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RESPONSE TO REPLIES

Comments on Performance Characterization Replies

RoOBERT M. HARALICK

University of Washington, Seattle, Washington 98195

There are a few issues for which it is appropriate to
make comment. One is that knowing the performance of
one stage of an algorithm will not permit one to propagate
this performance to the next stage. This point was raised
by Cinque er al., Weng and Huang, and Shirai.

They raise this issue because they do not fully under-
stand the performance characterization position. Shirai’s
reply has the most detailed comments. He gives the exam-
ple of knowing the performance of an edge detector and
relating that to the performance of defect classification,
of which edge detection may be one step. Defects, for
example, may not always correspond to edges and edges
may not always correspond to defects.

Shirai’s question comes to asking how the misdetect
and false alarm characteristics of the defect detector can
be determined from the misdetect and false alarm charac-
teristics of the edge detector. The answer is that it can
be determined in a way exactly analogous to that in which
the performance of the edge detector can be character-
ized. The step after edge detection, whatever it is, has a
performance relative to the random perturbation of the
idealized data that it inputs. Indeed it is the case that the
output of the edge detector is not ideal. But once we
can describe this random perturbation in terms which
are relevant to the next processing step, then everything
regarding performance characterization is analogous to
what happened in characterizing the performance of the
edge detector.

To make this more concrete, suppose, for the sake of
argument, that a surface defect is a small dark area in a
smooth lighter background. This is the idealization. Next
we must state the random perturbation model. The ran-
dom perturbation model describes the density, size, and
brightness of the defects. It can do this with a spatial
Poisson process. For each size and brightness combina-
tion of a defect, a number is chosen from an associated
Poisson distribution. This number is the number of defects
of that kind per unit area with which the surface will be
infected. Then the random population of images becomes
that obtained by infecting surfaces with a uniform distribu-
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tion, planting the chosen random number of defects on
each unit area of the surface. Then some model of texture
needs to be given. There could be one texture for the
background and another texture for the defect. This would
then constitute a model of the population of images to be
processed for defect inspection.

Suppose now that the first operation to be performed
on the images from this population is edge detection.
By whatever edge detector and edge detection algorithm
parameter values are used, the edge detector has a perfor-
mance. There will be some defect edges which are missed
and some defect edges which are detected. There will be
some background edges which are detected. From the
performance characteristics of the edge detector and the
known random perturbation characteristics of the image
model, it will be possible to infer the fraction of misde-
tected edges and the fraction of false alarms. In addition,
it will be possible to infer the edge direction distribution
for each true detected edge relative to its true direction
and the edge direction distribution for each falsely de-
tected edge.

Suppose that the next operation is a spoke filter. Then
utilizing the information from edge direction, it will be
possible to infer for each pixel location for any image the
distribution of counts that the given pixel has coming
from detected edges in some neighborhood around it. In
particular, a distribution of counts due tofalse background
edges for pixels in and around a defect can be determined
and a distribution of counts for pixels in the open back-
ground area can be determined. Similarly, a distribution
of counts due to correct edge detections for pixels in and
around a defect and for pixels in the open background
area can be determined.

Suppose that the final operation is a detection opera-
tion. Suppose that the detection operation is one which
looks for relative maximal counts and declares a defect if
the maximal count is great enough. Now from the distri-
butions of counts of defect and non-defect pixels, it
should be possible to compute the misdetection and false
alarm characteristics of the final defect detection step.



COMMENT

And this characterization will be a parametric character-
ization with parameters consisting of the Poisson density
parameters, the background brightness, the defect bright-
ness and size, and all algorithm turning parameters.
Cinque e al., Weng and Huang, and Draper and Bever-
idge raise a second issue: the issue of realistically model-
ing random perturbations. This issue is important be-
cause if the random perturbation models are not realistic,
then to the degree that they are not realistic, the perfor-
mance characterization will be meaningless. In the way
they raise this issue, however, there is almost an implica-
tion that since whatever perturbation model one might
use is certainly not realistic, there is no point in developing
a performance characterization theory using it. So we
should better spend our time working with heuristically
developed algorithms applied in real data experiments and
not spend any time on performance characterization.
This position has a fundamental flaw which can be seen
by considering that it entails a commitment to developing
algorithms. We understand that a commitment to devel-
oping algorithms means that we want to develop good
algorithms, reliable ones, ones that work in the face of
the real random perturbations to which the data are sub-
ject. Now once an algorithm is stated, there is an implied
class of random perturbations on the input to which the
algorithm is suited. Often this class of random perturba-
tion models can be inferred by a sort of reverse statistical
engineering of the algorithm. So committing to the devel-
opment of an algorithm and then developing the algorithm
implies an unconscious selection of a random perturbation
model for which the algorithm produces good answers.
The point raised by the performance methodology proto-
col is that this selection of a random perturbation model
should not be an unconscious selection. It should be a
conscious selection, for once the selection is in conscious-
ness, then it becomes possible for the rational intellect to
work with it and thereby develop algorithms which are
optimal rather than being heuristic and suboptimal.
There is one more dimension to this issue, which Draper
and Beveridge raise. They say that to make sure that the
perturbation models are realistic they have to be statisti-
cally validated. Indeed that is true. Not only must they
be validated, but the free parameters of the random pertur-
bation model must be estimated. And it is the case that
nothing was mentioned in the initial dialogue about pa-
rameter estimation and validation. So to correct that
omission it must be asserted that the entire performance
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characterization methodology involves parameter esti-
mation and validation of random perturbation models.

This of course puts a different look at the way that we
are called upon to do our research. For it suggests that
one of the first steps is to gather a suitable real data set
and annotate or gound-truth it. And from this data set the
parameters of the perturbation model must be estimated
and then the perturbation model must be statistically vali-
dated. Then having a validated perturbation model, we
should proceed to the design of the algorithm step whose
input data perturbation model we have in hand.

Finally, Shirai makes the comment that it is easy to
evaluate the performance of an existing algorithm in an
existing application, so why all the fuss on performance
characterization. The answer is that it is important for
the machine vision engineer to be able to predict the
performance of a vision algorithm before it is tried on
the factory floor. It is important for the machine vision
engineer to be able to analyze the performance of a ma-
chine vision algorithm step by step to determine where
effort should be put to improve the performance by using
more optimal values of algorithm tuning parameters or a
different algorithm step. It is important for the machine
vision engineer to be able to set the algorithm running
parameters to their optimal values based on the estimated
parameters of the random perturbation model(s) without
an experimental trial and error procedure.

In summary, performance characterization is not only
applicable to low level vision. It is applicable throughout
low level, mid level, and high level. Indeed it is the case
that when it is applied to high level, the kind of control
that high level needs to exert on mid and low level will
become apparent—not as a heuristic, but as what opti-
mally needs to happen. What performance characteriza-
tion does is to take the subjective free play out of computer
vision and to replace it with sound engineering systems
analysis and synthesis. It replaces the fancy buzz words
and buzz techniques with the kind of soundness which
characterizes all the successful areas of engineering. One
must remember here that engineering systems can be quite
complex. Perhaps the most complex engineering system
designed and built and which is in operation is more com-
plex than the most complex computer vision system built
up to today. Perhaps the success in having such a complex
engineering system working is due to each module in it
having a performance characterization which was utilized
in the design analysis and synthesis process.



