. Any pair of sides of a triangle can have only a pair
of interpretations from a subset of all possible interpretation pairs. That subset is
{AA L AR AgA Agdg, AAs, Ay ).

The conditional probabilities of a triangle side having one interpretation given
that it is adjacent to a side with a second interpretation can be obtained by
assuming that all pairs are equally likely and counting the elementary events. We
use this model for the compatibilities in this paper to obtain empirical results. Thus

j=7\1 j=}\2 j=}\3 J'=P\4

i 0.5 0 1 0
pi=Alj=X)=i=21, 0 0.5 0 1 ] (3.1)
Pm A 0.5 0 0 0

i=2, [0 05 0 0 J

Since the triangle labeling RLP is homogeneous, no information in the initial
certainty factors corresponds to the uniform distribution { p° (i = A) = 0.25, for all
i and A}. If we let this RLP run, we see that it converges to a fixed point with

p*(i=X) =p*(i=2;) =05
pHi=A3)=p*(i=A,)=0  foralli.
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Al ¢ occluding edge : forward object below
LABEL SET = ?\2 : oceluding edge : forward object above
13 : convex edge
'\5. : concave edge
p (A py(Ay)
py(Ay) Py (A0
1 2
pl(AB) Pz(?ta)
by O P, 0

3

Py (A))
P00,
p,0y)
g

P3tg

pOA)  p(R)  p(Ay) R(RY)

SIDE 1
SIDE 2
SIDE 3

F1G. 1. Labeling a triangle.

We refer to this limit as the “no-information fixed point” and denote it by p*.
Thus, the compatibility matrix contains a bias for A, and A,, a fact that the
designer of such processes certainly ought to know about. Note furthermore that
this bias reflects the structure of the space of possible label pairs.

The above computation of the no-information fixed point raises two immediate
questions. First, how stable is it? In other words, how much variation in the initial
certainty factors is necessary to cause this particular RLP to converge to a different
fixed point? Second, and more generally, since this fixed point is essentially caused
by the compatibility values, is it possible to characterize this fixed point, and
others, in terms of such compatibilities? The answers to these two questions will
occupy us for the next two sections.

4. STABILITY OF THE FIXED POINT

To study the stability of the no-information fixed point of the triangle RLP, we
now turn to an examination of the local neighborhood around this fixed point. To
proceed, consider an equivalent model of the relaxation operator (2.8) in vector
terms:

P¥*1 = FP¥. k= 1,2,..., (4.1)

where p is a r-dimensional vector and F is the nonlinear mapping that implements
the update (2.8) for each element of p. The dimension » = / X | A|. For the triangle
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RLP, » = 3 X 4 = 12. The structure around a fixed point of (4.1) is revealed by the
Freéchet derivative of the process:

a k+1
F’=L a=1,2,...,7; =1,2,...,v.

ap‘{;‘
This derivative can be used to determine whether (4.1) is a contraction mapping in
the neighborhood of a given fixed point. Or, to put it another way, the Fréchet
derivative evaluated at a fixed point can provide an indication of whether that
fixed point can be approached from any direction, or whether it must be ap-
proached only from certain directions.
For the triangle RLP, the Fréchet derivative has the form

ap'ti(nl = A,) ap'*tli(nl =1,)
ap'(nl =A)  3p'(n3=Ay)
Ip T l(nl =A,)
F =| dp'(nl =A)
p(n3 =1,) 9p't(n3 =A,)
ap'(nl = Ay) ap'(n3 = A,)

where nl, n2, and n3 indicate nodes |, 2, and 3 of the RLP, respectively.

If we evaluate F” at a particular fixed point P!, we can obtain an understanding
of the convergence properties of the process in an open neighborhood around Pf.
The fixed point that we are immediately interested in is the no-information fixed
point, P*, computed in the previous section. Figure 2 lists F* at P*.

FIXED POINT: 0.5 0.5 0.0 0.0
0.5 0.5 0.0 0.0

0.5 0.5 0.0 0.0

FRECHET DERIVATIVE:

0.5 -0.5 -0.5 -0.5 0.5 -0.5 1.0 -1.0 0,5 -0.5 1,0 -1.0
=0.5 0.5 -0.5 =-0.5 -0.5 0.5 =1.0 1.0 -0.5 0.5 -1.0 1.0
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.5 =0.5 .0 -1.0 0.5 -0.5 -0.5 -0.5 0.5 =0.5 1.0 -1.0
-0.5 0.5 -1.0 1.0 -0.5 0.5 -0.5 -0.5 =-0.5 0.5 -1.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
0.5 -0.5 1.0 -1.0 05 -0.5 1.0 -1.0 0.5 =0.5 -0.5 -0.5
-0.5 0.5 -1.0 1.0 -0.5 0.5 -1.0 1.0 -0.5 0.5 -0.5 -0.5
0.0 c.0 0.0 0.0 0.0 0.0 0C.0 0.0 0.0 0 1.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 1.0

Fic. 2. The Fréchet derivative of the triangle RLP evaluated at the “no-information” fixed point.
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EIGENVALUES: [0, 3, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]

EIGENVECTORS:
1. [-0.913, -0.183, 0.0, 0.0, 0.183, -0.183, 0.0, 0.0, 0.183, -0.183, 0.0, 0.0]
2. [-0.408, 0.408, 0.0, 0.0, -0.408, 0.408, 0,0, 0.0, -0.408, 0.408, 0.0, 0.0]

3. [0.255, -0.843, 0.0, 0.0, -0.275, 0.275, 0.0, 0.0, -0.275, 0.275, 0.0, 0.0]

4, [0.0, -0.0, 0.0, 0.0, 0.167, =-0.167,0.0, 0.0, 0.5, 0.833, 0.0, 0,0]
5. [o.0, 0.0, 0.0, 0.0, 0.833, 0.167, 0.0, 0.0, -0.5, 0.167, 0.0, 0.0]
6. [0.0, -0.0, 0.0, 0.0, 0.167, 0.833, 0.0, 0.0, 0.5, -0.167, 0.0, 0.0]

7. [-1.5, 0.5, 1.0, 0.0, -0.0, 0.0, 0.0, 0.0, -0.0, 0.0, 0.0, 0.0]
8. [0.5, -1.5, 0.0, 1,0, 0.0, -0.0, 0.0, 0.0, 0.0, =-0.0, 0.0, 0.0]
9. [0.0, 0.0, 0.0, 0.0, -1.5, 0.5, 1.0, 0.0, -0.0, 0.0, 0.0, 0.0]
0. [-0.0, -0.¢, 0.0, 0.0, 0.5, -1.5, 0.0, 1.0, 0.0, -0.0, 0.0, 0.0]
i1. [o0.0, 0.0, 0.0, 0.0, -0.0, 0.0, 0.0, 0.0, -1.5, 0.5, 1.0, 0.0]
12.  [-0.0, -0.0, 0.0, 0.0, 0.0, -0.0, 0.0, 0.0, 0.5, -1.5, 0.0, 1.0]
Fic. 3. Eigenvalues and eigenvectors of the Fréchet derivative matrix in Fig. 1. Each entry is listed as

an ordered pair with the real part followed by the imaginary part. The components are in the order: A,
Ag, Ag, Ay, first for side 1, then side 2, and finally side 3.

ITERATION NO.

1 2 3 4
0 side 1 Fi=) -3 .2 o2 .1 1 3 3
side 2 .3 .3 .2 .2 1 L 3 3
side 3 .3 .3 .2 .2 28 § 1 -3 .3
1 -39 -39 .11 L11 .25 .25 .25 - 25
-39 .39 <11 41 .25 .25 .25 .25
.39 .39 .11 11 .25 .25 .25 25
2 .42 .42 .08 .08 .38 .38 .13 .13
.42 .42 .08 .08 .38 .38 .13 -13
.42 .42 .08 .08 .38 .38 .13 .13
5 .46 .46 .04 .04 -45 .45 .05 .05
.46 .46 .04 .04 .45 .45 05 .05
.46 .46 .04 .04 .45 .45 .05 .05
LIMIT +5 -5 0 0 «B =5 0 [¢]
5 5 0 0 5 it 0 0
.5 .5 0 0 5 +5 0 0
(a) (b)

F16. 4. Two initial distributions for the triangle RLP with equal biases for A| and A, at every node.
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ITERATION NO.

0 .4 .2 .2 .2
4 .2 .2 2
4 2 .2 2
1 57 21 14 07
.57 .21 .14 .07
.57 .21 .14 .07
2 74 12 12 02
.74 .12 .12 .02
.74 .12 .12 .02
5 92 0 08 o]
.92 o] .08 o]
.92 0 .08 0
LIMIT 1 0 0 0
1 0 0 0
1 a] 0 0

FiG. 5. Iterations toward a unique labeling.

To interpret this information, we make use of a theorem in Ostrowski [6]. This
theorem states that if the spectral radius (the highest eigenvalue) p(F* (P)) > 1,
then P is a point of repulsion for any sequence of iterates that enters a certain
open neighborhood around it. That is, the sequence P, K =1, 2... will diverge
from P'. On the other hand, if p( F,(P!)) < 1, the sequence will be attracted to P°.

The eigenvalues of F'(P*) are given in Fig. 3, from which we see that p( F'( P*))
=3 > 1. Thus P* is a point of repulsion. However, as we saw in Section 3, it is

ITERATION NO.

0 Pl .1 .5 .3
1 «1 .5 3
Ak -1 5 3
1 42 27 19 12
.42 .27 .19 .12
.42 .27 .19 .12
2 58 23 14 05
.58 .23 .14 .05
.58 .23 .14 .05
5 91 0 09 0
.92 0 .09 0
.91 0 .09 0
LIMIT 1 0 0 0
1 ] 0 o
1 0 o] 0

F1G. 6. Cancellation effect of conflicting biases,



250 HARALICK, MOHAMMED, AND ZUCKER

possible to obtain this fixed point. This seeming contradiction is clarified by
looking at the eigenvectors of F'(P*) (see Fig. 3). These eigenvectors show that it is
not the individual label probabilities that are important, but rather it is the relative
differences between the labels (A, and A,) and (A; and A,) at each node that
determine whether P* will be achieved. As long as their likelihoods remain
perfectly in balance, neither of the two occlusion labels will be selected over the
other (see Fig. 4). However, as soon as one label is favored either directly (Fig. 5)
or indirectly (Fig. 6), a unique interpretation obtains. The extreme sensitivity to
even minor deviations from these balanced configurations is indicated by the
magnitude of p( F'(P*)), and brings to mind a decision process like the one studied
in [13].

This discussion has shown that it is possible to analyze, at least in special
circumstances, the structure imposed on an RLP by the compatibilities separately
from the influence of the initial certainty factors. In the next section we provide a
different, and more general, characterization of this structure.

5. A CHARACTERIZATION OF THE FIXED POINTS

Although both the compatibilities and the initial certainties affect the final fixed
point of an RLP, in this section we show that the matrix of compatibilities restricts
the set of possibilities in a nontrivial manner. In particular, we derive an algebraic
expression over the compatibilities that the fixed point must satisfy, given that we
know which label certainties go to zero. To facilitate understanding, we do the
analysis first for homogeneous RLPs, and then for arbitrary ones.

The homogeneous case. By definition, in the special case of a homogeneous
RLP, p(i = A|j=A") is the same for every i/ and j; hence, we can write the
compatibilities as p(A|A”). Also, since a homogeneous RLP is started with the same
initial certainty factors at each node, it is easily seen that the fixed points achieved
by such a process would also have the same distribution of certainty factors at each
node.

Let {p(A)|A € A} be one of these fixed points. Further, letA* = {A| p(A) > 0,
A € A} be the set of labels having nonzero certainty factors at this fixed point.
Every fixed point of (2.8) must satisfy (see also [12])

g(i=2A)= 2 p(i=X)q(i =X\) = constant, YAE AT, (5.1)
NEA

where

gi=A)=2 3 p(i=Alj=N)p(j=XN)=constant, VAEA".
i a

The homogeneity assumption simplifies this latter expression to

> p(AA)p(N) = constant =a, VA EA*,
NEA*

which can be rewritten in matrix form as

RyPy=al,
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where Ry is the [A¥ | X [A" | matrix of compatibility functions, p(A|\), for A,
N € AT ; Pyis the [A* | X 1 vector of p(A\), A € A* ; and Tisa |A* | X 1 vector
of all 1’s.

If Ry is of full rank, then

Py = aRG\.
(If Ry is not of full rank, pseudo-inverses may be appropriate.) Moreover, since

2p(A) =1 (5.2)

A
at every node, we have

a=(I'RFI)™
or
Py = RG'I/ (I'RGT).

For comparison with the general case presented later in the paper, note that this
can also be written

Py=R (I'R; 1)L (5.3)

Thus, every fixed point P of a homogeneous RLP must satisfy Eq. (5.3), which is
an explicit function of the compatibility values.

The above analysis can be extended to the more general situation in which the
RLP is not homogeneous and the distribution of certainty factors is different at
each node. Let neigh(i) be the set of nodes neighboring i, and A, be the set of
labels for node i. Now, Eq. (5.1) becomes

2 D =Ai=Np(i=N)=gq (5.4)

JjEneigh(i) A€A,

for all nc<i~s i and for all A such that p(i = A) > 0.

Note that ; is constant for all A € A}, but may be different at each node.

To write Eq. (5.4) in matrix form, we must first introduce the following notation.
Let

N, = |A; | be the number of labels with nonzero certainty factors at each
node.

Then

N =3 N, is the total number of labels in the RLP with nonzero

i

certainty.
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Also let P, bethe N X 1 vectorof p(i =A),i=1,2,..., LA €A} ; and let R, be
the N X N matrix of compatibilities, the entries of which are p(i = A|j = A",
where p(i = A) and p(/j = A’) are both nonzero. If we let the nodes be represented
by the symbols 1, 2,..., /, and the labels A € A} be represented by A, A5,...,
Ain, where n, = |A] | for each node 7, then the form of R, is given by

i'ﬂl"

i -
P(]_ =A“|1 =A“)P(1 =A11|] =A1n1)"‘

L P(L= Al = Ag) . P(L= Ayl =2,,)

P(L =7y |1 =Ay) e P(L= Ay |1 = Ay, ).
5| L P(L=A,ll=2,) . P = Ay 1= Ay)

P([ = Aln;“ = A11)13(1: Afﬂill = Al”l)”'

e PU= A L= M) P(E= Ayl =0y, |

Let 4, be the /X 1 vector of a;. (Recall that there are / nodes.) We shall
construct a / X N matrix ¥ as follows: Let h,, h,,..., h, be N X 1 vectors of I's
and 0’s defined by

Then I is the matrix
Ho=[hy,hy50 1]
With this notation, we can write (5.4) as
R,P, = UA,.
Again, if R, is of full rank,

B VA0, (5.5)

At this point we reuse the constraint (5.2) that the certainty factors sum to 1 at
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every node to solve for the «;. Note that this constraint can be written as
hiP, =1
at every node i. Applying this constraint to Eq. (5.5) yields
= -1 -
WP, = (H'R;'H)A, =1,
which implies

A, =(3CR;') 'L

This result, together with Eq. (5.5), gives us the equation for determining the
nonzero confidence levels:

P, = R;1C(HCR;'H) L. (5.6)

Hence, given that we know which labels have nonzero confidence levels at the
fixed point, we can use Eq. (5.3) or Eq. (5.6) to determine exactly what these
confidence levels are.

Furthermore, it should be noted that the above analyses imply an algorithm for
determining the set of all possible fixed points of an RLP. Consider a partition of
the set A of all possible labels on all nodes into two classes:

A* labels assumed to have nonzero confidence at the fixed point;

A° labels assumed to have zero confidence at the fixed point.

If we consider only partitions for which every node has at least one nonzero label,
then the number of such partitions is

a (214 - 1),

Some of these partitions may require that one or more labels which are totally
incompatible with their neighbors belong to A* . For such a partition there can be
no fixed point which has nonzero confidence for all the labels in A* and zero
confidence for all labels in A% since the incompatible labels would be eliminated in
the ensuing iterations. In such cases the solution of Eq. (5.6), or Eq. (5.3) as
appropriate, would require that «; be zero for some i.

Thus, to determine all possible fixed points, one would apply Eq. (5.6) or Eq.
(5.3) to each of the partitions and accept the solutions as fixed points only when all
the a, are greater than zero.

Finally, the analyses that led to Eqgs. (5.3) and (5.6) assume that the matrix R
and R, are nonsingular. In the event that this assumption is not valid for a
particular partition, then the fixed point corresponding to the partition may not be
unique. That is, the equations may be underdetermined, admitting a family of
solutions.

6. FURTHER REMARKS ON THE INTERPRETATION OF COMPATIBILITIES

The final test of any set of compatibilities will be how they perform in practice.
Such empirical data can often lead to practical insights concerning the relative
differences between two models for compatibilities, and we will now switch to this
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methodology for comparing the conditional probability interpretation in Section 3
with the “mutual information™ interpretation proposed by Peleg [7]. This latter
interpretation is being used in RLPs for, e.g., classifying multispectral images [2].
Moreover, this comparison is interesting because mutual information is a function
of the conditional probabilities: the mutual information between two events 4 and
B is defined to be

MI(A4,B) =1o

g

P(A4|B)
P(A)

The mutual information compatibilities for the triangle example computed by the
method in [7] are

written in the same form as (3.1).
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Fi1G. 7. Comparison of the mutual information and conditional probabilities in the triangle RLP.
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Figure 7 contains a number of comparison examples for different initial certainty
factor distributions. The first example, Fig. 7a, shows that both sets of compatibili-
ties exhibit the same bias for uniform initial certainties. (These final values could
also have been computed by the analytical methods of the previous section.) The
next two examples, Figs. 7b and c, show that the mutual information coefficients
contain a bias toward events that are a priori unlikely, while the conditional
probabilities show a bias, in the second case, toward likely a priori labelings.
Finally, as the last three examples show (Figs. 7c, d, and e), the mutual information
coefficients maintain their predisposition toward unlikely events for different initial
configurations.

7. SUMMARY AND CONCLUSIONS

There are two sources of information in a relaxation labeling process: the initial
certainty factors and the compatibilities between labels on neighboring nodes. In
this paper we have concentrated on the compatibility factors, and have studied
them with respect to four issues. First, to characterize biases in the compatibilities,
we proposed the idea of computing “no-information” fixed points. This was tied to
the formulation of the first design criterion for compatibilities. Second, in studying
one such fixed point, we attempted to characterize the local neighborhood around
this fixed point with respect to its stability characteristics. Third, we characterized
the fixed points of arithmetic of RLPs as an algebraic relation over the compatibili-
ties, thereby expressing the compatibility biases in a more general way. Finally, we
presented an empirical comparison of two statistical interpretations of compatibili-
ties and illustrated their respective differences in a subjective manner for a triangle
labeling problem. This comparison revealed a third kind of bias that is possibly
introduced through the compatibilities—a bias for labelings that are either likely or
unlikely a priori. It is our position that the designers of RLPs will need to
understand all of these biases in terms of their specific problems before they can
guarantee a successful application.
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