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In addition to spectral features, texture is an important spatial feature used in identifying objects or regions of
interest in an image. Although texture is relatively easy for human observers to recognize and describe in
empirical terms, it has been extremely refractory to precise definition and analysis by digital computers. This
papet describes a procedure for extracting some easily computable features for the texture of blocks of digital
image data and illustrates the applications of combined textural (spatial} and spectral features for identifying the
land use categories of blocks of ERTS MSS (Earth Resources Technology Satellite Multi Spectral Scanner) data.

The land use classification algorithm based on textural and spectral features was developed and tested using
614 image blocks of 64 X 64 resolution cells derived from an ERTS image over the Monterrey Bay area of the
California coast line. The algorithm was applied on a training set of 314 blocks and tested on a set of 310 blocks.
The overall accuracy of the classifier was found to be 83.5% on seven land use categories.

I. Introduction

Spectral, textural, and context features are
three fundamental pattern elements used in human
interpretation of imagery data. Spectral features
describe the band-to-band tonal variations in a
multiband image set, whereas textural features
contain information about the spatial distribution
of tonal values within a band. Context features
contain information derived from areas surround-
ing the sub-image region being analyzed. When
small image areas are independently processed by a
machine, only the textural and spectral features
are available to the machine.

In much of the automated procedures for
processsing image data from small areas, such as in
crop classification studies, only the spectral fea-
tures are used for developing a classification algo-
rithm. While the “Per-field” and “sample’’ classifi-
cation schemes do not ignore texture entirely, a
comprehensive set of features for texture have not
been defined and used in automated classification
schemes. Because the areal characteristics of tex.
ture appear to carry valuable information, it is
important to use the textural features in auto-
mated image processing schemes except in applica-
tions where the poor resolution of the imagery
does not provide meaningful textural information.

Earlier image texture studies have employed
autocorrelation functions (Kaizer, 1955), power

spectral (Chavallier et al., 1968) or restricted first-
and second-order markov meshes (Bixby et al,
1967). These had some degree of success, but we
know little more about texture after finding out the
results of these experiments than before because
they did not try to specifically define, characterize,
ormodeltexture, They onlyused some general math-
ematical transformation which assigns numbers to
the transformed image in a non-specific way. (For
an excellent discussion of the pitfalls encountered
in the indiscriminant use of Fourier transform,
including second-order statistical problems, see
Bremerman, 1968).

Darling and Joseph, in 1968, suggested a set of
textural features based on the mean and variance
of the image grey tones, the relative frequencies of
occurrence of each grey level, and the entropies of
the conditional distributions of grey levels in the
horizontal and vertical directions. They classified
different cloud formations and lunar landscapes
using these measures. The main shortcoming of the
features proposed by Darling and Joseph is that
the features have to be computed without per-
forming grey tone normalization of the imagery.
Without grey tone normalization, two images of
the same scene will produce different sets of
textural features due to variations in the grey
tones of the two images produced by variations in
lighting, lens, film developer, and digitizer. Hence
features of two images of the same scene will

© American Elsevier Publishing Company, Inc,, 1974



4

produce a different classification result, which is
undesirable.

Recent attempts to extract textural features
have been limited to developing algorithms for
extracting specific image properties such as coarse-
ness and presence of edges. Many such algorithms
have been developed and tried on special imagery.
*The subjective parameters, such as the selection of
thresholds, associated with the techniques do not
enable them to be generalized to imagery other
than the ones processed by the authors.

Recently, Rosenfeld and his co-investigators
have presented a set of procedures for extracting
textural features for pictorial data. Rosenfeld and
Troy (1970} use a procedure based on the grey-tone
differences of adjacent image elements and the
auto-correlation of the image grey-tone values for
obtaining a measure of the texture “coarseness™.
Later, Rosenfeld and Thurston (1971) described a
procedure for detecting boundaries separating re-
gions which differ in texture coarseness. Texture
measures based on neighborhood operations on the
image grey tones have been proposed by Gerdes
(1970}, and Joseph and Vigilone (1971). Moore,
in his 1971 paper, describes a set of complexity
measures which are related to the image tex-
ture. Procedures for detecting textural proper-
ties such as lines and dots have alse been
suggested by other investigators, see, for ex-
ample, the proceedings of Computer Image
processing and Recognition (1972). Before ap-
plying these procedures to pictures other than
the ones processed by the authors of the re-
spective papers, the investigator has to make a
choice of the method appropriate to the picture
in question as well as the selection of param-
eters for the particular method.

We are presenting in this paper a general
procedure for extracting textural properties of
blocks of image data. These features are calcuy-
lated in the spatial domain and the statistical
nature of texture is taken into account in our
procedure, which is based on the assumption
that the texture information in an image 7 is
contained in the overall or “average” spatial
relationship which the grey tones in the image
have to one another. We compute a set of
spatial grey-tone dependence probability dis-
tribution matrices for a given image block and
suggest a set of 32 textural features which can
be extracted from each of these matrices. These
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features contain information about such image
textural characteristics as homogenity, linear
grey-tone dependencies (linear structure), con-
trast, amount and nature of boundaries present,
and the complexity of the image. It is im-
portant to note that the number of operations
required to compute anyone of these features is
proportional to the number of resolution cells
in the image block. It is for this reason that we
call these features quickly computable.

We also investigate the usefulness of textural
features for categorizing or classifying image
blocks. We developed and tested a land-use
classification algorithm using the spectal and
textural features of 624 image blocks derived
from an ERTS image over the California coast
line. The land-use categories identified consisted
of coastal forest, wood lands, annual grass
lands, water bodies, urban areas, and small and
large irrigated fields. Up to 70% of the image
blocks were identified correctly based on the
textural features alone compared to an accuracy
of 74 to 77% for a scheme based only on the
spectral characteristics of the 4-band MSS image
set. When the combined textural and spectral
features were used as inputs to the classifier, up
to 83.5% of the image blocks were identified
correctly.

II. TEXTURAL FEATURES
Spatial Grey-Tone Dependencé Matrix

LetZ, ={1,2,... NelandL,={1,2,...,
Ny} be the x and y spatial domains and Ly XLy
be the set of resolution-cells. Let G = {1,
2, . .., N;} be the set of possible grey tones.
Then a digital image I is a function which
assigns some grey tone to each and every resolu-
tion cell; F- LyXL,—~G.

An essential component of our conceptual
frame work of texture is a matrix, or more
precisely, four closely related matrices from
which all the features for texture are derived.
These matrices are termed angular grey-tone
spatial dependence matrices.

We assume that the texture information
in an image [ is contained in the overall
or ‘“average” spatial relationship which the
grey tones in image [/ have to one another,
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More specifically, we shall assume that this
texture information is adequately specified by
the matrix of relative frequencies P(i,jd,@)
which two neighboring resolution cells separated
by distance d and having an angular relationship
# occur on the image, one with grey tone { and
the other with grey tone j (see Fig. 1). Such
matrices of spatial grey-tone dependence fre-
quencies are a function of the angular relation-
ship between the neighboring resclution cells as
well as a function of the distance between
them. Formally, for angles quantized to 45°
intervals the unnormalized frequencies are de-
fined by:

P(ijd, 0°) =# {((%, 1),(m,n))
E(Ly X L)X (Ly X L)
k—-m=0,]1 —n|=d,

Ik, ) =i, I(mn)=j}

P(1,j,d 45"y = # {((k, 1), (m,n))
E(Ly X Ly) X (Ly X Ly)
(k—m=d 1 —n=—d)or
(k-m=—d, 1 —n=d),
(K, 1)=1i I(mn)=j}

PG, 7, d, 90°) =# {((k, 1),(m,n)
E(Ly X L) X (Ly X Ly)
k—ml=d,1—n=0,

Ik, 1) =i, I(m,n) =}

P(i.jd, 1357y = # {((k, 1),(m,n))
E(Ly X L)X (Ly X Ly)
(k-m=d,1—n=d)or
(k—m=—-d, | —-n=-d),
(K, 1)=1I(mn)=j},

where the notation # {-} denotes the number of
elements in the set {+}. These spatial grey-tone
dependence matrices can be normalized - by
dividing each entry in the matrix by the total
number of resolution cell pairs used in comput-
ing the entries. Details of the procedure used in
computing the entries in the matrices may be
found in Haralick (1971).

90 degrees
135 degrees ? 45 degrees
6 | 7|8
|
-5 1 ;e + 1 4= 0degrees
l
3
4 13 |2
|
'

FiG. 1. Resolution cells nos. 1 and 5 are the O-degree
(horizontal) nearest neighbors to resolution cell'®’,
resolution cells nos. 2 and 6 are the 135<degree
nearest neighbors, resolution cells 3 and 7 are the
90-degree nearest neighbors, and resolution cells 4 and
8 are the 45-legree nearest neighbors to**'. (Note that
this information is purely spatial and has nothing to
do with grey-tone values.)

Before computing the entries in the P
matrix, it is necessary that the image by quan-
tized. Quantization serves two purposes. First,
in a quantized image AN, will be small and
hence all the entries in the P matrix can be
‘meaningfully computed without using many
more resolution cell pairs than the number
contained in a small subimage. Secondly, quan-
tization provides grey-tone normalization on the
imagery. The data which the sensors or instru-
ments produce are not always in the kind of
normalized form with which it makes sense to
work. For example, many sensors or measuring
instruments produce relative measurements, i.e.,
the measurements are correct up to an additive
or multiplicative constant. Despite calibration
efforts, this is particularly true for the camera-
film-digitizer system which produce the digital
magnetic tape containing the digitized image.
Variations in lighting, lens, film, developer, and
digitizer all combine to produce a grey-tone
value which is an unknown but usually mono-
tonic transformation of the “true” grey-tone
value. Under these conditions we would .cer-
tainly want two images of the same scene, one
image being a grey-tone monotonic transforma-
tion of the other, to produce the same resuits
from the pattern recognition process. It is easy
to show that normalization by equal probability



6

quantizing guarantees that images which are
monotonic transformations of one another pro-
duce the same results. It should be realized that
something is not gained for nothing. The
normalization is achieved by sacrificing the
detailed grey information. After quantizing to
16 levels, for example, an image which orig
inally had 128 grey tones would only have 16
quantized grey tones and if equal probability
quantizing were used, then the histogram of the
quantized image would be uniform. Details of
an algorithm which performs equal probability
quantization may be found in Haralick (1971).

Textural Features

From each of the grey-tone dependency
matrices we extract a set of 32 textural fea-
tures. The equations which define these features
are given in the appendix of this paper. For
illustrative purposes we define three of these
features here:

ZEE (PG
n=3 (),

= e

Ng—-l
.
= 3 (%)f @)
n=0 ' li—fl=n
N, N
N PG
35
= j=1
f3= 020,

where, R is the number of resolution cells
pairs, and u,, py, and o,,X, are the means and
standard deviations of the marginal distribution
P, and Py, obtained by summing the rows and
columns of P(,/)/R. The notation P(i,j) denotes
the (i/)'™™ entry in one of the angular spatial
grey-tone dependence matrices P(i,jd4,8). For
different values of 4 and 8, we get a set of
values for each of the above features.

To explain the significance of these features,
let us consider the values they take on for two
different land-use category images. Figure 2
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shows the digital print-out of two sub-images
from the California frame. The image shown in
2(a) belongs to the grass land category and
image shown in Figure 2(b) is mostly water.
Values of the features f;, f», and f3; are also
shown for these images in Fig. 2.

The angular second moment features (ASM),
f1, is a measure of homogeneity of the image.
In a homogeneous image, such as shown in
2(b), there are very few grey-tone transitions
occurting with high relative frequencies. Hence,
the P matrix for this image will have fewer
entries of large magnitude. For an image like
the one shown in Figure 2(a), the P matrix will
have a large number of small entries and hence
the ASM feature which is the sum of squares
of the entires in the P matrix will be smaller.
A comparison of the ASM values given below
the images in Fig. 2 shows the usefulness of
the ASM feature as a measure of the homogen-
eity of the image.

The contrast feature f, is a difference mo-
ment of the P matrix and is a measure of the
contrast or the average amount of local varia-
tions in the image. Since there is a large
amount of local variations in the image 2(a)
compared to the image shown in 2(b), the
contrast feature for the grassland image has
consistently higher values compared to the
water body image,

The correlation feature, f3, i3 a measure of
linear grey-tone dependencies in the image. For
both the images shown in Fig. 2, the correla-
tion feature is somewhat higher in the horizon-
tal (0°) direction, along the line of scan. The
water body image consists mostly of a constant
greytone vailue for the water plus some additive
noise. Since the noise is mostly uncorrelated,
the correlation feature for the water body
image have lower values compared to the grass-
land image. Also, the grassland image has a
considerable amount of linear structure along
45° lines across the image, and hence the value
of the correlation feature is higher along this
direction compared to the values for 90° and
135° directions.

The various features which we suggest are all
functions of distance and angle. The angular
dependencies present a special problem. Suppose
image A has features a,b,c,d for angles 0°, 45°,
90°, and 135° and image B is identical to
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A except that B is rotated 90° with respect to A,
Then B will have features ¢,d,a,b, for angles 0°, 45°,
90°, and 135°, respectively. Since the texture of
A is the same as the texture of B, any decision
rule using the angular features ab,c.d must
produce the same results for ¢,d,ab or for that
matter b,c,da (45° rotation) and dab,c (135°
rotation). To guarantee this, we do not use the
angularly dependent features directly. Instead,
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90°  .0077 4.014 .5987
135°  .0064 4.709 4610

Avg. .0087 3.945 6259

we use two functions of ab,c,d, their average,
and their range which are invariant under rota-
tion. The textural features used in our classifi-
cation study were computed for four angles and
for a distance of one.

III. Spectral Features

The spectral features used in our study con-
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FIG. 2. Textural features for two different land use category images.
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sisted of the mean and variance of the greytone
values within each image block. These features
were computed for each of the four MSS
bands, thus yielding a set of 8 spectral features
for each image block. The mean .and variance
of the spectral data have been used extensively
in the past for crop classification studies based
on MSS data.

IV. Land Use Classification Studies

Data Set

All of the data used in our present study
were derived from parts of the ERTS- image
frame 1002-18134. The date of the flight was
July 25, 1972, and the center coordinates of
the frame were 37.291N, 120.935W. The area
of coverage includes segments of Qakland, San
Jose Urban area, and the Monterray Bay on the
coast line of California. Of the four image
strips in this frame, all of strip one and one-
half of strip three were digitally processed. The
second MSS band (MSS-5) image and the area
processed are shown in Fig. 3.

-As a first step in the digital processing, the
image area processed was divided into a total
648 sub-images of size 64 X 64 resolution cells
{each sub-image covering a ground area of 7.5
square miles). For each of the sub-images, the
digital spectral data from the second MSS band
(MSS-5) were extracted. The imagery data for
each sub-image was then normalized using an
equal probability quantizing algorithm, and the
32 textural features for each sub-image were
then computed. The spectral features for each
image block were computed using the digital
data from all four sensor bands.

Ground truth for each of the sub-images
were obtained with the help of photointer-
preters working on the MSS images and the
color composite image. A total of seven land
use categories could be identified reasonably
well on the image, and for 624 of the 648
sub-image blocks we could determine a distinct
land-use category. The set of 7 land.use cate-
gories used in our study consist of the fol-
lowing.

Categories of Land Use
(1) Coastal Forest: This area can be typified
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as a dense temperate rainforest sited on the
windward side of the Coast Ranges of Califor-
nia. It is composed of needleieaf and broadleaf
evergreen trees which generally form a contin-
UQuS COVer.

(2) Woodlands: These are areas to the lee-
ward side of the Coast Ranges. At higher
elevations, these woodlands consist of oaks,
mostly evergreen, with varying but less contin-
ucus cover. At lower elevations these oak
woods grade into chapparal which provides
decreasing cover with decreasing elevation until
it gives way to annual grassiands.

(3) Annual Grasstands: This is an area of
non-native annual grasses which have already
completed their life cycle by the end of July
(turned brown). This area is primarily, like the
preceding two categories, quite mountainous.
This is also the natural vegetation which would
be found in the Great Valley of California
except for anthropogenic vegetation.

(4) Urban: Centers of human activity are
extremely important as a landscape component
within this frame. The primary urban agglom-
erations within the frame are segments of Oak-
land, San Jose urban area, and parts of the
Sacramento-Stockton urban areas. -Unlike the
preceding categories, one of the main features
of urban areas is non-uniformity. A variety of
textural patterns as well as a variety of tones,
are associated with urban complexes.

(5} Large Trrigated Fields: for practical pur-
poses all field agriculture in the Great Valley is
based on irrigation. The areas assigned to this
category would most likely contain field crops
such as cotton, alfalfa, and other crops readily
adaptable to high mechanization. Most of the
tree crops and vineyards would also be in this
category.

(6) Small Irrigated Fields: These areas would
contain high value low mechanization crops
typified by vegetables.

(7) Water: Although almost self-explanatory
as a term, the category in this instance is used
to include: {a) ocean, (b) lakes — natural and
man-made, and (¢} standing water (in fields and
on flood plains).

Out of the 648 sub-images in the frame, the
photointerpreters helped us to find a distinct
land use ground truth category for a total of
624 sub-images. Due to cloud cover and other
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ambiguities the ground truth for 24 sub-images the spectral and textural features of a sub-image
could not be positively identified. block, comes from an image block whose land
use category 8 is known. 8 is one of the R
land use categories (R = 7, in our study) ¢,
Classification Algorithm - €2, ... Cp. Based on the set of learning
The problem of developing an algorithm for observations, we want to develop an algorithm
identifying the land use categories of subimage for identifying the land use category of a
blocks from an ERTS MSS image set can be sub-image block based on the measurement
stated as follows. A set of N measurement pairs (Pattern) vector X it produces.
(X, ), (X2,6%), ... (Xn,0Y) are given as In a widely used algorithm (Fukunaga 1972),
learning observations. A vector measurement Fu and Mendel (1972), Miesel (1972}, the pat-
(pattern) X; where the components of X; are tern space is partitioned into a number of

FIC 3. Two strips whose boundaries are shown on the top were processed from this ERTS MSS image set
(1002-18134).
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regions using a set of hyperplanes (decision
boundaries) whose locations are determined by
the sample patterns. Each region is dominated
by sample patterns of a particular category.
When a new pattern is presented for identifica-
tion, it is assigned a category depending on the
region in which it belongs. If the new pattern
X is located in a region dominated by sample
patterns of category c¢;, then X is classified as
coming from category c;.

For the multicategory probilem involving Np
categories, a total of Np(Np - 1)/2 hyper-
planes are used to partition the pattern space.
These hyperplanes are defined by a set of
weight vectors Wy(i = 1,2, ..., Ng,j = 1,2
.+., Ng >} which separates the sample pat-
terns belonging to the #*" and j'" categories. A
least-square algorithm given in Fukunaga (1972),
(chapter 4, pp 100-101) was used to obtain the
weight vectors. After the location of the hyper-
planes are determined, the classification of new
patterns is done as follows. For each category
¢;, the number of hyperplanes, V;, which gives
a positive response when the new pattern X is
presented are determined using

WE zl + Wiz

R @
j'-!f-'!'
1= ], 2, . ’NR

where Z is the augmented pattern vector ob-
tained by adding a component of value 1 to X,
ie.,

4

X is assigned to category ¢ if Vy = max{V;}.1If
there is a tie between categories ¢, and c,,
then X is assigned to c,, if WL,Z < 0 or to Cn
if WL,Z > 0. This classification algorithm has
the invariance property that scale factor changes
(transformation of the pattern space using a
diagonal transformation matrix) do not affect
the results of classification. Several modifica-
tions of the linear discriminant function method
and a multitude of other classification proce-
dures may be found in the references cited.
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Land-Use Classification Experiments

The textural and spectral feature vectors for
each of the 624 sub-images were randomly
divided into training and test sets. The classifi-
cation algorithm was developed using the infor-
mation contained in the training set and the
samples in the test set were assigned to one of
the seven possible land use categories. The
accuracy of classification was obtained by com-
paring the category assigned by the classifier
with the known ground truth category. The
standard deviation, ¢, associated with the esti-
mate of the accuracy of a classifier based on
the classification of N test samples is given by

)
““\/__}V_’

where € is the true classification accuracy.

Experiment No. 1: In this experiment, a
land use classification scheme was developed
using the 32 textural features of the sub-images
on MSS.5 band. Fifty per cent of the samples
were arbitrarily selected and used for developing
the classification algorithm and the algorithm
was tested on the remaining samples. Thers
were seven land use categories and the overall
identification accuracy of the classifier on the
test samples was 67.5%. With 70% of the
samples used for training, the accuracy of the
classifier was 70.5%.

Experiment No. 2: In this experiment, the
classification algorithm was developed and
tested using the 8 spectral features. With 50%
of the samples in the test set (N = 310), the
accuracy of the classifier was 77% on the test
set and with about 30% of the samples in the
test set (N = 190), the accuracy of the classi-
fier was 74%. It may be somewhat surprising to
see the accuracy of the classifier decrease as the
number of training samples is increased. This is
mainly due to the randomness of the estimators
of the classifier accuracy. The standard devia-
tion of the estimator can be obtained from
equation (5) as 2.45% for N = 310, and 3.15%
for N = 190, if the true value of the classifier
accuracy is assumed to be 75%.

Experiment No. 3: Eight textural features
(consisting of the mean and range of features

(5)
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TABLE 1 .
Contingency Table for Land Use Classification of Satellite Imagery. Number of Training Samples = 314. Number of Test
Samples = 310. Accuracy of Classification on Training Set = 84.0%. Accuracy of Classification on Test Set = 83.5%

ASSIGNED CATEGORY
TRUE Coastal Woodlands Annual Urban  Large Small Watet Total
CATEGORY  forest grasslands  area irrigated irrigated

fields fields

Coastal 23 1 2 0 0 0 1 27
Forest
Woodlands 0 17 10 0 1 0 0 28
Annual 1 3 109 1 1 0 0 115
Grasslands
Urban area 0 3 10 13 0] 0 0 26
Large 1 2 6 0 37 2 0 48
Irrigated Fields
Small 0 0] 4 0 3 24 0 31
Irrigated Fields
Water 0 0 0 0 a 0 35 35
Total 25 26 141 14 42 26 36 310

fi. f2. fa and fg) were combined with eight
spectral features and the algorithm developed
and tested using the combined features. The
overall accuracy of the land-use classification
algorithm was 83.5% for test set sizes of 30%
and 50%. The contingency table for the classifi-
cation is shown ifi Table 1. The results of this
experiment show that an improvement in the
classification accuracy can be obtained by using
a combination of spectral and spatial features.

V. Discussion

The use of spectral, spatial (textural), and
contextual features in combination has been
discussed in numerous situations by various
investigators. However, this type of classification
using the combined features has not been pur-
sued sufficiently in the past. We have presented
an approach to bring together spectral and
spatial processing of remotely sensed image
data. The results of our study shows the useful-
ness of using both spectral and textural charac-
teristics of ERTS MSS data for developing
classification procedures. The textural features
we have developed had been used in a variety
of other image classification tasks including land

use classification from aerial photographs (Hara-
lick, Shanmugam and Dinstein, 1972), classifica-
tion of photomicrographs of sand stones (Hara-
lick and Shanmugam, 1972), and the classifica-
tion of chest radiographs (Krueger et al, 1972).

The 83.5% accuracy we have achieved on
automatic land-use mapping may be less than
the accuracy achievable by human interpreters.
The difference in accuracy between the auto-
mated procedure and human interpreters can be
attributed to the lack of contextual features as
inputs to the automated classifier, since image
interpreters rely heavily on contextual features,
in addition to the spectral and textural features
of the imzge. Further research is needed to
develop a combination of spectral, textural, and
contextual features for the automatic classifier.

The authors would like to thank NASA for
providing the financial support for this study
under Contract No. NAS5-21822 to the Remote
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APPENDIX A: Textural Features

We suggest a set of 32 textural features
which can be extracted from each of the spatial
greytone dependance matrices. The following
equations define these features:

Notation
p(ij) — G entry in a normalized spatial
grey-tone dependence
matrix. (p(.D)

=PGi) 22 20 PG
L

i*™™ entry in the marginal probability
matrix obtained by summing the
rows of p(i,f).

Ng

(px(@)= Y, PG

i=1

px(i}) —

2
py(i) = Z:, pif)

Ng = number of distinct grey levels in the
quantized image.
Ng Ng
Pay(®)= 25 20 pGjRk=2,
=1 =1
tj=k !
3,... 2N,
: Mg Ng
px—y(k) = E E p(’:_f); k = 0:
lisjimk T
L. Ng—1.
Ng Ne
z and E denote Z and Z
i j i=1 j=1
respectively.,
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Textural Features
{1.) Angular second moment:

fi= 22 PEHY.
i

(2) Contg{ast:

e &

fr= ) n’} > )

n=0 ‘|~.'=.|1 j=1 s
i-jl=n

(3.) Correlation:
23 iR — ity

i i
3= ,

0,0,

where i, y,, 05, and 0, are the means and
standard deviations of p, and p,.

{4.) Sum of squares: Viriance
fo= ‘;‘: 22 (- mlpGi).
(5.) Product m:ament: Covariance
= 20 22 G-m)G-mpG.
(6. [nvers; Di]fference Moment:

ﬂ—EZ

1+ (l
(7.) leference Moment:

f1= 23 G- pG).

~ )2 p(if).

(8.) Sum Average:
2N,
fo=2 ipxeyd).
=2
{9.) Sum Variance:
2N,
fo “—".E G~ 1) px+y(0)-
=2
(10.) Sum Entropy:
A
fro=— E px+y(‘f)log ‘Ux+y(i)}‘
=2

{11.) Entropy:
fi== 222 pGilog pGi).
i

i
{(12.) Difference Variance:

12 = variance of p,_,,

13

(13.) Difference Entropy:
Nyt
fis=— ):; Py Vog{Px_y (i)}
= .
(14, 15.) Information measures of Correlation:
_ HXY — HXY1
fu= max {(HX,HY }

fls :\/l_exp ['—Z.O(HXY2 — HXY)] s

where
HXY=— 2.3 p(ogp(if)
i i
HX, HY = entropies of p, and p,,
HXY1=— 23 plijlogp«(ip, ()}
i

HXY?2
=— 3 3 px(OpyNog (D 1.
i j

(16.) Maximal Correlation Coefficient:

fis= \/ Second largest eigen value of Q

where

0G.j) = z E’_(’_"EM .
d k Px(i)Py(k)
These measures of correlation have some desir-
able properties which are not brought out in
the rectangular correlation measure f3. For de-
tails, see references Linfoot {1957) and Bell
(1962).

In the set of 16 measures we have defined
above, some of the measures are strongly cor-
related with each other. A feature selection
procedure selection procedure may be applied
to select a subset or linear combinations of the
above 16 measures. Referring to equation (1) in
the text, for a given distance d we have 4
angular spatial grey-tone dependency matrices.
Hence we obtain a set of 4 values for each of
the above 16 measures. The mean and range of
each of these 16 measures, averaged over the 4
values, comprise the set of 32 features which
are used as inputs to the classifier.



