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Abstract — A comparison is made between K-trees, (ie. quadtrees and octrees,) which are regular
decompositions of volumes, and new, irregular decompositions called R-trees. This comparison is made
within the context of the representation problems that might be associated with a robotic system. The results
show that the irregular decomposition is independent of object position and can provide a more efficient
encoding for certain shapes. However, detecting intersections between R-trees requires an algorithm of
greater complexity than that of interference detection for octrees due to the irregularity of the R-tree

decomposition.

Object representation
Hierarchical data structures

Image encoding

1. INTRODUCTION

Regular decompositions of regions and volumes have
received much attention in the recent literature,!~"?
These representations have proven useful in a number
of applications including graphics, data compression
and robotic solid modeling. Among the most popular
of these techniques are quadtrees® " and octrees,"®~19
and binary trees.®

The basic idea behind this type of decomposition is
that a universe entity, [square, cube, or hype-cube!'"!"]
isa power-of-two in diameter and can be recursively
divided in half in each of the coordinate directions
down to the resolution of the power-of-two grid. For
example, an octree is constructed as follows. Begin
with a large cube that contains the entire work space
for universe) of all objects, including the object to be
represented by this tree. This cube is the root node of
all octrees of all objects. The edges of this cube define
the directions of the world coordinate axes. Now,
divide the cube in half in each of the three coordinate
directions generating eight “octants”, Fig. 1. These
octants are the children of the root node. If an octant
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contains none of the volume of the object it is labeled
“empty”. If an octant is completely filled by part of the
object’s volume, it is labeled “full”. Octants which are
“full” or “empty” are not subdivided further, but
“mixed” octants are recursively subdivided in eight
parts until either no “mixed” octants are generated or
the desired resolution is reached.

From this description it can be seen that an octree is
a regular decomposition of a volume, in the sense that
divisions are made at predetermined, regular intervals.
Any level of the tree represents a known, evenly spaced
subdivision of the original cube. Klinger and Dyer*

octants

Fig. 1. Octree construction.
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emphasize that regular decompositions of this form
have many advantages, one of which is that any
geographical part of the image may be rapidly
accessed. Also, since the form of the decomposition is
predetermined, the tree can be encoded in a linear
array format to save space as proposed by Gargan-
tini*¥ and Tamminen!” Unfortunately, as pointed
out by Ahuja and Nash,"? octree representations are
not constructed with respect to the object itself but
with respect to a world coordinate system. For this
reason, the representation is not independent of the
object’s position. This presents two problems. One, if
an object is translated a new octree must be
constructed 2519 And two, the space required for an
octree representation varies greatly with the object’s
position relative to the universe cube.”

The decomposition primitives of the octree are
boxes, (specifically cubes,) whose edges are parallel to
world coordinate axes. This type of primitive has some
nice features including a simple mathematical descrip-
tion and a straight-forward algorithm for determining
intersections between primitives. The reader may have
wondered whether it is possible to retain this type of
primitive and yet achieve position independence. The
desired representation to meet this criterion would
correspond to an irregular decomposition based on
the object’s shape. Also, Rubin and Whitted”
recognized that an irregular decomposition of this
form could improve both time and space efficiency in
computer graphics applications, but the idea has not
been pursued further.

2. BACKGROUND

Three- and  k-dimensional  decomposition
techniques have analogous techniques in two dimen-
sions. For instance, the two-dimensional counterpart
of the octree is the quadtree. These two-dimensional
versions are easier to visualize and explain; therefore,
the discussion of irregular tree decompositions best
begins in the two-dimensional realm.

The idea of an irregular decomposition of a
two-dimensional region is not new. Pfaltz and
Rosenfeld®™ presented the idea of representing a
region as a set of maximal neighborhoods in 1967. This
idea is a variation on Blum’s Medial Axis Transforma-
tion.? In this representation, only the skeletal points
and their respective radii need be stored to fully
represent the region. However, since the areas of the
blocks centered on the skeleton overlap, there is a
redundancy of information resulting in less than
optimal storage requirements. Also, though this
skeletal representation is better suited to the problem
of determining if a point belongs to a region than the
boundary representation, the skeletal blocks are
organized only as a simple list, which is not the most
efficient for queries. The irregular decomposition of
interest to this discussion should provide both query
speed and space efficiency.

Ferrari, Sankar and Sklansky?" have developed an
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algorithm that finds the minimal rectangular partjgj,
of a digitized region. Their rectangular Partitiy,
representation does not have the redundancy of the
skeletal representation and may therefore be Tore
space efficient. Still, the partition is not organizeq i,
manner that will result in particularly fast Tegioy
queries.

The quadtree, on the other hand, provides fie
efficient queries through its hierarchical Structyre
Taking advantage of this basic structure, Samepy,
presents a tree version of the Medial Axis Transf()rm
which he calls the Quadtree Medial Axis Tl‘ansfonn
(QMAT). This representation provides space efﬁcicnCy
beyond that of the quadtree and eliminates some of th,
variability of quadtree size when the region
translated. Unfortunately, since the representatiop
based on a regular decomposition associated wi
fixed coordinate axes, the QMAT must still b,
reconstructed when a translation occurs. This depep,
dence of the representation on position is something
that an irregular decomposition should avoid.

3. THE RECTANGLE-TREE

The rectangle-tree provides a representation of g
region that is efficient both in space and query speed
The tree is based on an irregular decomposition that i
independent of a region’s position with respect
translation. Since the rectangle-tree is composed o
disjoint rectangles whose sides are parallel to fixe
coordinate axes, the representation is not independen
of a region’s orientation.

The decomposition used by the rectangle-tree i
illustrated in Fig. 2. The region is surrounded first b
an enclosing box. This box is the smallest rectang
that contains all of the region and has sides parallei t
the world coordinate axes. For digital images, the side
will be parallel to the image boundary. After thi
outside rectangle has been determined, the insid
rectangle must be found. The inside rectangle is an

outside rectangle

insi
rectangle

\

derived rectangles

Fig. 2. Rectangle-tree decomposition.
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Fig. 4. Generalized tree structure.
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col1

next
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Fig. 5. Rectangle-tree structure.

largest rectangle that is completely within the region
and which has sides parallel to the outside rectangle.
The extension of the sides of the inside rectangle
tvides the outside rectangle into nine, ordered
thildren rectangles. The first child is the inside
reclangle, which is known to be completely inside the
tgion. The other eight children are the rectangles
ttrived by extending the sides of the inside rectangle as
ndicated by the dotted lines in the figure. These
tildren rectangles become the outside rectangles for
teursive decomposition. They are ordered according
Wthe size of their inside rectangles, those with the
brgest inside rectangles being first. Any derived

children that contain no part of the region are not
included in the tree.

Any rectangle (node) in the tree which is completely
contained within the region is labeled “full”. Inside
rectangles are always “full”. “Full” nodes require no
further subdivision and are therefore leaves of the tree.
Nodes not “full” are “mixed” and are recusively
subdivided until either the desired accuracy is achieved
or no “mixed” rectangles remain. Figure 3 illustrates
the children obtained from the second child of the
outside rectangle of Fig. 2.

4. EXPERIMENTAL COMPARISON TO QUADTREE
STRUCTURES

The experimental analysis of various tree decom-
positions was accomplished through GIPSY, the
Spatial Data Analysis Lab’s General Image Process-
ing System.'® For the purposes of comparison,
rectangle-trees and quadtree-type structures were all
stored in a similar format. The trees were stored using
a generalized tree structure in a random access file on
disk. Each record in the file was a node in the tree.

A generalized tree structure is one in which each
node in the tree may have both children and siblings.
The children of a node are nodes at the next level of the
tree. These nodes represent a decomposition of the
parent rectangle for trees such as quadtrees and
rectangle-trees. The siblings of a node are nodes at the
same level of the tree that have the same parent node.
Figure 4 shows the generalized tree structure.

The rectangle-tree record format is depicted in Fig.
5. Each record has seven fields. The first four fields
contain the first row, last row, first column, last column
of the rectangle which constitutes the tree node. Next
is the pointer to the remaining non-empty siblings of
the node and a pointer to the node’s children. If this
node is not “full” then the first child will be the node’s
inside rectangle. The final field of the record is the flag
to indicate whether a node is “full” or “mixed”.

Similarly, the quadtree data structure has a record
format as shown in Fig. 6. The principal difference
from the rectangle-tree structure is that each node of a
quadtree generally has either four children or none.
Also, the flag of field seven may take on the values
“full”, “mixed”, or “empty”, for a quadtree.

To test the efficiency of the rectangle-tree with
respect to queries, several experiments were conduc-
ted. For these experiments polygonal regions were
randomly generated in square images in the following
manner. The origin was assumed to be located at the
center of the image. A length between zero and
one-half the image size was randomly generated. Then
an angle between 0 and 90° was randomly selected.
This length and angle determined the location of the
first vertex of the polygon in the image. Lengths less
than half the image sized and angles between 0 and
121° were then randomly generated until the total
angle exceeded 360°. The generation of a polygon is
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parent: '7
coll | col2 | rowl | row2 ‘ siblings 1"mixad"|
tirst child: l———»
rco|1 col2 | rowt | row2 \ children I tiag |
second child: [——"'——'
colt | col2 | row1 row2| children ] ﬂaﬂ
third child: _[—‘__'
coll | col2 | rowl | row2 \ children | flag
fourth child: S
, coll | col2 | rowl | row2 ‘ children flugJ

|

Fig. 6. Quadtree structure.

Fig. 7. Random generation of polygonal regions.

procedura QTREE_INT( X, RECTANGLE )
// intersect RECTANGLE with quadires pointad to by X //

it (X # 0) then

[ call READ({ X, RECTANGLE_ X, CHILDREN_X,
SIBLINGS__X, STATUS )

I INTERSECTS( RECTANGLE X, RECTANGLE ) then
it ( STATUS = full ) then
QTREE_INT = true
eise
QTREE__INT = QTREE_INT( CHILDREN _ X,ARECTANGLE )
if { QTREE_INT # trus ) then
QTREE_INT = QTREE_INT{ SIBLINGS _X, RECTANGLE ) |}
alse 3

QTREE_INT = faise
raturn

eand QTREE__INT

Fig. 8. Rectangle intersection algorithm for quadtree.

procedure ATREE_INT{ X, RECTANGLE )
// intersect RECTANGLE with rec-tree pointed to by X s/
H{X#0) then

[ call READ{ X, RECTANGLE X, CHILDREN X,
SIBLINGS X, Fyy |

il INTERSECTS( RECTANGLE X, RECTANGLE ) then
it FULL then
RTREE__INT = true
elsa

[ call READ( CHILDREN X, IN__RECTANGLE,
DUMMY, SIBLINGS_CHILD, Fuy

if INTERSECTS( IN_RECTANGLE, RECTANGLE } theq
RTREE_INT = true
alse

RTREE_INT = RTREE_INT( SIBLINGS _CHILD,
RECTANGLE | |

it { RTREE_INT # true ) then
RTREE_INT = RTREE_INT( SIBLINGS_X, HECTANGLE;
1
sise
RTREE__INT = false
refurn

end ATREE__INT

Fig. 9. Rectangle intersection algorithm for rectangle-tres

illustrated in Fig. 7, where the I's and a’s are t,
generated lengths and angles. The vertices ay
connected to form the polygon as shown. Once th
polygon has been created the region can be colored.
to form the test image.

One query of interest might be to determine if;
randomly generated test rectangle intersects th
randomly generated polygonal region. The algorithn
for this query when the region is represented as
quadtree is given in Fig. 8. The algorithm is slightl
modified for rectangle-tree representations, as show
in Fig. 9. A simple routine INTERSECTS is assume
in these algorithms to determine whether or not tw
rectangles intersect. Also, a routine READ is assume
that obtains the tree node pointed to by X. Inth
experiments, the number of accesses to the dat
structure, i.e. the number of calls to READ, was th
quantity of interest, since this corresponds to th
amount of processing done by each algorithm.

Rectangles for queries were randomly generated b
first generating a column value in the image. This wa
the last column of the rectangle. Then the first colum
was generated by randomly selecting a column inth
image less than the last column. The first and last row
of the test rectangle were generated in a simils
manner.

Table 1 shows the results of two comparison russt
256 x 256 images of random polygonal regions. Nol
that the quadtree representation used in these runs s
complete quadtree where empty nodes are explicit
the tree. These nodes provide no help in determin®
test rectangle intersections. Therefore, if empty nod
are left out of the quadtree structure, giving what shd
be called a black quadtree, the results of Table la
obtained.

Note also that the rectangle-tree encodes only 8
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Table 1. Comparison of quadtrees and rectangle-trees

lﬁmage Size 256 x 256
Number of Images 31

1550

number of Data Points

Total Number of Intersections 733

Total Number of Non-intersections 817

Comparison Results Mod Quadtree Rectangle-tres

Avg. No. of Records in Tree 898 328
Avg. No. of Tree Accesses 6.8 34
standard Dev. of Accesses 7.4 4.9

Table 2. Black quadtree comparison

256 x 256

Test Image Size

Number of Images 50

Number of Data Points 2499

Total Number of Intersactions i 1181

Total Number of Non-intersections l 1318

Comparisan Results 1 Quadtree 11 Rectangle-tree

Avg. No. of Records in Tree 1560 i 33s

Avg. No, of Tree Accesses

I
[ 17.8 35
Standard Dev. of Accesses !‘

1.3 51

Table 3. Modified black quadtree comparison

[Est Image Size 256 x 256
Number of images 50
Number of Data Points 2500

Total Number of Intersections 1163

Total Number of Non-intersections 1337

Comparison Results Bik Quadtree Rectangle-tree
Avg. No. of Records In Tree 906 310
Avg. No. of Tree Accesses 1.1 3.4
|Standard Dev. of Accesses 8.7 5.2

area of the image enclosed by the rectangle which
bounds the polygonal region. A similar technique
could be employed for quadtrees, i.e. first surround the
region with a minimal rectangle, then make regular
divisions of this rectangle to form the tree. This should
lead to faster determination of null intersections for
black quadtrees. The results for this modified black
quadtree structure are given in Table 3, and are, in fact,
an improvement over the black quadtree. However,
since the minimal rectangle enclosing the region is not
¥ x 2", divisions can not be guaranteed to be exactly
tqual. Thus some of the encoding techniques for
quadtrees are not applicable to this modified structure.

To test the space efficiency of certain tree structures
Tamminen"® uses a 2'° x 2" encoding of a black disk.
Following his lead, the 1024 x 1024 black disk was
Used to compare quadtrees and rectangle-trees. The
Quadtree of this region was found to have 10,341
todes, 3932 of which were black leaves. The
itctangle-tree, on the other hand, had 2354 nodes,
77 of which were black leaves. At first glance

?20:3-p

rectangle-trees would appear to offer a significant
advantage, however the regularity of the quadtree
decomposition provides certain possibilities for
encoding.

Gargantini has shown that it is only necessary to
store the black leaves of the quadtree and each leaf
node can be encoded in 3(n1) + 2 bits for a 2% x 2"
image. So that for this example, only 29*3932=
113, 028 bits are required for the entire quadtree
representation,

Consider now the rectangle-tree. To represent
rectangles in a 1024 x 1024 image, 40 bits are needed,
(10 bits for each integer). Also, 12 bits are needed for
each pointer and one additional bit for the flag field.
This means that 65 bits are required to encode each
node. Recall, however, that the sibling nodes are
derived from the outside and inside rectangles of the
parent node. Thus if the outside and inside rectangles
are completely specified, only a 3-bit code which
indicates how to derive the child from these two
rectangles needs to be stored in all the nodes which are
siblings to the inside rectangle node. For rectangle-
trees the number of siblings will be one less than the
total number of black leaves, since the root node is not
asibling and for all leaf rectangles besides its inside one
there are corresponding rectangles which are siblings.
So, of the 2354 nodes of the example rectangle-tree,
1176 will be derived rectangles that only require the
3-bit code. Therefore the rectangle-tree can be encoded
in 28*1176 + 65*1178 = 109, 498 bits, giving a space
efficiency comparable to Gargantini’s quadtree
encoding.

Itshould be mentioned here that neither of these tree
encodings approaches the data compression of the
linear encoding of a quadtree’s preorder traversal as
presented by Kawaguchi and Endo.” However,
certain operations are applicable to the tree structures
that are not available for the linearly encoded form, as
pointed out in Ref"?

The reader may have noted that the rectangle-tree
should perform well for regions where significant
inside rectangles can be found. Consider the images
depicted in Fig. 10 as cases where the rectangle-tree
should do poorly. For the rotated square of Fig. 10(a)
the quadtree consisted of 1365 nodes, 348 of which
were black leaves, while the rectangle-tree had 489
nodes and 245 black leaves. For the circle encoded as
in Fig. 10(b), the quadtree had 15,189 nodes, 3244

B
\_

{b) 1024 x 1024
Fig. 10. Line images.

(a) 128 x 128
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black leaves, and the rectangle-tree had 2391 nodes
with 1307 black leaves.

The performance of both types of tree structures is
highly data dependent. Obviously, the rectangle-tree
will perform miserably on a pixel-sized checker board.
But, since the desired use for this decomposition is for
representing real objects (that generally have some
substantial area) and not just arbitrary images, the
rectangle-tree’s poor performance on the checker
board is not of particular concern. The practicality of
this decomposition in three dimensions should be
examined in some detail.

5. THE RECTANGULAR PARALLELEPIPED-TREE

The extension of the rectangle-tree to three-dimen-
sional shape representation yields a tree of rectangular
parallelepipeds (RPPs). Thus this decomposition can
be termed a “rectangular parallelepiped-tree” or
“RRP-tree”. Sometimes the term “R-tree” will be used
to refer to rectangle- and RPP-trees.

Figure 11 depicts the three-dimensional decom-
position of RPP-trees. This decomposition is
completely analogous to the rectangle-tree structure of
two dimensions. All of the RPPs in the RPP-tree have
edges parallel to the coordinate axes of a world
coordinate system. The RPP-tree has an inside RPP
and an outside RPP at each node which is “mixed”.
The planes of the boundary of the inside RPP partition
the outside RPP into 27 smaller RPPs. These 27 RPPs,
which include the inside RPP, form the children of the
outside RPP. Any “mixed” children are recursively
subdivided in a similar manner to form the entire tree.

Since the increase in dimensionality has lead to a
significant increase in the number of possible children
per node, the performance of the RPP-tree should be
examined closely.

6. EXPERIMENTAL COMPARISON TO OCTREE
STRUCTURES

In GIPSY, voxel arrays are stored as multi-band

derived rectangles

inside
rectangle

Fig. 11. RPP-tree decomposition.
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images. These multi-band images were used to condy
experiments on the properties of RPP-tree and Octre
encodings of three-dimensional objects.

The RPP-tree was stored in the same manner g the
rectangle-tree of Fig. 5. Two fields were added to tac
record to indicate the first and last bands of a recorg,
RPP. The other fields, including the pointer ang ﬂag
fields, retained their original definitions. Likewise
octrees were stored as in Fig. 6 with the additiop
fields indicating the first and last bands of each Rpp

For the four-sided polyhedron of Fig. 12, pOSitioned
ina 64 x 64 x 64 voxel array as shown, the follow;,
results were obtained. The octree contained 12,
nodes, 4682 of which were black leaves. The RPP-lrce
contained 2852 nodes, 1434 of which were black leay;

The intersection algorithm of Figs. 8 and 9 cap be
transfered directly to the three-dimensional domain
simply replacing all references to rectangles wjy,
rectangular parallelepipeds. Because the algorithy,
are based on a generalized tree structure, no othe;
changes are required. These algorithms were used
compare the efficiencies of RPP-trees and octrees wiy,
respect to queries for RPP intersections. For §
randomly generated RPPs within the array of Fig 1)
the RPP-tree had an average data structure acceg
count of 22.2 accesses per RPP, while the octree had a5
average access count of 34.5. However, for the blag
octree, i.e. the tree containing only “mixed” and “fy]"
nodes, the speed of the octree query was much
improved. For 50 random RPPs, the RPP-tre
averaged 24.5 accesses and the black octree, only 227
accesses.

For objects that have a little more regularity with
respect to the coordinate axes, the properties of the
RPP-tree become a distinct advantage. Consider the
quadrilateral cylinder positioned in a 64 x 64 x 64
voxel array as shown in Fig. 13. The octree for this
object had 22,569 nodes, while the RPP-tree required
only 137 nodes, a significant difference to say the least,
The black octree for this example contained 12,148
nodes. The average number of accesses for the black
octree was 22.2 compared with 4.8 for the RPP-tre,

(35,35,60)

{40,8,4)

Fig. 12. Four-sided polyhedron.
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(15,23,23)

(2,10,23)

{15,.23.2)
{2,10,2)
z (23,7.2)
Yy
i (10,2,2)
X
Fig. 13. Quadrilateral cylinder.
(60,58,58)
(5,25,58)
("/’ (50,12,58)
(25,5,58)
(60,58,8)
(5,25,6)
z
L (50,12,6)
(25,5,6)

/.
X
Fig. 14. Quadrilateral cylinder at corser resolution.

when 50 random intersection RPP's were tested.

Due to the irregular nature of the RPP-tree
decomposition, its performance is not affected by a
change in image resolution, whereas the octree’s
performance degrades as the resolution is increased.
For example, for quadrilateral cylinders, the octree
does much better against the RPP-tree at a coarser
resolution. In Fig. 14, a quadrilateral cylinder similar
tothat of Fig. 13 is positioned in a 25 x 25 x 25 voxel
array. The octree-like decomposition of this volume
yielded a tree of 1607 nodes, while the RPP-tree had 52
nodes, Also, for determining the intersection of 20
randomly generated RPPs with the object, the octree
Structure required 11.8 accesses and the RPP-tree, 3.9
accesses, on the average.

Since the size of the octree is highly dependent on the
Position of the world coordinate origin, it may be
Possible to obtain a significant improvement by
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{=10,-10,10)

{=10,10,10)

(10,-10,10)

- (-10,10,-10)

(10,-10,-10) {10,10,-10)

Fig. 15. Cubic shell.

/

T

Fig. 16. Alternate irregular decomposition.

selecting a more appropriate origin when constructing
the tree. To test this idea, the origin in Fig. 14 was
moved to the point where the inside RPP of the root of
the RPP-tree would correspond to an entire octant of
the octree. This experiment lead to an octree of 943
nodes, a significant improvement over the 1607 nodes
of the previous tree. However, the RPP-tree still only
contained 52 nodes. It is not affected by translation!

As a final experiment, the “worst case” of RRP-tree
space efficiency was tested. In Section 4, the “worst
case” space efficiency turned out to be a thin square
with no sides parallel to the coordinate axes [Fig.
10(a)]. For the three-dimensional “worst case”
consider the cube of Fig. 15 rotated by 45 degrees
around the x-, y-, and z-axes, and translated 32 units in
the positive x-, y-, and z-directions into the center of a
64 x 64 x 64 image. The object that was encoded was
the one-voxel-wide solid that comprised the surfaces of
the cube. The octree for this object contained 8145
nodes, 2355 of which were black leaves and 4772 of
which were white leaves, The RPP-tree had 2,281
nodes, 1169 of which were black leaves.

The reader may have noticed that the definition of
children RPPs can be made in ways other than that
given in Fig. 11. Once the inside RPP is determined,
the children RPPs can be chosen in any manner that
completely decomposes the remaining volume of the
outside RPP. Obviously, the choice of children RPPs
can affect the resulting tree size. For example, consider
the decomposition structured as in Fig. 16. Here, the
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outside RPP is divided into seven children RPPs
instead of 27 as in Fig. 1 1. For the rotated cubic shell,
an R-tree of this form possessed 1986 nodes, 993 of
which were black leaves. This is a 12.9%/ decrease in the
total number of nodes required for object representa-
tion. For the four-sided polyhedron of Fig. 12, a 5.5%
drop in the total number of tree nodes was discovered.

In any case, the overall performance of the R-tree is
highly data dependent. However, as has been shown,
the RPP-tree has the advantage of being invariant
under translations, which is particularly useful in
robotics applications. This possible appropriateness of
the R-tree for robotics will be examined in greater
detail in the next sections.

7. ROBOTIC OPERATIONS ON R-TREES AND OCTREES

For a robotic system, there are three operations on
tree decompositions that are of particular importance.
Since robots typically manipulate the objects in their
environment, or objects are moved to facilitate
inspection tasks, it is important to be able to translate
and rotate the tree decomposition representations.
Also, since collision checking is a prominent operation
in planning robot movements, a system must be able to
determine if two trees intersect. The following sections
review the principles of these three operations with
respect to R-trees and octrees.

8 TRANSLATION

Several authors have presented algorithms for the
translation of octrees.">'"*'% These algorithms either
require that translations occur only in integer
multiples of the base voxel size,"? or that some error is
incurred in the translated octree so that the original
octree must always be stored for further transla-
tions."® In either case, translation of an octree requires
rebuilding of the tree.

R-trees, however, are independent of the world
coordinate system with respect to translation. The
actual R-tree will be an integer decomposition of the
discretized representation. That is, the RPPs that
make-up the tree will be defined by the integers, first
column, last column, first row, last row, first band, and
last band, within the discretized outside RPP. This
integer representation is less expensive space-wise than
storing the actual real number positions of these RPPs.
To locate the outside RPP of this integer R-tree a
single real vector | is needed. If the R-tree is to be
translated (by any amount,) the only modification is to
I. Thus, translation of R-trees is trivial.

9. ROTATION

Arbitrary rotation of octrees is not possible,
although some schemes have been presented for
obtaining approximations to rotated trees.!*'® Rota-
tions by multiples of 90° are possible with octrees and
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several algorithms have been given'™!% Thes
algorithms are based on the fact that a rotatiop , ‘
multiple of 90° results in a reordering of the nodg, of
the tree. No new nodes are created and the entir
operation can be carried out by a simple relabeli,
algorithm. g
Since R-trees are composed of RPPs aligneq With
the world coordinate axes, as are octrees, they have the
same properties with respect to rotations as do OClregg
Arbitrary rotations of R-trees are not possible, though'
approximation schemes could be devised. Rotatigy,
by multiples of 90° are possible and require only g,
each node of the tree be relabeled. For example, fo, i
rotation of 90° about the x-axis, where columns of the
outside RPP image segment the x-axis of the wor|g
coordinate system, the (first row, last row) pair of each
node is swapped with the (first band, last band) pajr
that node. If the outside RPP did not have an edg,
lying in the x-axis of the world coordinates, then tp,
position vector [ must also be updated to complete th,
operation. This is an advantage over the octree, whicy
must be translated to the origin, rotated, and they
translated back to complete the operation.

‘l(). INTERFERENCE DETECTION

The algorithm for determining whether two objects
represented by octrees have any voxels in common s
well-known"? This algorithm is given in Fig 17,
slightly modified to accommodate a generalized tree
structure. The octrees tested by this algorithm are in
the form described in Section 6. It is assumed that there
is a routine READ which obtains a node of the tree
from the data structure. As before, the number of
accesses to the octree is an indication of the amount of
processing done by the algorithm.

Recall that the octrees of two objects share the same

procedure OCTREES _INT{ X, Y )

// intersect the octree pointed to by X
with the octree pointed to by Y /

iM{X+0)and (Y # 0 ) then
[ call READ( X, RPP_X, CHILD_ X, SIBLING _X, STATUS_X )
call READ( ¥, RPP_Y, CHILD_Y, SIBLING_Y, STATUS Y )
it { STATUS_X = void ) or { STATUS_Y = void } then
OCTREES__INT = OCTREES__INT( SIBLING _X, SIBLING Y }
alse
[ if { STATUS_X = 'ull ) or ( STATUS_Y = full )
then OCTREES _INT = true
else

OCTREES_INT = OCTREES_INT( CHILD _X, CHILD_Y }
it { OCTREES__INT # true ) then

OCTREES_INT = OCTREES_INT( SIBLING _X
’ SIBLING_Y } ]

1
alse
OCTREES _INT = false

return
and OCTREES _INT

Fig. 17. Octrees intersection algorithm.
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gniverse cube. Also, because the tree decomposition is
a regular one, the positions of the eight children of the
universe cube are the same for either object, as are the
ositions of the children ofany octant in the tree. Thus,
at all levels of the octrees of the two objects the node
RPPs exactly correspond, that is, provided both
octrees have nodes down to that level. This means that
no routine is needed to determine if two RPPs
intersect, and that the algorithm need only compare
the flag fields of corresponding octants to determine if
an intersection exists. However, this also means that
the octree must retain both its “empty” and “full”
nodes, and therefore take-up more space.
Unfortunately, the R-trees of two objects do not
share a universe RPP, nor are their nodes guaranteed
to correspond in any uniform manner. This requires
that a child of one R-tree, whose parent node intersects
anode of another R-tree, be compared with each child
node of the other R-tree in order to determine an
intersection. If no intersection is found for this child,
then its sibling must be compared with each child of
the intersecting R-tree node. This process will continue
until each child of the first R-tree has been tested with
every child of the second R-tree, (or until an
intersection is found). Thus, the R-tree algorithm has
worse complexity due to the irregularity of the
decomposition, but it should be remembered that the
major factor determining the speed of processing is the
nature of the two objects and their (non-) intersection.
The algorithm for detecting interference between
two R-trees is given in Fig. 18. As in earlier algorithms,
the subprograms READ and INTERSECTS are
assumed. It is also assumed, for simplicity, that the
array encodings of the R-trees have the same origin. If

procedure RTREES INT{ X, ¥ )
intersect two R-trees poinled to by X and Y
it (X =0 )and (Y = 0) then
[ eall READ( X. RPP X. CHILD X, SIBLING X, FULL_X )
<all READ( Y, RPP ¥, CHILD Y, SIBLING X, FULL_Y )
il INTERSECTS( APP _X, RPP _Y ) then
[ it { FULL X ) and { FULL _Y ) then
RTREES INT = true
else if { FULL X ) then
RTREES INT = RTREES INT( X, CHILD _Y )
else il { FULL Y ) then
RTREES INT = RTREES INT( ¥, CHILD _X }
else
RTREES INT = RTREES _INT( CHILD X, CHILD Y )
!
it { RTREES INT # true } then
RTREES INT = RTREES _INT( X. SIBLING _Y )
if { RATREES INT = true ) then
ATREES INT = RTREES INT{ SIBLING X, Y )
1
olse
RTREES INT = false
return

end RTREES _INT

Fig. 18. R-trees intersection algorithm.
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this was not the case, the RPPs of one tree would have
to be translated before the use of INTERSECTS
function.

The reader should note that if the objects are far
enough apart so that the bounding RPPs at the highest
level of the two R-trees do not intersect, this will be
detected immediately; whereas the octree intersection,
depending on the size of the objects with respect to the
size of the universe cube, may take a considerable
amount of computation. The same is generally true if
two objects overlap greatly. In this case, their inside
RPPs will intersect, resulting again in early detection.
For example, consider the overlay of the 64 x 64 x 64
images of Figs. 12 and 13. The intersection of the
R-trees of these objects, using the RTREES-INT
algorithm, resuited in an intersection being detected
after only four accesses to the data structures. The
octree algorithm, however, required 40 accesses to the
octree data structures.

For the other combinations of objects in Section 6
the following results were obtained. The intersection of
the quadrilateral cylinder of Fig. 13 and the rotated,
cubic shell obtained from Fig. 15 yielded an access
count of four for the R-tree representations, and an
access count of 44 for the octree representations. The
R-tree algorithms perform well in this case due to the
compactness of the R-tree representation for the
quadrilateral cylinder. A less compact R-tree
representation, such as that of the four-sided
polyhedron of Fig. 12, intersected with the cubic shell
results in a poorer performance by the R-tree.
Detection of interference between the polyhedron and
cubic shell required 26 accesses for the R-trees and 82
accesses for the octrees.

From these results it would appear that R-tree
interference detection is faster than octree interference
detection. This is generally true when there is a fair
amount of overlap between the objects, or when the
objects have fairly space-efficient R-tree representa-
tions. However, consider the intersection between the
polyhedron of Fig. 12 and the object of Fig. 19. Here,

(10,40,62)
(35,35,58)

(15,20,60)

(5,30,50)

z
Z
X

Fig. 19. Small polyhedron.
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there is not much overlap between two objects with
rather inefficient R-tree representations. Interference
between these objects was detected by the R-tree
algorithm after 124 accesses to the R-trees, and by the
octree algorithm after 40 accesses to the octrees.

The real deficiency of the R-tree algorithm is the
worst case performance. The octree algorithm will
never require more accesses than twice the number of
nodes in the smaller octree. The R-tree algorithm, on
the other hand, can make several times as many
accesses to the data structures as there are nodes in the
largest R-tree. As an example, the object of Fig. 19 is
shifted slightly to the position shown in Fig. 20, This
shifted object now narrowly misses intersecting the
polyhedron of Fig. 12. The R-tree algorithm deter-
mines that there is no intersection only after 29,630
accesses to the R-trees.

11. CONCLUSION

The comparison between K-trees and R-trees has
shown several interesting things about hierarchic
decompositions. Of particular significance is that
irregular decompositions have position independence
which can be quite useful when objects are non-
stationary. Regular decompositions have no position
independence. Also of importance is that the regularity
of regular decompositions can be exploited to obtain
efficient interference detection and compactly encoded
forms. However, it appears that, if the tree structure is
to be retained, the space required by both K-trees and
R-trees is nearly the same. In fact, for certain shapes,
the irregular decomposition out-performs the regular
decomposition considerably with respect to space
efficiency.

The usefulness of R-trees in applications will depend
greatly on the type of data expected and the type of
operations to be performed. But there are also several
areas where variations on this basic representation
should be explored for feasibility. Among these are the

(7.,40,62)

(12,20,60) (32,35,58)

(2,30,50)

z
L
X

Fig. 20. Shifted small polyhedron.
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possible variations on choosing children onge "
inside box has been determined, and the pott&:ntiamy o
other primitives in a tree decomposition. For exap le
spherical primitives would provide rotationa in.
dependence and fast primitive intersection determjp,
tion.
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