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Oblique illumination of irregular topography generates a pattern
of highlighting and shadow, as the solar beam directly illuminates
those slopes that face the sun while those on opposite sides of
ridgelines are shadowed. On remotely sensed images these patterns
appear as alternating dark and bright regions that reveal approxi-
mate positions of ridges and valleys. Knowledge of scene-specific
variables (such as sun angle and elevation), general knowledge of
geomorphology, atmospheric scattering, and spectral characteristics
of landscapes permits reconstruction of the topography from its
manifestation on the image.

Raw image data record combined effects of topography, atmo-
sphere, and diverse spectral reflections of surface materials. Qur
interpretation procedure isolates these several effects. From varied
brightnesses caused by direct and indirect illumination, positions of
ridges and valleys can be approximated. From variations in material
reflectance, large rivers (channels with large areas of open water)
can be detected. Finally, relative elevations can be estimated from
analysis of drainage and ridge patterns using a strategy of “elevation
growing” that assigns increasing elevation values to pixels as they
are positioned at greater distances from rivers or other valley pixels
already assigned elevations.

From the estimated topographic elevations, it is possible to
derive a network of drainage channels. Each stream segment in this
network is labeled with information pertaining to its length, junc-
tion with other segments, direction of flow, and other propertics.
We then examine this network to detect logical inconsistencies in
the labeling of stream segments, then apply a procedure that
identifies the optimal labeling to yield the smallest error within the
network.

INTRODUCTION

Information describing the drainage pattern of a region
can be derived by interpretation of multispectral data, and
application of relational reasoning to resolve inconsisten-
cies in initial approximations of the network. The result is
an automated interpretation of a drainage network using a
minimum of scene-specific prior information, and a mini-
mum of interaction with the analyst.
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Our method permits inference of elevation and drainage
from a Landsat scene of mountainous terrain. To a first-order
effect, the cause of the intensity value at any pixel is due to
topographic orientation of the terrain. Topographic slopes
facing the solar beam, are directly illuminated; there are
additional effects due to the angle at which the sun il-
luminates this ground patch, and the reflectance of the
surface material on the ground patch. To make sense of
spatial patterns of image brightness values requires sep-
aration of these several cffects. For this purpose, we use a
clustering technique on ratio images to define homoge-
neous reflectance classes and then to perform a subcluster-
ing on these classes to separate directly lit from indirectly lit
pixels. This subclustering creates a shadow image. Then we
modify the Eliason, Soderblom, and Chavez [5] technique to
create two images from the one Landsat image [3]. The first
image is a "reflectance” image; the second is a topographic
modulation image portraying information related to surface
slope and sun illumination.

From this estimate of the topography, it is possible to
trace valleys, and therefore to derive a network of the
drainage system. Because the organization of the drainage
network follows a consistent logic it is possible to detect
errors in the original estimation of elevations and drainage
channels. Therefore, the final step in our interpretation is
an examination of the lengths of stream segments, and the
angles at which they join, to estimate the direction of flow
within the drainage network. We complete this process by
assigning labels to all stream segments, to identify the
positions of stream segments within the drainage hierarchy.
If errors are present, then the assigned labels violate the
known logic of a drainage system. By using a procedure
known as “forward checking” it is possible to examine the
impact of a specific error upon the entire system, and
therefore to select the set of labels that produce minimum
error throughout the network.

Knowledge of solar azimuth and the shadow image con-
stitute sufficient information for identification of ridges and
valleys. With the valleys identified, each valley pixel may be
assigned a relative elevation value that increases as distance
from the mouth of the valley increases. Ridges must be
assigned elevations higher than their neighboring valleys
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Fig. 1. Original Landsat subscene. (a) Band 1. (b) Band 2. (¢) Band 3. (d) Band .

such that elevations of crest decrease along the path from a
peak to the saddle point where the ridge crosses a valley. In
order to do this, local slopes must be known. Some esti-
mated local slopes are assigned initially to generate the first
version of elevation model. Then the topographic modula-
tion image can be used to calculate more accurate local
slopes to improve the elevation values [22]..

STUDY AREA

This research examines an area in southeastern West
Virginia (Fig. 1). This region is a portion of the Appalachian
Plateau physiographic province, within the “unglaciated
Allegheny plateau” described by Thornbury [18]. In general,
this region is a thoroughly dissected plateau-like surface. It
receives about 1 m of precipitation each year and, as de-
picted on topographic maps, has a moderate drainage net-
work density. Drainage is through tributaries of the New
(Kanawha) River, which flows west into the Ohio River
drainage system.

Overall drainage within this region consists of a relatively
large sinuous channel (the Gauley River) superimposed
over the finer texture of a dentritic pattern formed by
smaller streams. A number of small rivers flow directly into
the large channel. Thus the overall pattern is composed of a
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mixture of numerous very small stream segments, many
with very steep gradients, a prominent major channel with
a relatively low gradient, and relatively few stream seg-
ments of intermediate length and gradient.

Throughout the area, flood plains (when present) are
narrow and tend to closely follow the course of the stream
channel. Valleys are narrow, with steep sides; the Gauley
River, for example, follows a valley that is typically 150 m
deep but only 100 m wide. Uplands often consist only of
ridge crests; although plateau-like upland regions are pres-
ent, they are not continuous or extensive. The area is
forested with a dense cover of deciduous trees (Kuchler’s
“mixed mesophytic forest” [11]). Cleared areas for agricul-
ture (chiefly pasture) tend to follow the valleys of inter-
mediate-sized streams. Settlements are small and dispersed,
usually positioned in valleys.

This region appears on the Charleston, West
Virginia/Ohio USGS 1:250000 quadrangle (NJ 17-5). Our
investigations include areas in Nicholas County, W VA and
neighboring counties. This area was imaged by the Landsat-1
MSS on April 13, 1976 (scene id: 5360-14502; path 18, row
34). For our study we have subset the original Landsat scene
to produce a smaller image of 257 pixels on a side (Fig. 1).
The date of the image reflects important qualities of the
scene. First, at this date, the atmosphere was quite
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clear—there is no evidence of severe atmospheric (Mie)
scattering or degradation of the data. Also, at this spring
date most of the forested areas are without leaves, espe-
cially at higher elevations. Lower elevations have a cover of
newly emerged leaves and grasses. Within a few weeks
leaves will have emerged in vegetation throughout the
entire region, but at this time in April, there is a sharp
spectral contrast between the vegetation cover of the higher
elevations (which is without foliage) and that of some of
the valleys (which includes areas covered by dense vegeta-
tive cover). This contrast is especially sharp in bands 3
and 4.

THE PROBLEM OF MIXED INFORMATION

Four kinds of information are mixed in Landsat imagery:
surface reflectance, topography, diffuse light, and haze.
Assuming the ground surface is flat, vegetated areas have
high reflectance for some spectral regions and appear as
bright areas to the Landsat sensor. On the other hand, areas
of open water have low reflectance, so they appear as dark
areas to the Landsat sensor. Topography manifests itself as a
pattern of alternating directly illuminated and shadowed
slopes caused by highlighting of stopes facing the solar
beam, and shadowing of those facing away from the sun.
However, graytones for image pixels corresponding to
shadowed locations are not zero because of diffuse light
caused by atmospheric scattering within shadows. Finally,
when light is reflected from the ground back to the sensor,
there is additive brightness due to scattering by atmo-
spheric haze. The difficulty of interpreting Landsat scenes
of mountainous areas is due to the mixing of topographic
and reflectance data. To separate these individual compo-
nents we need to consider an illumination model.

Separating the Information

The basic data model for a Lambertian surface illumi-
nated by a point source is

G(x,y) = r(x,y)1cosb(x,y) (1)

@ brightness value of a pixel within the image,
x,y pixel coordinates,

r surface reflectance,
/ the illumination flux from the sun,
4 the angle between sun incidence direction and

surface normal (Fig. 2).

Adding band number, diffuse light, and haze into this

Ny

/1\

Fig. 2. 0 is the angle between sun incidence and surface
normal.
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model, one has the general model for Landsat data as
follows:
1) For directly illuminated pixels

G(x,y,b) =r(x,y b)I(b) cosf(x,y)
+r(x,y,b)D(b) + H(b). (2)
2) For shadowed pixels
G(x,y.b) = r(x,y,b) D(b) + H(b)
where

b the spectral band number,
D diffuse light,
H the effect of scattering due to atmospheric haze.

Because haze is an additive constant independent of
pixel locations, we use the Switzer, Kowalik, and Lyon [17]
technique for haze removal. The haze corrected image
G — His defined as G'.

After haze is removed, it can be seen that resolution of
the remaining components amounts to extracting diffuse
light Df containing the information of r(x,y b)D(b),
reflectance data R which contain the information of
(x,y, b)I(b), and topographic modulation data Tp which
contain the information of cos 8(x, y).

1) For directly illuminated pixels

G'(x,y.b) = R(x,y,b)Tp(x,y) + Df(x,y,b). (3)
?2) For shadowed pixels

G'(x,y.b) = Di(x,y,b).

To unravel these two sources of brightness, it is first
necessary to determine those pixels which are directly il-
luminated and those pixels which are in shadow. Once this
is accomplished the unraveling can begin. For example, for
the diffuse light image, shadowed pixels take their value as
the dehazed data value. Directly illuminated pixels assume
brightness equal to the average dehazed value taken over
all shadowed pixels determined to have similar spectral
properties (as described below).

To separate the shadow pixels from the directly lit pixels,
we seek to transform the images in a way in which the only
effect is reflectance. Then within groups of pixels with
similar reflectance, we can separate the bright appearing
ones from the dark appearing ones. This two-step tech-
nique is more accurate than a simple thresholding tech-
nique [21].

One way to transform the data so that the only remaining
effect is reflectance is to take ratios of one band to another.
The ratio image has been widely used by remote sensing
researchers to subdue surface topographic effects [5], [20].
From (2), the ratio image of two bands with band numbers
B and b2 for directly illuminated pixels after haze is re-
moved is

G'(x,y, b)) _ r(x,y, D) (1) cos8(x,y) + D(B1)]
G'(x,y, b2) r(x,y, b2)[1(b2) cosf(x,y) + D(b2)]

Spectral transmission functions for radiation passing through
clouds are certainly different than thase for a clear atmo-
sphere. However, to a first approximation we assume these
two functions to be proportional and therefore

(1) = al( b2)
D(b1) = aD(b2)
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then

G'(x,yb) _ r(x,y, b1)a[ 1(b2) cos B(x,y) + D(b2)]
G'(x,y,b2) r(x,y, b2)[ /(b2) cos8( x,y) + D(b2)]
r(x,y, b)
O Gl e Y 4
4 r(x,y, b2) (4)
Similarly, the ratio image for shadowed pixels is
G'(x,y. b) =ar(x,y,l:ﬂ)' (5)
G'(x,y,b2)  r(x,y.b2)

Thus whether shadowed or directly illuminated, the ratio
image is independent of cos@. Three independent ratio
images taken from the 4-band imagery in Fig. 1 are shown
in Fig. 3. It can be clearly seen that the effects of shadows
have been removed.

Clustering

We assume that materials which are the same have the
same spectral response. Materials which are different have a
different hue. Because the three ratio images depend upon
material reflectance only, regions of the same material
reflectance can be identified by grouping together pixels of
similar spectral characteristics. Because we desire to con-

duct the analysis using a minimum of prior information,

unsupervised classification is favored over the supervised

approach, which would require detailed knowledge of the
number, identity, and characteristics of groups. Unsuper-
vised classification permits identification of the natural
structure of the image with a minimum of prior informa-
tion.

In the noisy ratio images of Fig. 3, there are three major
clusters: open water, vegetated regions, and nonvegetated
areas. The size of the water area is much smaller than that
of the other two. For this reason, the mode approach which
uses a fixed threshold to get cluster centers does not work.
AMOEBA [2] works better, but fails to obtain unbroken river
segments, It was found that ISODATA [4], [12] modified in
such a way that class sizes are also considered works best
for our purpose (Fig. 4).

Once the material clusters are defined on the basis of
the ratio images, one can find directly illuminated and
shadowed pixels and define a binary shadow image (Fig. 5).
To do this, we collect together all dehazed 4-band pixel
values belonging to a single material cluster and subcluster
these 4-tuples into dark and bright subcluster classes. The
next few paragraphs describe this in detail.

If one overlays the material cluster image Mc over any
band of the dehazed image, one can see, within each
material cluster, some pixels are bright and the others are
dark. These differences are due to variations in topography;
the bright pixels are directly illuminated pixels, and the dark
pixels are in shadow. To separate the shadow pixels from

(b)
Fig. 3. Ratio images. (a) Band 2/band 1. (b) Band 3/band 2. (¢) Band 4/band 3.
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Fig. 5. Binary shadow image.

the directly lit pixels, for each material cluster ¢1, one
performs a subclustering on dehazed pixel values in the set

{G'(x.y.b)Mc(x,y) = c1}

which is the set of all dehazed values for pixels whose
material cluster index is ¢1. This subclustering on cluster ¢
separates the directly illuminated pixels CO(c1) from the
indirectly illuminated pixels C1(c1)

CO(c1) = {(x.,y)|( x,y) is directly illuminated

on the basis of the subclustering}
Cl( 1) = {(x.y)|( x,y) is indirectly illuminated

on the basis of the subclustering} .

The subclustering that produces CO and C1 uses only the
basic ISODATA program. In this case, the initial class mean
for C1 includes all the minimum graytones for four bands,
and the initial mean for CO includes all the maximum
graytones for four bands.

A shadow image Sw can be defined as

SwiXxy — {0, 1}
Swi(x,y) =0, if(x,y) e CO(Mc(x,y))
1,  if(x,y) € C(Mc(x,y)). ()
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The shadow image for Fig. 1 is shown as Fig. 5. The
correspondence between this image and the topographic
map is quite good. Now that directly lit and shadowed
pixels have been identified, it is possible to use the de-
hazed image to find the diffuse light image Df, the reflec-
tance image R, and the topographic modulation image Tp.

Diffuse Light Data, Reflectance Data, and Topographic
Modulation Data

From (3), shadowed pixels contain only the information
of diffuse light, but directly illuminated pixels contain the
information of both diffuse light and direct sun illumina-
tion. By the method of clustering, each pixel in the image
belongs to a material cluster. Each material cluster has a
bright and a dark subcluster. For pixels in the dark subclus-
ter, one can simply use their dehazed values as their values
in the diffuse light image Df. On the other hand, for pixels
in the bright subcluster, one can define their value in the
diffuse light image to be the average value of all the pixels
from the dark subcluster associated with the material clus-
ter to which these pixels belong. With this definition, the
diffuse light image Df is as follows:

1) For directly illuminated pixels

Df(x,y,b) = y
(u,VIECI(cT)
cT=Mc(x,y)

G'(u,v,b)
#C1(c1)

where, for a set 5, #5 means the size of this set.
2) For shadowed pixels

Df(x.v, by = G'(x,y,b).
If there are no variations in reflectance for pixels from the

same material, we have

Assumption 1: r(x,y, b) is a constant r'(c1,b) for all
pixels (x,v) in C(c1), where ¢1 = Mc(x, y).

Under this assumption, for directly illuminated pixels
k|

(u,v)EZCI(r]) #C1(c1)
r'(c1,b)D(b). (7)
From (2), (7)., and Assumption 1, G’ — Df is

1) For directly illuminated pixels

G'(x,y,b) — Df(x,y,b)
r(x,y,b)I(b)cosb(x,y) + r(x,y, b) D(b)
—r'(c1,b)D(b) (¢c1 = Mc(x,y))
r(x,y,b)I{(b)cost(x,y).
2) For shadowed pixels,
G'x,y, ) ~ DFCx, v 0) =0. (8)

The Df image for Fig. 1 is shown in Fig. 6; these show the
diffuse light components original image, as isolated from
the other effects that contribute to observed brightness in
Fig. 1.

An initial or raw estimated reflectance image R’ can be
calculated by assigning each pixel’s value to be the average
G’ — Df value of all the pixels from the bright subcluster
associated with the material cluster to which the pixel
belongs.

Df(x,y,b)

r'(c1.b)D(b)

It

It
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Fig. 6. Diffuse light images that show the brightness of diffuse light in each band, as
separated from other components. (a) Band 1. (b) Band 2. (¢) Band 3. (d) Band 4.

G'(u,v,b) — Df(u,v,b)

R (X, Y, b) = (u,y)EECO(c'I) #CO( C1)
cl1=Mc(x,y)
_ 5 r(u, v, b)Y I(b) cos8{u,v)
- (u,v)eC0{(c1) #CO( C")
cos A u, v)

=r'(c1,b)I(b) >

(u, V)€ CO(c) #CO(c1)

Define

cosf(u, v)
Xc(c) = ™ — "
(4, v) & CO(CT) #C0( c1)

where Xc(c1) is the spatial average of cos £ for pixels in the
bright subcluster. Then

R'(x,y,b) =r"(c1,b)I(b) Xc(cT). (9)

We use the raw estimated reflectance images to produce
raw estimates of the topographic modulation image. By (3),
(8), and (9), the raw estimated topographic modulation
image Tp’ for band b is as follows:

HARALICK et al: INFERENCE OF ELEVATION AND DRAINAGE MODELS

1) For directly illuminated pixels
GC’(x,y,b) — Df(x,y,b)
R'(x,y,b)
_ r(x,y, b)I(b) cosb{ x,y)
r’(ct,b)I(b) Xc(c1)

(c1 = Mc(x,y))

Tp'(x,y,b) =

cosb(x,y)
Xe(c1)

2) For shadowed pixels
Tp'(x,y,b) =0. (10)

We use the following assumption to convert the raw
topographic images to our final estimated topographic
modulation image.

Assumption 2: Xc(c1) is the same for all material clusters,
1< ¢l < Nc.

With this assumption, the principal component image
generated from Tp' corresponding to the largest eigenvalue
becomes our final single-band estimated Tp image.
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At this point, we have a four-band image Tp each band
of which is an estimate of cosé (x,y). The first principal
component of this four-band image provides an estimate
which is close to the minimum variance estimate of Tp.

1) For directly illuminated pixels

Tp(x,y) = kcosb(x,y), for a constant k. (11)

2) For shadowed pixels

To(x,y) = 0.

Having the topographic modulation image, the final esti-
mated reflectance image is easily computed using (3).
1) For directly illuminated pixels

Gilxpb)— OFx. 1nB)
Tp(x.y)

_ r(x,y,b)I(b)cos8(x,y)

kcos@(x,y)

=T(X,y,f)’(b)' (12)

2) For shadowed pixels

R(x,y, b) =

¥ ~ R(u,v,b)

R(x.y.b) = #00(c1)

(u,v)eC(ely
cl=Mc(x,y)

r(u,v,b)

(u,v)E CO(c ) #C0(c1)

The Tp image is shown in Fig. 7, and the R image is
shown in Fig. 8.

ELEVATION ESTIMATION

Identification of Ridges and Valleys

In the last section, the problem of confounded data is
handled in such a way that the material information is
contained in the reflectance image and the diffuse light
image. The topographic information is contained in the

Fig. 7. Topographic modulation image.

Fig. 8. Reflectance image. (a) Band 1. (b) Band 2. (¢) Band 3. (d) Band 4.
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shadow image and the topographic modulation image. In
this section, we will show how to detect ridge segments
and valley segments from the shadow image. In the next
section, we will perform an elevation growing to obtain
initial raw estimates of elevations for all pixels on the basis
of these ridge and valley segments.

Sides of hillsides facing the sun must be directly lit. Sides
of hillsides facing away from the sun must be indirectly lit.
A directly to indirectly lit transition in a direction moving
away from the sun is a ridge. An indirectly to directly lit
transition in a direction moving away from the sun is a
valley. Thus valleys and ridges exist on the borders between
shadowed and directly lit areas. To find these areas we use
the binary shadow image. First, a connected components
operation determines regions on the shadow image. Then
small, noisy regions are eliminated.

Next, the perimeters of these bright and shadowed re-
gions are segmented into border segments according to
their left regions, right regions, and orientations. A border
segment is a maximally long sequence of connected pixels
which are on the border between two given regions. Be-
cause the detection of ridges and valleys is highly orienta-
tion-dependent and the sun illumination comes fram the
east in Fig. 1, each border segment is further broken into
several pieces according to orientation; all the east-west
parts are separated from the north —south parts. The result is
shown in Fig. 9. (In this figure, the individual symbols that
designate separate border segments are not visible.)

Fig. 9. Border segments.

As the sun illumination is from the east in our Landsat
image, those border segments which are valley segments or
ridge segments can be identified according to the bright-
ness of the regions adjacent on the left and on the right.
Because most of the trees in this area in April are unfoli-
ated, the strongest region boundaries are shadow
boundaries rather than reflectance boundaries, and the
strongest boundaries are those at the extremes of steep
slopes oriented normal to the sun direction, Because the
sun illumination is predominantly east-west, a boundary
that is dark on the left and bright on the right will corre-
spond to a ridge, and the reverse will correspond to a
valley.

East—west region boundaries are classified according to
the labeling of neighboring north—south boundaries as well
as their orientation relative to the east-west boundaries. As
shown in Fig. 10, each east-west boundary 8, has a left

HARALICK et al.: INFERENCE OF ELEVATION AND DRAINAGE MODELS

Valley R:.dge

T\ V—

\ \
l,;'dge Va'.‘)ley (Valley Ridge

Fig. 10. Classifying east—west border segments. B " repre-
sents east-west boundary. “B,” designates a north-south
border joining B, at the west (left) end. “8,” designates a
north—south border joining B, at the east (right) end. The
angles of junctions of B, with B, and B; permit labeling of
B, as explained in the text. For the situation on the left B, is
assigned the valley label from B8;; on the right B | is assigned
the ridge label from 8.

intersecting north—south boundary B, and a right intersect-
ing north—-south boundary B;. If the angle between B, and
8, is smaller than the angle between B, to B,, then we
assign the labeling of boundary B, to B; otherwise, we
assign the labeling of boundary B, to B,. The results of
ridge—valley finding are shown in Fig, 11.

(b)

Fig. 11. (a) Valley map consisting of border segments iden-
tified as valleys. (b) Ridge map consisting of border segments
identified as valleys. The valley and ridge maps are both
derived from the set of all border segments, as described in
the text and Fig. 10.
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Elevation Growing

The detection of the ridge and valley segments as dis-
cussed in the last section only assigns a ridge or valley label,
but does not assign relative elevations. This section de-
scribes how to estimate relative elevations. First, a model
called elevation growing is used to assign initial estimated
elevations for all ridge and valley pixels. Next, interpolation
assigns elevations for non-ridge and non-valley pixels.

The cross sections of valleys are V shaped, and the cross
sections of ridges are A shaped. If one looks at topographic
maps, the elevation contours of valleys such as those shown
in Fig. 12 can be frequently found. Thus if one draws a line

2000

1800
1600

(’

AXIS OF
VALLEY

Fig. 12. Elevation pattern of valleys and its relation to
elevation growing.

ab perpendicular to the valley axis, the elevations are in-
creasing from point o to point a, and also from point o to
point b. If the end point of a valley segment of smaller
order is encountered during the growing, it is deduced that
this end point is the lower end of this smaller valley
segment. However, if a ridge point is encountered during
the process, the increasing has to stop because the eleva-
tion starts to decrease. Based on this knowledge, an "“eleva-
tion growing” model can be created.

Three different local slopes are assigned to three classes
of non-ridge and non-valley pixels: pixels which are close to
ridges, pixels which are close to valleys, and other pixels. A
large local slope 0.4 m is assigned to pixels within 5 pixel
distances to ridges so that one has steep hiilsides; a small
local slope 0.02 m is assigned to the four neighbors of valley
pixels so that one has a wider valley bottom, and a medium
local slope 0.1 m is assigned to the remaining pixels.

We have estimated these values from our knowledge of
local topographic slopes. In instances where such knowl-
edge is not available in detail from field observations,
reasonable values can sometimes be estimated from general
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information concerning regional geology and geomor-
phology. Of course, the more detailed, and the more accu-
rate these estimates are, the better the resulting elevation
model.

Using estimates of local slopes and assuming the eleva-
tions of visible rivers, detected by the Alfoldi and Munday
technique [1], are lowest in a small area, the elevation-
growing algorithm can be defined as follows:

1) Trace the border segments of visible rivers and give all
the pixels elevation E,. E, can be an arbitrary constant or a
datum read from the map.

2) Repeat until ail the pixels are elevation labeled.

a) Growing:
If a pixel p has elevation El(p), give its unassigned
neighbors elevations El(p) + A,,,, (4, is the assigned
local slope) unless:

i) an image boundary is encountered

ii) aridge is encountered,
b) Including new valley segments:
If any elevation-unlabeled valley segment is touched
by an elevation-labeled pixel pe resulting from the
growing, assign elevations to all the pixels of this
segment. The end touching pe will have the same
elevation as pe. Then starting from this end, trace the
whole segment and give every pixel linearly increasing
elevation with some constant slope.

3) For a ridge pixel, take the maximum elevation value
from its four neighbors’ as its elevation.

Because realistic shape of the hillsides from valleys to
ridges were not taken into account in the raw elevation
growing, only the relative elevations of the ridges and
valleys are held to be accurate. Haralick et af. [10] describe a
few interpolation procedures which permit more realistic
elevation assignment to non-valley and non-ridge pixels.
The interpolation makes all non-ridge or -valley pixels be
the recursive average of their north, south, east, and west
neighbors and makes ridge or valley pixels keep the values
produced by the elevation growing model (Fig. 13).

Fig. 13. Elevation model.

REFINEMENT OF THE NETWORK BY RELATIONAL REASONING

The valley segments within our elevation model form an
approximation of the drainage network, as all valleys are
either occupied by perennial streams, or form pathways for
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movement of moisture into these streams. Yet our initial
estimate of the drainage network is imperfect.

Several factors combine to produce errors. In some areas,
ridges are oriented parallel to the solar beam, and therefore
do not cast shadows that permit them to be detected by
our interpretation procedure. In other regions, effects of
coarse spatial resolution, or noisy artifacts of our procedure
produce gaps in the ridge and stream segments that can
produce incorrect links when isolated segments are later
joined to form a network of region boundaries. Therefore,
although our elevation model is usually quite effective in
identifying major topographic features, even a few rela-
tively minor errors at critical points (at divides, or junctions)
can cause inconsistencies in the drainage network.

Fortunately, many of these problems can be detected and
resolved by applying rules that apply to the organization of
a stream network. In most terrains, stream segments within
a drainage system are organized in a logical, systematic
manner, Flow is in a single direction downhill. Small streams
feed into larger streams. Junctions between segments fol-
low certain relationships.

From this point forward we consider our stream network
simply as a set of line segments that must be spatially
organized according to a specific logic. If we discover a
spatial arrangement that violates this logic, we know that an
error is present somewhere in the network. Then the net-
work can be repaired by changing it in a manner that
praduces the best correspondence of the revised network
to the logic of the overall system. The following sections
describe our procedure for implementing relational rea-
soning.

Valley Segments

In our problem, we are interested in assigning labels of
{upstream, downstream} to the visible stream segments by
looking at the constraints at junctions. For example, as
shown in Fig. 14, when a smaller stream s, flows into a

5y

52

53

Fig. 14. Labeling of stream junctions.

larger stream which is composed of two segments s, and s,
because of this intersection, very often the angle between
s, and s is less than 90°. Some general rules governing
flow directions at junctions are given below,
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Constraints at junctions

It is believed that when several stream segments join at a
junction there are constraints based on orientation and
length patterns. A set of general rules about flow directions
at junctions is given in Table 1, which is derived from a
common-sense interpretation of lengths of segments and
the angles at which they meet. These rules can be refined,

Table 1 Rules of Flow Directions at Junctions
Pattern Upstream  Downstream
Number  A(s,,53)A(s,,5,)A(S5,,5) Segment Segment
=180 =9 =90
1 L(s3) = max(L(s),L(s)) s, and s, $3
2 L(s;) < min(L(s)),L(s3)) 5, 5, OF 5y
3 L(sy) < min(L(s)). L(s;)) s, and s s
4 L(s))= L(s;) = L(53) 55 5, Of 53
5 = 180 <90 > 90 5y and s, 53
6 =180 >0 < 90 5, and s; 5
7 <180 >90 > 9% 5, and s, 5
~180 »% <% T
8 L(s)) = L(s;) = L(s3) §5 and s, s,
9 L(s,) < min(L(s)),L(53)) ?
10 L(s)) < min(L(s,),L(53)) s, and s, s
1 L(S3) < min(L(5,), L(5;)) ?
=120 =120 =120
12 L(s) = L(sy) = L(s3) ?
13 L(s5;) < min(L(s),L(53)) s, and s, s,
14 L(s) < min(L(s;),L(s3)) s, and s, S5
15 L(s;) € min(L(s). L(s;)) 5, ands, Sy

or elaborated, if more information is known about sizes of
channels [15]; A(s,,s,) indicates the angle between seg-
ments s, and s, and L(s) indicates the length of a seg-
ment s.

We are interested in two kinds of junctions. Junctions of
the first kind are vertices at which three stream segments
meet. The set of such junctions is called J;. Junctions of the
second kind are vertices at which two stream segments and
one valley segment meet. The set of such junctions is called
). Here we define J as the union of sets j; and J, (i.e,
/=4 U L) Also we call S the set of all stream segments
and V the set of all valley segments.

Let J = }; U }, and let X be the set of junction patterns in
Table 1, and L = {upstream, downstream}. Then one can
define a: / = X as the function that assigns junction pat-
terns to junctions. As an example, for the junction j in Fig.
14, a(j) =5 because A(s,, s;) =180, A(s,,s,) <90, and
A(s,,5,) > 90. For each pattern in Table 1, the flow direc-
tions of segments s,, 5,, 5, can be put in a triple which is an
element in L X L X L. Thus the mapping from pattern num-
bers to flow directions can be defined as b: X — [ X L X L.
For the junction j in Fig. 14, b(a(j)) = (upstream, upstream,
downstream).

If three stream segments meet at a junction, two con-
straint relations can be formally stated on the basis of Table
1 as follows. One is concerned with all triples of stream
segments that constrain each other because they meet at
this junction; the other is concerned with all triples of
segment —label pairs where the stream segments meet in a
junction and the labels are possible for that type of junc-
tion. For each x in X, we can define T, and R, as follows:
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T, = {{5.5,5}l5.5.5 €5,and 5., s,,5,

meet at a junction j of type x, j € |}

R, = {(Swfl)r(5zrfz):(53r{3)|[5n5;fSﬁ} €T,
and {2441 € bl x}}-

If two stream segments and one valley segment meet in a
junction, two similar constraint relations can be stated as
follows. For each x in X

T, ={{s,,5,}|5,, 5, € S and there exists s; € V such
that s,,s,,5; meet at a junction j of type x,
i€ b}

R: = {(Slrfl)'(sz-fy)”sw%} (= Pl
and (¢,.4,,6,) € b(x)}.

Now let

- () o 70)

i€l

and

R= ( U R.,m) U(,-LEJ,_,R‘;‘”)

J€h

which means T consists of all triples or pairs of stream
segments that constrain each other at junctions, and R is
the corresponding segment —label constraint relation.

Now the labeling problem of assigning {upstream, down-
stream} to all stream segments can be described by a
compatibility model (S, L, T,R) which is a particular in-
stance of the general consistent labeling problem. Because
there are many spatial inference problems which are in-
stances of the consistent labeling problem, the formiof the
general consistent labeling problem as given by Ullman,
Haralick, and Shapiro [19] is reviewed in the next section.

CONSISTENT LABELING

Let U be a set of objects called units, and L be a set of
possible labels for those units. Let T {f|fC U} be the
collection of those subsets of units from U that mutually
constrain one another. That is, if f= {u,,u,,---,u,} is an

element of T, then not all possible labelings of u,- -, u,
are legal labelings. Thus there is at least one label assign-
ment £,,4,,--+,£; so that u, having label £, u, having labei

Z,,- -, u, having label 7, is a forbidden labeling. T is called
the unit constraint set. Finally, let RC {glg < UxL, g
single-valued, and Dom(g) in T} be the set of unit-
label mappings in which constrained subsets of units are
mapped to their allowable subsets of labels. If g=
{((u, €),(w, 6),- -+, (u, £,)} is an element of R, then
Uy, Uy, -, by are distinct units, {u, t,,- -+, U, } is an element
of T meaning u,,w,---,u, mutually constrain one another,
and u, having label £, u, having label £,, - -, and u, having
label ¢, are all simultaneously allowed.

In the consistent labeling problem, one is looking for
functions that assign a label in L to each unit in U and
satisfy the constraints imposed by T and R. That is, a
consistent labeling is one which when restricted to any unit
constraint subset in T yields a mapping R. In order to state
this more precisely, the restriction of mapping is first de-
fined. Let h: U — L be a function that maps each unit in U .
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to a label in L. Let fC U be a subset of the units. The
restriction h|f (read h restricted by f) is defined by h|f=
{(u,£) € hju € f}. With this notation, a consistent labeling
is defined as follows.

A function h: U — L is a consistent labeling if and only if
for every f& T, h|f is an element of K.

An example is given below. Suppose the inputs to the
problem are as follows:

U={1,2,345)

L ={a,b,c)

T={{1}, unary constraint
{12 binary constraints
{2,5}.

{1,3,4}} ternary constraint

R ={{(,a)},{(0, b)},
{(7.a), 2},
((1,a),(2, b},
((1,6),(2, b)),
{(2,a),(5.a)},
{12.b),(5.0)},
{(1,a).(.a).(4, 0},
((1,b),(3,a),(4,a)}).

unary constraint

binary constraints

ternary constraints

Then h={(1,a) (2,a) (3,a) (4,¢) (5.a)} is a consistent
labeling. To see this note that h|{1} = {(1,a)}, h|{1,2} =
{(1,a), 2, ), hi2,5) = {(2.a),(5.2)}, and h[{1,3,4) =
{(1,2),(3,a),(4 ¢)} are all elements of R.

If having £,,---, ¢, applied to u,---, u, when
{(u,. 2, - (. £)) is not in R is allowed with a penalty,
the process is called inexact consistent iabeling [16]. In
order to include these mappings, an error weighting func-
tion Fw is defined as £Ew: G — [0,1], where G C {g|g € UxL,
g single-valued and Dom (g) € T}. Ew({(u, ¢)),
(W, 6) - (U, £))) is the error which occurs when labels
£,¢, . £, are applied to u,, 1, - -, Uy

I {(u, £, (U, £} is in R, Ew is zero; otherwise, Ew
is a constant ec and usually is defined as the reciprocal of
the square of the size of U. The mapping h: U — L is an
inexact consistent labeling if for all f in T, the sum of
Fw( h|f) is within some upper bound, usually 1.

RELATIONAL REASONING MODEL AND FLOW DIRECTION OF
STREAMS

In the last section, the very general consistent labeling
model was introduced and the unit-label pairs in the
elements of R were just assumed to be there. However, if
one goes back to the flow direction problem and looks at
Table 1, it is clear that one cannot talk about unit-label
pairs without looking at the property values, such as angles
and lengths, of these units. In the following, based on the
very general consistent labeling model, a relational rea-
soning model is defined to explicitly include these proper-
ties. However, these properties are related only to creation
of elements in the set R; the basic tree-searching technique
is just the same for both the general consistent labeling
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model and the relational reasoning model. We first show
that the relational reasoning model is applicable to the flow
direction problem, and then discuss the tree searching
strategies designed by Shapiro and Haralick [16].

In relational reasoning problems, many spectral and geo-
metrical properties can be computed for locally detected
units. Some frequently used properties are average gray-
level, size, and shape descriptors. For each unit, a list of
property values can be computed. Considering all the units,
these lists form an array which c¢an be named P. Thus for a
unit u, Plu] gives the list of property values for u. For
stream junctions, the line length of one segment and the
clockwise angle from one segment to the next one can be
detected so the P[s]= (length, angle) for a unit s. For
example, in Fig. 14, P[s] = (10,45), P[s,] = (10,135), and
P[s,] = (15,180).

For each junction pattern in Table 1, the angles must be
within certain ranges. With respect to pattern number 5,
P[s,] must be in the property range ([1,ub}), [0,89]), P[s,]
must be in the range ([1, ub], [91, 179)), and P[s,] must be in
the range ([1, ub], [—180,180]) for some upper bound ub on
the line length.

However, simply specifying a range for each unit is not
enough. Sometimes one needs to compare the property
values for different units. One example for the stream
junctions is the pattern “L(s;) > max(L(s),L(s,).” To
handle this type of constraint, a relation r(P[u,], - -, P[u,])
must be defined on the property lists of the related units.

Now the relational reasoning model is a six-tuple
(UPL TR Ew) UL, T Ew have the same meaning as
before; however, the elements in R now have the form
{(u, P ) (U pi £ r(Plu), Plus)- - -, Plu D)} where
p; is the list of the required ranges of property value for all
the properties in P for unit u, /=" to k. If the property
values of vy, are within the ranges specified by p, for i =1
to k, {u,,- -+, u.} is contained in T, and relation r is satis-
fied, then it is legal to assign lable ¢, to u,,---, ¢, to u, at
the same time.

The relational reasoning model (U, P, L, T, R, Ew) can be
applied to deduce the flow directions of visible rivers. U
contains the units of visible rivers. P contains all the proper-
ties detectable from the stream segments. The most im-
portant properties are the length of a segment and the
orientation of the segment at both ends because they are
used in Table 1. L is {upstream = 1, downstream = 2}. T
contains the junction relations. R contains the relations of
legal flow directions defined in Table 1. For {u,,---,u, } in
T it {(upy, 6)),- -~ (U, pe.€4)) is in R, the error function
Ew({(u,, p.6) - (U, P, €4))) is defined to be zero;
otherwise, it is ec, the reciprocal of the square of the total
number of stream segments.

To find the best possible labeling, four different tree-
searching strategies were described for solving the inexact
consistent labeling problem [16). Experiments were done to
evaluate their performance. Forward checking was found
the most efficient one. In the following, the idea of the
forward checking strategy is described first in English and
then followed by mathematical equations.

A tree search finds a label for each unit. Each node of the
tree represents a possible assignment of a label ¢ to a unit
u. Associated with such a node is 1) the past error, 2) the
error of this instantiation, and 3) the future error. Past error
consists of the error of the partial mapping defined by the
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ancestors of this node in the tree. This error is the sum of
Ew(h|f) for all fe T. Error of instantiation is the error
induced by the assignment of label ¢ to unit w.

In a simple backtracking tree search, the error of instanti-
ation is computed at the time £ is assigned to u. In a tree
search with forward checking, an error table keeps track of
how much error the assignment of any label to an uninstan-
tiated unit will generate. This is accomplished by construct-
ing an updated table each time an assignment of ¢’ to v’ is
made and propagating forward to each pair of as-yet-unas-
signed unit u” and possible label £” in that table the error
that would be caused by a simultaneous assignment of u’
to £’ and u” to £,

At any node of the tree, each as-yet-uninstantiated unit
has a label in the error table with minimal propagated error.
The sum of the minimum error for each such unit is the
future error.

If at any node of the tree, the sum of the past error, error
of instantiation, and future error is greater than the allow-
able threshold, then the current assignment at this node is
not made and the next label assignment is tried. If there is
no such next label assignment possibility left, then back-
tracking occurs. Otherwise, the error of this assignment is
propagated forward and the tree search continues. Details
of these are given below, =

The inexact consistent labeling problem can be solved by
a brute-force backtracking tree search. Before the bottom of
the tree is reached, only some of the units are labeled, and
thus only the error incurred against all units which have
already been assigned labels can be calculated. Such a
labeling is called a partial labeling; the labeled units are
called past units, and the set of all past units is called U,.
Similarly, the units which have not been labeled are called
future units, and the set of all future units is called U.
Also let T1 be the set of all sets composed of units
which have already been assigned labels, ie, T1 =
{{u u - u oy, u € Up and {u,u, -~y ) €
T}. Thus the error for past units, ep, incurred in backtrack-
ing is
ep(Up, h)

= 3

{u.-u e

EW({(.U,,h(U,)),-",(uk,h(u,\))}) (13)

for a partial labeling h. If the error sum exceeds an error
bound eb, the tree search must either try the next label for
the current unit or if there is no next label, it must back-
track.

As a simple example, let U= {1,2,3,4,5}, L = {a,b,c},

= {1}, (1,2). (1. 4)), R= ({0, )}, {(1.a),2 b)),
{(1.0).(2, b)Y}, {(1,b),(4,b)}}, error constant ec = 1/6, and
error bound eb = 0.2, In the tree search, label a is assigned
to 1 first. Thus Up = {1}, T1 = {{1}}, ep(Up, h) =0 be-
cause {(1,a)} isin R.

Next, label a is assigned to 2 because backtracking is
depth-first. Now Up = {1,2}, T1 = {{1},{1,2}}, ep(Up, h)
=1/6 because h = {(1,2),(2,a)} is not in R. Since ep is
smaller than eb = 0.2, one can continue and assign label a
to unit 3. As {1,3}, (2,3} are not in T, T1 is not changed
and ep(Up, h) is not changed.

Next, label a is assigned to unit 4 which will cause
Up={1,23,4}, T = {{1),{1.2}.{1.4)}, ep(Up, h) =1/6
+1/6 =1/3 because {(1,a),(4,a)} is not in R. At this
point, ep =1/3 which is larger than eb = 0.2, and one
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cannot continue with unit 5. Instead, next label b is as-
signed to unit 4. This is the trace for backtracking.

A technique called backtracking with forward checking
can improve the speed of tree search. For the previous
example, 3 units were assigned labels before a cutoff hap-
pened. Actually, by looking at sets 7, R and doing some
calculations described below, a decision about cutoff can
be made even after the first unit is assigned a label, Thus
the searching is more efficient. This technique is similar to
the branch-and-bound technique except that a fixed bound
value is used.

The speed of tree search can be improved if one also
considers the minimum error that the current fabeling must
incur against future units which have not been assigned
labels. Thus the set in T containing only one future unit is
of interest; for a future unit v and label ¢, define

T(u,i;Upy = {{u.-,u }inTjy = uand
n # i implies u, in Up}.

For example, when Up= {1}, h = {(La)}, M2,z (1=
{{1.2}}, M4, 2,(1}) = {{1,4}}.

Using labeling h on all units except u and assigning label
£ to u, the error (epf, error for past and future units) is

epf(u,£; Up, h)

k
=4 {uy, )
in T(u,i; Up)

(u &) (uh(uy ) (uh(a)))). (19)

In the continuing example, if v =2, ¢= a, then
epf(2,a {1); {1, a)}) = Ew({(1, a), (2, a)}) = 1/6 because
{(1,a).(2,a)} is not in R.

To be complete, one should also consider the smallest
erfor of the units in the nodes with higher level numbers in
the tree created by backtracking or the units other than v in
Uf. Itis

Ew({(u, h(u)). -+ (u 1 (Y ),

Y. minepf(v,m; Up, h). ~(15)
ve uf MEL
v U

For the continuing example, when v =3
minepf(3,m; {1}{(1,a)}) =0,

because T(3, j; {1}) is always empty.
When v = 4;

epf(4,a; (1}{(1,a)}) =1/6
epf(4,b;{1}{(1.a)}) =1/6
epf(4,¢{1}{(1.a)}) =1/6

me L

and
minepf(4,m;{‘l},{(1,a)})=‘I/6, me L
When v =5,
minepf(S,m;{‘!},{(‘!,a)})=O, mel

for the same reason as when v = 3. Now the sum in (15) is
0+1/6+0=1/6

For current labeling h, if the summation of (13)—(15)
exceeds an error bound for any label ¢ for the current unit
u, then one needs either try the next label for the current
unit or backtrack. This is called backtracking tree search
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with forward checking. From the above calculations, for
u=24¢,=a0+1/6+1/6=1/3> 0.2, and one needs to
try the next label b for current unit 2. Thus it is clear that
only one node is generated in the searching tree as op-
posed to three nodes in the case of backtracking.
Implementing the maodel (U, P, L, T,R, Ew) by using the
algorithm of forward checking, the flow directions for the
test area have been deduced. They are labeled as in Fig. 15.
The valley segments that are used to help make the deci-
sion are also shown in Fig. 15. The interpreted flow direc-
tions are correct with respect to actual flow directions.

1 I;
g

.,

Fig. 15. Interpreted flow directions within two segments of
the test image. Separate symbols designate individual seg-
ments defined in the analysis. Arrows indicate interpreted
flow directions, which agree with correct flow directions
from ground data,

DiscussioN

Here we have described the derivation of estimates of
relative elevation from a single multispectral view of a
region of uneven topography. The procedure applies a few
simple rules and assumptions concerning the behavior of
solar radiation as it interacts with the earth’s atmosphere to
illuminate the ground surface. Application of these rules
permits us to separate individual contributions of the atmo-
sphere, direct illumination, indirect illumination, and spec-
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tral reflectance of varied materials at the earth’s surface.
Separation of these components enables isolation of those
variations in brightness that are due solely to variations in
topographic relief. It is this iopographic image that is then
used in subsequent steps of the analysis. From the pattern
of highlighted and shadowed areas, the positions of ridge-
lines and valleys can be estimated. From these, we apply
knowledge of the general configuration of the earth’s
topography—the spatial arrangements of peaks, ridgelines,
and stream networks. Realistic modeling of local topogra-
phy depends upon approximations of a local slope within
the imaged region derived either from direct observation, or
from inferences based upon general knowledge of regional
geology and geomorphology.

Finally, our topographic image can be examined in more
detail. The network of valleys and streams must follow
certain rules concerning the directions of flow and the
nature of valley intersections. By application of the con-
sistent labeling process we determine correct direction of
stream flow, thereby refining our estimate of topography.

We defined a set of constraint rules for stream junctions,
then applied them to the units detected from the topo-
graphic analysis. Even though the numbers of units in the
test area are not large, the mathematical expression of the
spatial reasoning model is precise and can be useful in
more complex applications.
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