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ABSTRACT

A new dual categorical-associative model for the representation of word meaning is proposed,
In it, concepts are described by the values they have on a set of given varitbles (categories).
A statistical relatedness measure (concomitant variation) is computed for these values on the
basis of the specifled word universe. An association measure between the words is defined,
and the generalization of word clusters is introduced, A comparison with associative and
categorical models is made and the application of the dual model to verbal analogy problems
is described. Possible applications in Artificial Intelligence and Natural Language Processing
are discussed,

1. Introduction

The representation of word meaning is still an obstacle which researchers in
Natural Language Processing must remove in order to create information
processing systems which understand and generate natural language. Word
meaning has been represented by either associative or categorical models.
In this paper we propose a dual associative-categorical model which combines
the good qualities of both.

An important purpose of this work is to find some well-defined basis on
which it would be possible to implement the mechanisms of assimilation,
generalization and reasoning by analogy. For it is our contention that,
already on the word level where there is some basic semantic knowledge
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76 R. M, HARALICK AND K. RIPKEN

involved, it will be necessary to apply these mechanisms to avoid any
“combinatorial explosion” in dealing with large knowledge bases.

We shall first briefly explain both former models of word meaning in order
to contrast them with our model. Then, we shall present the dual model,
demonstrate its capability to structure the word universe and validate it by
solving verbal analogy problems.

2. Former Models to Represent Word Meaning

Existing models to represent word meaning can be roughly characterized as
either associative or categorization models. Since we assume that the reader
is familiar with the well known models mentioned in this section, we are not
going to explain the models in detail but rather discuss only the relevant
aspects.

2,1. Associative models
As “associative models” we denote the following models which:

(1) Take the statement “The meaning of a word is its use in the language”
{Wittgenstein [17, §43]) literally and define words by the actnal context in
which they occur, e.g., the models of Raphael [10], McCalla and Sampson [8],
and Siklossy [14].

(2) Define a word—viewing it as a “stimulus word”—by a list of associated
words, which, for example, could be gathered in psychological experiments.
Reitman [11] developed such a model based on the ideas of Hebb [5].

(3) Use a method which is applied in dictionaries where tokens of other
words constitute the definition of a word. This is a method which might
resemble the way humans usually define concepts. It is incorporated in the
“semantic memory” of Quillian [9]. It is our contention that the model of
the first type will hardly be applicable to a large universe of discourse since
its semantic structure is too simple so that an abounding mass of details will
make it impossible to effectively generate relevant associations.

We want to consider more closely Quillian’s model, as a type-3 model and
the probably best-known example of an associative model. The meaning of a
word (“type node™) is defined by a respective set of other words (“token
nodes””) and their interrelations. The set of token nodes with all its links,
which express six different relations, constitutes the “plane” of the type node.
Since, however, each token node has an associative link to the type node of
the same name, the plane of an original patriarchial type node considered is
also linked to other planes. The full content of a word concept in such a
memory then is—*“as distingnished from its plane or ‘immediate definition’ ”’
—-<all the type and token nodes cne can get to by starting at the initial type
node, or patriarch, and moving first within its immediate definition plane to
all the token nodes found there, then on ‘through’ to the type nodes named
Artificial Intelligence 6 (1975}, 75-99
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by each of these nodes, then on to all the token nodes in éach of their.im-
mediate definition planes, and so on-until every token and type node that can
be reached by this process has been traced through at least once.” (See
Quillian [9, p. 237].) . o :

If we view Quillian’s semantic-memory as a graph U where the nodes are
the planes of type nodes and the edges are the associative links from a token
node within a plane to its type node which is represented by another plane.
Then we can consider the following cases which are evident (we do not give
the proofs): : - ‘

(a) If the graph U is strongly connected, then each word’s full concept, as
defined above, is the entire U, ,

(b) If U is only connected, but not strongly, then there is at least one type
node whose full concept is only a subgraph of U.

(e) If U is not connected, i.ec., if there are isolated subgraphs, then there
exists no word which has U as its full concept. . ‘

(d) If the set of token nodes is limited and fixed though U may expand,
then the full concept of each word is never larger than a subgraph formed by
the plane of the word, its edges and the subgraph of those planes which
define the type nodes of all the token nodes existing.

Since in Quillian’s model the set of token nodes bears no restriction,
case {d) does not apply to it. Probably cases (a), (b) and (c) could apply to
the graph U. Here the question arises concerning what concept the “memory
‘builder” has of a word’s full context. What is the recipe for constructing the
planes of concepts ? This question becomes difficult to answer if the universe
of words gets larger and larger. Since the Jinteresting aspect of Quillian’s
memory is the existence of associative paths between different planes and
not only the retrieval of stored information within one plane, the links
between the planes and thus the structure of U is essential.

How far then is the definition of a word’s concept independent of the
definition of other concepts ? If the words were defined independently while
the set of token nodes is arbitrary, then there would be no guaranty given for
the right, i.e. meaningful, associations or any associations at all; then the
paths from “cry” and from “comfort” needed not necessarily reach the same
node “sad”, which is what they do in Quillian [9, p. 250]. If the words were,
however, defined dependently, then the associations would be preprogrammed
and less interesting. ‘

These questions set the problems of the semantic memory.in perspective:
a clear-cut recipe to build the definitions of concepts is missing; as a con-
sequence, the derived associations do not have a reliable basis. .

The same argument obviously applied to the type-2 associative model.
Unfortunately, Reitman [11] has not explicitly given results of the experiments
with his model. - .

Artificial Intelligence 6 {1575), 75-99
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2.2. Categorization models

The case (d) of the above cases (see Section 2.1) Jeads us to the categorization
model where the token nodes degenerate to categories which form the
attribute lists of word concepts while the different relations between the token
nodes are abolished. Thus a word concept is described by a set of primitives.

Since Katz and Fodor [7] introduced the concept of semantic markers, such
a model of categorization has been used by several researchers. Schank and
Tesler [12] wrote a conceptual parser, and Winograd [16] used a simple
hierarchical system of categories to describe the meaning of the objects in
the robot’s toy world. Tuggle et al. [15] most recently used categorization in
their “test program” for verbal analogy problems: the description list of a
word consists of categories as well as pointers to other words in case of the
relations “part/whole”, “contained/container”, “opposite/similar meaning”.
The success of these programs points to categorization as a useful method.
However, as it was the case with the associative model programs, the
programs working with categorization only deal with extremely small
univetses so far. '

In a categorization model, the process of describing a word concept is
well-defined : words are defined independently and only with reference to the
categories. (We separate certain binary relations between two concepts A
and B, e.g., “has as a part/is a part of”, “contains/is contained by”, from the
categorization model since they require a direct reference from A to B and
vice versa.) Thercfore, the categorization model scems to be more practical
in a larger universe of discourse than an associative model; an expansion of

‘the universe is easily possible without any effect on the part previously
defined. .

In such a categorization model associations between any two word concepts,
however, are only found on the trivial basis of a comparison of the respective
attribute lists. A matching of categories here corresponds to the existence of
an intersection node in Quillian’s associative model. If the category system
is ordered in some fashion (e.g., hierarchy), then word concepts can at most
be associated with the help of attribute comparison in a way which reflects
this order (e.g., lattice structure).

2.3. The dual associative-categorical model

So far, we have seen that the associative model lacks a prescription for the
construction of definitions which have a great influence on the possible
associations. On the other hand, in a categorization model the independent
construction of definitions is well-defined, but “interesting” associations be-
tween the single word concepts are not possible. :

In order to overcome these disadvantages of the former two models, it is
Artificial Imtelligence 6 (1975), 75-99
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therefore desirable to find a model which combines the advantages of a
categorization model, i.e., the extendability and the clear definition procedure,
with a method to associate words in a meaningful way. In this paper, we
suggest such a model. We describe the words of a given universe with their
values on a fixed category set, e.g., a “knife” could be described by the
categories “man-made”, “out of metal”, “sharp”, etc. Then we calculate a
statistical measure of relatedness (concomitant variation) for all the possible
pairs of values. With the help of this measure, an association measure for
each two words of the universe can finally be calculated.

It is interesting that Deese [1] went the reverse way to discover—from the
psychologists® point of view—*“the categories of association, if they exist™,
He carried out association experiments with stimulus words, which were
chosen so that there was some degree of related associative meaning. The
relative common frequencies of responses to each word of this set of words
were then factored by the centroid method. Deese found out that the resultant
factors could be described as, e.g., “having to do with animate creation”,
“having to do with inanimate creation”, etc.

Since, in our model, we actually compute an associative net, starting out
with words, which are separately defined by categories, our model bridges the
gap between categorization and associative model.

3. From Categorization to Association by Statistical
Computation

In this section, we present the mathematical basis of our approach, discuss a
simple instructive application and report about a validity test of the model
with verbal analogy problems.

3.1. The mathematical basis

Let U = {u,, ..., uy} be the specified universe of words. Let X — {0,
xx} be the set of categories of variables which can describe the words in U.
Bach variable in X is, therefore, & function Xg:U— L, where the range I,
of x, is the set of possible values a word can be described by when measured
¥ variable or category x,.

Our problem is to structure the universe U by defining a binary relation
on it. We divide this task in two parts: first, we try to find a measure of
statistical relatedness, concomitant variation, between any value in one
range set with any value in another range set; then, we define a measure of
statistical association between any pair of words in U on the basis of the
concomitant variation between the values by which each word is described.!

! Hunt et al. [6] accidentally use similar definitions in their work on concept learning,
Artificial Intelligence 6 (1975), 75-99
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There are numerous measures of statistical association. which could bé
used for measuring concomitant variation and the articles by Goodman and
Kruskal [2, 3] give an excellent discussion and summary of the often used
ones. Here, we introduce a measure of concomitant variation which is
deducible from a few important properties.

3.1.1. Concomitant variation

We distinguish between concomitant variation as a symmetric and asymmetric
concept as follows: Asymmetric concomitant variation we call conditional
concomitance and it measures the control or dominance one set of events has
on another. If R and S denote-two .arbltrary_sets of events, then C(R|S5)
denotes the conditional concomitance of R given S. Symmetric concomitant
variation we call just concomitant variation and it measures the interaction
between the two sets of events. We denote the concomitant variation between
R and & by C(R, 5). We naturally expect that the concomitant variation
between R and S should be the average conditional concomitance of R
given S plus the conditional concomitance of § given R:

_ C(R, §) = 3[C(R} S) + C(S | R)].
We deterniine a measure of conditional concomitance having the following
four propetties: (1) it is a linear combination of the four probabilities
P(R N S), P(R® n §), P(R n 5% and P(R® n §%); (2) the conditional con-
comitance of R given S equals the conditional concomitance of §¢ given R°;
(3) if the event R® n § has zero probability, then the conditional concomi-
tance of R given S equals 1; (4) if the conditional probability of R given S
plus the conditional probability of §° given R® is 1, then event S does not
control event R and the conditional concomitance of R given S equals 0.
These four properties imply that
C(R|S) = 4[P(R| $) — P(R°| ) + P(S*| R) — B(S| R},
- We briefly sketch the pi'oof of this. Without loss of generality, let
C(R1 5) = «(R, §) P(R n S) + AR, S) P(R° 1 5°) + 7(R, S) P(R ~ S°).
Then, C(R | §) = C(5°| R°) implies .
P(R n S)[(R, §) — B(RE, $9)] + PLR® 0 S)B(R, §) — ofS°, R)]
_ + P(R A S)YR, 8) — (S5, R) =0. (1)
‘This combined with C(R | §) = | when P(R° n §) = 0 implies
‘ a(R, S)P(S) + B(R, ) PR = 1. : 2)
C(R| §) = 0 when P(R| S) + P(5°} R®) = 1 implies '

v(R, §) = —[a(R, 5) Po) +B(R, S)P(Rc)]

P(R°) P(S) |
Artificial Intelligence 6 (1975), 75-99
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ASSOCIATIVE-CATEGORICAL MODEL OF WORD MEANING 31
Equation (3) can be used to determine y(R, §) — P{S*, R
¥(R, 8) — 7(8°, R%)

_ P(S) PR e pey
~ PR P(S)[ o(S°, R°) — B(R, §)]. 4

Using equation (1), equation (4) can be reduced to
c C l c c c
¥R, 5) — y(S% R%) = [P(RC) P(SJ[P(S)I?(S R%) + P(R)P(R,8) — 1]. (5)
Using equation (1), _
B(S*, R) = (R, S) = ——[B(S°, R) P(S) + B(R, S)P(R®) — 1]  (6)

DRSS RY) — R, 8)] +

P(S)
and _
o(S%, R) = B(R, §) = st — BOR, S) PR - (% RYPS)]. (1)
Substituting (5), (6) and (7) into (1) there results
B(R, ) P(R®) + B(S*, %) P(S) = 1. ®
Since 1 = a(R, S) P(S) + B(R, §) P(R°), we obtaiq :
a(R, §) = p(S°, R°). 9)

But ﬁ(R S)P(R) + B(S¢, R®)P(S) = 1 is an identity in R and S. This
implies that f(R, §) = $P(R") and by (9) we must have x(R, S) 1P(S).
Substitution int (3) then yields
1 P(S) + P(RY)

HR, S) = 2 PS)PRY) - :
Substitution for «, f and y in (1), then gives the formula for C(R|S):
CR[S) = 3P(R|S)— P(R°| S) + P(S°| R°) — P(S| R%)].
It is easily verified that concomitant variation has. the following properties:
(1) C(R, S} = C(S, R),
(2) C(R, 59 = —C(S, R),
(3) (R, S) = C(R, 89),
4) C(R,R) =1, :
(5) C(R, S) = 0 if and only if R and § are independent events.

3.1.2. A measure of association

In our model, the measure of concomitant variation, as derived in Section
3.1.1, is applied to the values of the variables which describe the words.
Inserting x,(t,) and Xa(#;} for R and § in the equation for concomitant
variation yields a measure of relatedness between the values the ith word
' Artificial Intelligence 6 {1975), 75-99
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takes on for the /th category and the value the jth word takes on for the mth
category.

Having related the values to each other in this way, we can define a measure
of association between words. Such a measure between words u; and u;
should take into account the relatedness of each of the values, which describe
u;, to each of the values which describe #;. Thus, we define as a measure of
association between any two units u;, u; € U the association Aluy, up):

K K
A(u,—, uj) = [;J mgl C(xi(ui): xm(u.i))’

where C is the concomitant variation and K the number of variables. Since
—1 < C(R, ) < + 1, A can take on positive and negative values.

3.1.3. Structuring the universe

We structure the universe U of words by defining a binary relation on it.
In working a clustering problem, Haralick and Haralick [4] defined such a
binary relation by
Ry ={(upu)e U x U| Ay, uy) = 0}.
This definition has the property that it relates together those words having
only highest associations. Unfortunately, some words may have relatively
small associations with all words and would therefore never appear related to
anything through R. This property can be modified by using relative associa-
tion ranks instead of raw associations. Let r{u;, u;) be the number of words
.whose associations with word u; is greater than A(w;, u;). Formally,
(g, ) =.#{ue Ul Ay, u) < Ay, w)}-
We can then define the binary relaiion R; by
R, = {(u, u)e U x Ulriy, u) € p}.

Note that the rank measure is an asymmetric measure r(u, ;) # r(u;, #;).
The asymmetry arises because the associations #, has with the rest of the
words is not necessarily the same as the associations #; has with the rest of the
words.

Clusters of associated units can be determined from R, as those units
having a relatively high number of interconnections through R,.

In Sections 3.2 and 3.3 we examine these structures which the defined
relations yield in instructive examples involving practical problems, in our
case the association of meaningful words.

3.2, A concrete application

The task is to choose a set of words as the universe and to describe these
words with terms which are subsumed under certain categories. One of our
Artificial Intelligence 6 (1975}, 75-99
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TaBLE 1. Categories 1-17

83

1 2 3 4 5
WHOLE PART! PART2 NUMBER AGE
1 1 1 1 1
2 human 2 human 2 vegetable 2 single 2 baby
3 animal 3 animal 3 manmade 3 pair 3 child
4 vegetable 4 group 4 adult
5 manmade 5 old
6 matural
6 7 8 9
SEX COMPLEXITY SIZE MATERIAL
1 I element{compound 1 1
2 male 2 simple object 2 < 00lm 2 metal
3 female 3 simple machine 3 <01 3 glass
4 sophisticated mach, 4 <03 4 plastic
5 organism 5 <06 5 wood
6 <1 6 paper
7 <2 7 textile
8 «13 8 leather
9 =13 9 organic product
10 mineral
10 11 12 13
COLOR SHAPE WEIGHT HARDNESS
1 1 1 1
2 red 2 point 2 <iog 2 powder
3 orange 3 line I <100 3 marshmallow
4 yellow 4 triangle 4 < 500 4 sponge
3 green 3 rectangle 5 < 25kg 5 flesh
6 blue 6 circle 6 <10 6 basketball
7 brown 7 polygon 7 <50 7 wood/glass
8 white 8 parallelepiped 8 =350 8 metal
9 grey 9 ellipsoidfsphere
10 black 10 cylinder
11 silvery
12 golden
13 opaque
14 15 16 17
AGGREGATE STATE BRIGHTNESS TEMPERATURE  SOUND
1 1 1 1
2 gaseous 2 sunlight 2 freezing 2 noise
3 fluid 3 electr. light 3 cold 3 harmonic
4 solid 4 candle 4 room temperature sound
5 warm
& hot

Artificial Intelligence 6 ( 1975), 7599
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TasLE IL. Catcgories 18-39

"~ 18 19 i
TASTE TOUCH (primarily)
1 1
2 sweet 2 rough
3 Dbitter 3 smooth
4 salty 4 sharp
5 sour
6 spicy

ACTIVE FUNCTIONS PERFORMED BY HUMAN AND INSTRUMENT

20 21 22 23 24

1 1 1 1 1

2 cut 2 store 2 protect 2 cover 2 smoke

3 hold/support 3 screw 3 carve 3 mashfgrind 3 sece

4 paint 4 cook 4 heat 4 cool 4 wash

5 communicate 5§ dry 5 dosport 5 sew 5 pick up

6 drink 6 write 6 entertain 6 hear 6 show moviesf
7 dwell 7 eat (context) 7 sit 7 clean pictures

8 lie 8 make music 8 open 7 hit

9 make light

ACTIVE FUNCTION OF OBJECT ONLY
25 '
1
2 contain solid thing
3 contain fluid thing

PASSIVE FUNCTION (n: normally being . . .; m: must be .. .; p: for the purpose of

being . .".)
26 27 28 29 30
i 1 1 1 1
2 cutnm 2 drunkp 2 held/supported m 2 containedm 2 celledn
3 heardp 3 writtenonn 3 sewnn
‘ 4 smoked p

31 32 33 34 )
1 1 1 1
2 heated n 2 cooked n 2 eaten p 2 protected m

3 readp 3 put on (dress) p 3 driedn

4 washed/cleanedn 4 eélectr.-operated
ENVIRONMENT
35 36 37 38 39
1 1 1 1 ' 1

Artificial Intelligence 6 (1975), 75-99
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categories could, for instance, be “color”, which as a variable could take on
as values all the different colors like “red”, “orange”, “vellow”, etc., but
only one value for each word. If we cannot decide the color for 2 word or if
it does not make sense to assign a color to a word—abstract words are an
example—the variable “‘color” has to have a value which means “not
applicable or not decidable™.

In order to have a nice world for the first investigation, we chose a relatively
coherent subset of concrete objects of the real world, a set of 283 objects
which occur in an ordinary household, e.g., “alarm-clock”, “bedstead”,
“beer”, “‘bracelet”, “boy”, etc. The category system which we developed is
just detailed enough to provide a different description for each of the units.
It is not claimed that this system is complete or optimal in any other respect.
Table I and Table II show the category system with a total of 39 variables
and 194 values, an average of 5 values per variable.

Variables 20 through 34 show collections of properties which are mutually
exclusive in regard to their application to words in our universe. The activities
under variables 20 through 24 are interpreted in the following way: if the
word u is a human or an animal, it means that the human or the animal
executes the activity, e.g.; x;,(#) = 6 (write) means “a human can write” or
“a human is properly described by the activity of writing’; if, however, u is
an inanimate object, it can either mean that the object executes the activity—
if this is possible—or that the object aids a human (or animal) in performing
the activity; thus, if # is an inanimate object, then x,,(x) = 6 (write) means:
“the object is instrumental to a human (or animal) performing the activity™,
€.8., X1 (pencil) = 6.

The passive functions 25 through 34 can be interpreted in different ways so
that the proper interpretation is suitably given by a code letter. E.g., value 2
for variable 30 means “normally being cooled’; this would apply to things
which we keep in the refrigerator; and value 2 for variable 27 means “for the
purpose of being drunk”; value 2 for variable 34 means “must be protected”;
e.g., meat must be protected in some way or it rots.

These few explanations show already that we describe some standard world
in which unusual events like “drinking HCI” are not contained. Of course,
we could equally well describe a crazy world; our results, however, would not
give so much insight in the usefulness of our methods. Since, the category
system is fairly detailed a lot of decisions have to be made when one describes
the units. In order to get some standardization, we used a pictorial dictionary
{18] which displayed standard exemplars of the things we described. Further-
more, our description assumes that things are where they belong in the
household: the proper things in the kitchen, in the living area, etc. Table II1
shows the descriptions of some words. The values of the variables are listed
from the left to the right, variables 1 through 39,

Artifictal Intelligence 6 (1975), 75-99
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It remains to stress that certain relationships of the real world are not
covered by the category system. Since each unit is described independently,
links from one unit to another—either indirectly by certain relations between
categories or directly by pointers—are not contained. For example, the fact
that a “snout™ is a part of an animal is contained, but not that it is a part of a
dog. And the data base does not reflect the “oppesite”, “final”, “causal’ or
“idiomatic” relationships as in the examples “oven”’/*“freezer”, “bottle-
opener”/“bottie”, “painter’/“picture”, and “needle”/“thread”. These rela-
tions could be either taken care of with the help of categories which specify
a context or environment explicitly like “fine arts” in the case of “painter”’/
“picture”, or they could be contained in a special dictionary: e.g., the entry
“hot”-opposite—*‘cold”. In the first case they would be automatically re-
flected in the associative structure which we want to compute; in the second
case, however, the description of the considered units would have to be
checked for such special relations which are contained in the special
dictionary, and then an appropriate weight would have to be applied to the
corresponding values in the computation process of the association measure.
Up to now the only relationships contained are those given by some activity
like “sewing”—e.g., “needle”/*“thread”’—or by the environment categories.

TanLE III. Examples of word descriptions

12 baby-boy 21122 255 9 1 8 6541 42131 11111 11111 111312 2222

5 binccular S1121 124 2 10 10 5841 41111 11131 11111 11111 2112
11 butter 5111 111 9 4 1 1541 41431 11111 11122 11222 2111
14 cat 31121 154 9 1 8 5541 42111 11111 11111 11112 2112
18 cup 51121 123 10 1 9 3741 41116 12113 11111 14132 2111
21 ear (humanm) 12131 153 9 3 6 1541 41135 11611 11211 11112 2222
26 flower 41121 125 9 1 7 3441 41131 16111 21221 11122 2111
34 juice 61221 111 9 1 1 1131 11211 11111 12222 11122 2111

‘a The number in the first column denotes the unit according to Table I'V.

The 283 descriptions of units, arranged as in Table III, were the input to a
FORTRAN program which calculated the concomitant variations of all the
values of the variables. These calculated measures were stored on magnetic
tape for their use in the computation of the association measures.

3.3. The results of the application

First we give the reader a short impression of the concomitant variation
between the values of the variables, before we deal with the relations between
the words as the units.

Artificial Intelligence 6 (1975), 75-99
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3.3.1. The concomitant variations

Fig. 1 displays some of the graphs of the concomitant variations which are
greater than 0.6, That is, an edge between two nodes, which are labeled with
the code of variable and value, say *“, 7* and “k, 17, means that C(x{u) =
J: xe(u) = 1) < 0.6, For the meaning of the values see Tables I and II. A few
larger clusters are: that of values which describe fluids {no size, no shape, no

{Human) {Powder-like,
@ Polnt-like)

(Metal)

FiG. 1. The concomitant variations which are greater than 0.6. The node labels denote
variable and value, e.g., *“i, 7" and “k, 17°; an edge between these nodes means that C{¢y, t£;)
> 0.6. In parentheses are given names of unit classes to which the clustered values apply.

Artificial Intelligence 6 (1975), 75-99
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hardness, fluid, drunk p) with a connection to parts whose weight is un-
decided; that of values which describe food, then that of values describing
objects that make music, and finally the cluster of values which are proper for
humans. ‘

These clusters show that the concomitant variation, indeed, relates highly
associated values to each other. We have not investigated the effectiveness
of our category system in the light of these value clusters. Such an investiga-
tion might be useful in order to compact the category system, especially when
one deals with a larger universe which probably requires more values to
describe the units.

3.3.2. The association of words

As well as the concomitant variations, the associations are most suitably
presented as partial graphs, namely of the relations R, and R, which have
been defined in Section 3.1:3. These graphs show that the defined measure of
association is meaningful in that it associates units which are highly related to
each other in the teal “universe” of our household either in regard to their
physical appearance, their functions, or the environment in which they
occur; for these are the factors which are reflected in the category system of
Section 3.2. For demonstration purposes, the tesults in this section refer only
to a subset S of the universe U, consisting of those 60 words, which are given
in Table 1V. ‘ a ‘

TaBLE 1V ,
1 baby-boy 21 ear (human) 41 milk
2 baby-gitl ' 22 cyc (animal) 42 mother
3 bed 23 eye (human) 43 mouth
4  beer . 24 father 44 needle -
5 binocular 25 feather bed 45 newspaper
6 bird 26 flower 46 pastry cutter
7 book . . 27 football 47 . pickle
8 boy 28 fork 48 picture (wall)
9 bread : 29 frisbee 49  pitcher
10 bread knife 30 girl 50 - poster. ‘
11 butter : 31 glasscs 51 punch-bowl
12 candle 32 green salad 52 radio . .
13 carrots : 33 hand 53 -record player
14 cat - 34 juice 54. socks :
15 cigar ’ 35 knife 55 suit
16 cigarette 36 lamp (ceiling) 56 tape'recorder
17 creamjug 37 leg (animal) 57 tennis racket
18 cup 38 leg (human) 58 thread
19 dog 39 linen sheet 59  tomato
20 ear (animal) 40 mattress 60 tv set
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6 = 130

6 = 120 : .
8 = 100 :

.
9=‘QQ
8= 80 :
Q =

10 Bread-knife
17 Creémjug

18 Cup

28 Fork.

35 Knife

44 Heedle,

- . 46 Pastry-cutter
v ‘ P . _ ‘49 Pitcher
S ' 51 Punch-bowl

FiG. 2. Growth of the graph; showing-the relations between kitchen instruments, with
decrcasing 0. The shaded partial graph is complete.
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{Silverware

and Containers)

(Parts of

Humens and Animals)

FiG. 3. The graphs of R, for § = 60. The numbers refer to the units of Table TV. Characterization of
the clusters are given in parentheses. Complete graphs are shaded.
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In regard to these words, for example, the highest association measures for
the word “baby-boy’ are with the words:
Baby-girl 133.02

Boy 120.01
Father 115.81
Girl 117.47
Mother 117.26
Dog 62.12
Cat 54.03

This rank order is quite plaunsible. For a threshold value 8 = 115, relation
R, contains a complete subgraph whose nodes are the humans of the sample
set 8. In regard to R;, one finds that the complete subgraph of the humans is
a complete cluster for a threshold p of 5.

Fig. 2 gives an illustration of the dynamic growth of graphs when more and
more association links are added; it shows the associations between kitchen
instruments like containers and silverware. For 6 = 60 the result is a large
complete graph with three edges to “needle”.

Fig. 3 shows R, on § x S with 6 = 60. The numbers in the nodes refer
to the units as given in the list of S. The main clusters are given a label for the
units in the cluster. We notice several complete and nearly complete sub-
graphs of R, which contain highly related units of our universe.

However, we do not only want to find clusters, but also to relate them to
each other in a lively way. An interesting connection in this respect is that
one in Fig. 3 which goes from the “sport”-cluster over “book” to the
“clothes”-cluster. If we drew the graphs for R, with § < 60, of course, more
such edges would become visible.

In Fig. 3 we notice that several words, e.g., “lamp”, “glasses”, “candle”,
etc., have not yet appeared. This means that their association measures are all
less than 60. According to the discussion in Section 3.1.3, we expect them to
show up in graphs of relation R,. Fig. 4 shows such a graph with the ranks less
or equal p = 3. This graph was started with the unit “lamp’. Again we see
clusters familiar from previous graphs, but we also see their connection with
“lamp™.

3.3.3. Generalizations

The occurrence of complete subgraphs suggests that a concept of generaliza-
tion be introduced. Words of a complete subgraph are highly interrelated so
that it might be possible to represent them by a single concept which is
substituted for the whole cluster and represents this cluster in its relations
with the rest of the universe. For the cluster of containers “creamjug”, “cup”,

“pitcher” and “punchbowl”, for example, a generalization would be some-
thing like “‘container for nutritive fluids”.
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Picture
Newépaﬁer'

- Iinen sheet

5 Binccular
7 Book
10 Breaf-knife
17 Creamjug
18 Cup :
27 Foothall
28 Fork
29 Frisbea
31 Glasses
35 Knife

36 Tamp

44 Needle

46 Pastry-cutier
49 Pitcher '
51 Punch-bowl

82 Rad;o_
‘5% .Recordplayer

56 Tape Recorder
60 TV Set

Fic. 4. Subgraph of R; for p = 3, containing the unit *“ lamp.”

A good generalization of words of a complete graph should keep this
“graph complete when it itself is added. Furthermore, it should represent the
cluster in its relations with the “outside world” in the same way the words
“of the cluster do it. Formally, we thus define a generalization in the following

way:

A word u,, not necessarily already in U, is a generalization of a complete

‘cluster of rank p of words u,, ..

ditions hold:
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W u)<p+1, iLji=1,2,...,p+ I, e

@) rlug, u) ~ r(u,w), wel, i=1,.. WP+ 1
We leave the second condition in the vague form since the universe will not
be that neatly structured as to make an equal sign feasible. Besides, one might
also want to apply the concept of a generalization when a graph is only
nearly complete, but not quite. Therefore, we take the definition as a guide
rather than an obligation. For we feel that the real world and the relations of
meaning in it cannot totally be forced into a rigid scheme,

Generalizations can either be obtained by defining them explicitly, i.e., by
constructing their representation by hand, or by intersecting the description
lists of the words in the cluster. This intersection can be defined variable wise
for the generalization u, of units in a subset U.

xiu) = 1if x,(u) # x,(u,,) for some u, u, € Us}
x{u) for some ue U, otherwise [
. We tested units which we expected to be generalizations and which were
obtained by both methods, with the good result that they satisfied the above
definition, i.e., that they were indeed acceptable generalizations.

3.4. A validity test: Verbal analogy problems

As a validity test for our measure of association, we have written a program
which solves verbal analogy problems of the type “u; is to u, as u, is to
which of the following: u,, s, ug and u, 7. We chose analogy problems as a
possible test since they are well-defined tasks and since there exist earlier
programs which deal with these problems but apply different solution
mechanisms according to their different representation of meaning, A discus-
sion and comparison of the programs will follow the presentation of our
solution mechanism and its results.

3.4.1. The solution mechanism

The problem is to choose a u, out of a set of several choices so that the
equation

iUy = Uyl (10)
is satisfied, where the operator ““:” is some measure of association between
two units, which expresses their relationships. Since, in our case, the u; are
words with a more or less complex meaning, We cannot expect an exact
solution of the equation. We might think of using

[Aly, 4,) — Alus, 4,)] = minimum (xe{4,5,6,7)
as a possible way to find the solution w,, but we would realize that highly
related units need not have the same absolute association score—as we
remarked in Section 3.1.3—and that this approach therefore fails,
Ariificial Intelligence 6 (1975), 75-99
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In terms of our normalized asymmetric measure of association, the ranks,
we can interpret uy ! 4, as r(uy, ¥,), i.6:, we measure the directed “distance™
from u, to u, on the association scale of ;. But since eq. (10) has four other
possible forms given by the four possible ways in which we can write eq. (10),
keeping the operator “:”, we suggest that the solution of an analogy problem
may be that u, (x & {4, 5, 6, 7}) for which the following score S(x) is minimal:

S(.?C) = lr(uls ul) - I’(ug, ux)] : (r(ul! uZ) + P’(H3, ux))

+ |r(u2, ul) — Uy, u3)[ ' ("(uzs ul) + r(uxs u3))

+ [P(uy, u3} — r(ua, w)| - (r(wy, us) + r(us, u))

+ r(u, 1)) — rug, up)] - (r(us, ug) + r(ug, uy)).

Here the sum of the ranks as a factor of the absolute difference takes care of

our preference for a u,, for which the rank difference in the low ranks is

small, compared with the same rank difference between high ranks. We have

the feeling that strong associations have more weight in the analogy than

weak associations. Large ranks of a word often vary considerably in regard to

highly related words. Since, in an analogy problem, #, is either more associ-

ated with u, or with u;, and since the less association is likely to be represented

by a rank in that range of the association scale where the ranks are not so

meaningful, we reduce the expression for the score S(x) to a score S'(x), by

summing only over those products which are determined by the two lowest

of the ranks r{uy, u,), r(uy, ), r(us, 43} and r(us, u;). The solution of the
problem then is that #, with the least score S(x).

3.4.2. The results

A FORTRAN program was written which uses the solution mechanism of 3.4.1
to solve analogy problems. The possible words were those 60 words which are
listed in Section 3.3,2. The program can generate its own analogy problems
with the help of a random number generator.

The solutions the program gives are always the most plausible solutions in
the case of meaningful problems. The reader is invited to try the problems
in Table V himself. We add the scores on the basis of which the program
made its choice. A comparison of the programs results with those of human
subjects was not performed.

3.4.3. Discussion

Unlike other analogy programs with specifically designed word stores, our
program acts on a set of words which were not primarily described in regard
to their use in analogy tests. Therefore, analogy in our program can only
relate to the appearance, function, environment or association of an object
which is subject of the test. As a consequence, in some examples the analogy
Artificial Intelligence 6 (1975), 75-99
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seems to be rather weak. With a more specifically designed universe we can
expect more interesting analogy problems, Their solution might, however,
need a slightly refined mechanism where several classes of association
measures and ranks are computed and evaluated which relate to different
classes of categories. Nevertheless, such an analogy is a valid test in an

TABLE V. Analogy problems and their solution (the solution is in italics)

uy : Hy = Hs : ? Score 8"(ux). .
baby-boy baby-girl father mother 0
newspaper 2355
dog 98
girl 16
frisbee flower tennis racket lamp : 5971
carrots 75
pastry-cutter 1613
radio - 2357
knife pastry-cutter pitcher record-player 819
radio 1200
punch-bow! 11
socks 397
tennis-racket frisbee lamp candle 15
. binocular 146
football 1680
pickle 6392
tape recorder binocular tv set baby-boy 2987
glasses 117
. bird 1447
. football ' 131
tape recorder radio newspaper hird =~ 3219
: . : book 10
bed 16
: ) mattress : 187
tomato carrots beer needle. 3672
mouth 4595
mother 5535
milk 13
cigar cigarette ear (animal) ear (human) 95
father 144
girl 150
green salad 1889
flower green salad needlc thread 348
bread 2276
bread knife 51
' butter 4029
hand human leg ‘needle thread 315
mouth 2588
Juice 4220
bed 621

Artificial Intelligence 6 (1975), 75-99



96 R. M. HARALICK AND K. RIPKEN

attempt to examine the qualities of our association measure and its validity,
i.e., whether it is able to structure the meaning space of a set of words. On the
basis of the results, one can say that the used association measure passes the
test. It is able to relate the words to each other in a natural way.

The results of the analogy test are quite surprising if one remembers the
simple solution mechanism which is solely based on the m(m —1) association
measures between the m words used in the test. All the information needed is
compactly contained in these measures so that it is not necessary to look at
the basic descriptions of the words in order to compare them. Reitman {11]
with “ARGUS” and Tuggle et al. [15] work with lists attached to the used
words in order to solve analogy problems of the same type. “ARGUS” uses
an associative network (see Section 2.1) with parallel processing; Tuggle et al.
use a category system to describe the words; the description lists of the words
in the problem are then compared by the program in order to find the right
choice. Our approach appears to be appealing in its simplicity and elegance
compared with these earlier approaches. We concede, however, that im-
portant dimensions of meaning are not yet contained in our association
measure, and thus neglected in the analogy program. This lead us to a general
discussion of our approach, its possible applications and its current short-
comings, in the next section.

4. Discussion

The discussion concerns two questions, possible applications of our proposed
model and its current shortcomings. In Section 2, we have already reported
about former research of other people. So far we could only tell about the
very first experiments with the method itself, not yet about applications—
except the verbal analogy test. Therefore, the following section on possible
applications is only a sketch and, at the same time, an enumeration of
problems whose solution is a future task.

4.1. Possible applications
It should be clear that a method to represent the meaning of words and their
relations is only relevant in regard to its application in a larger program

which is to process natural language.

In Winograd’s remarkable program [16], nouns, adjectives and verbs are
defined by two functions “NMEANS” and “CMEANS” which contain the
semantic markers for the noun or adjective, and for the possible subject and
object of the verb, resp. The semantic definition of a “ball” is, for instance,

(NMEANS ((# MANIP #ROUND) ((#IS#+BALL))),

where the first argument of NMEANS contains the two most specific
Artificial Intelligence 6 (1975), 75-99
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semantic markers—the next higher markers in the hierarchy of ~semantic
markers—the next higher markers in the hierarchy of semantic markers are
implied—and the second argument explicitly says that the defined ob_]ecl “ig”

a “ball”. An example for the definition of a verb is:

(CMEANS (((#PHYSOB) (#PHYSOB)) (#SUPPORT #1 #2) NIL)).
Again, “#PHYSOB” is a semantic marker, here for both the object (#2)
and the subject (#1) of the verb “to support”.

We propose to use the coded description lists of words instead of the
semantic markers of Winograd or other similar definitions. This is still no
change; when we, however, want to see whether a definition applies in a
certain case, we propose to generally compute the measure of association in
order to compare candidates. That means we would like not to literally
compare the features of, e.g., a ““ball” with the markers of the subject of “to
support” but to compute the association measure of the full description lists
in order to decide a match.

One problem emerges here: How can we determine a threshold for the
association measure which it has to exceed for a successful match. This
threshold clearly is a function of the composition of the universe and the
category system. A threshold could be indirectly defined by a maximal
allowed rank, but since this rank is a function of all the units, the adding of
words to the universe would require the revision of the thresholds. This
defect can be fixed by using a threshold between 0 and 1 and comparing it to
the rank divided by the number of words in the universe.

We feel that the following advantages render worthwhile the efforts whlch
the sclution of this problem requires:

(I) The association measure provides us with a simple procedure to resolve
semantic ambiguities; the highest association measure decides.

(2) We can get an idea of the context of a text by simply clustering the
occurring words with the help of the association measure.

(3) We can use generalizations in the sense of Section 3.3.3 in the definition
of verbs.

(4) We can—and this is the most important advantage—probably imple-
ment mechanisms of generalization, assimilation and reasoning by analogy,
and thus build programs which are able to learn and to structure knowledge
about the meaning of words in a reasonable way,

Instrumental to these processes is a useful interaction between the well-
defined categorical descriptions and the association measure. Note that the
categorical information would not only be used to generate the associative
one but that it would also be involved in the processes of generalization and
concept learning. A few comments should be made on the last suggestions.

The overall context of a discourse could be defined by clusters of occurring
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words with the help of one of the relations R, or R, of 3.1.3. Eventual
ambiguitics which depend on the overall discourse could then be resolved by
calculating the association measures with a cluster representative or with a
cluster generalization. This idea, to define a coniext by the clusters of highly
related words, resembles the approach of Sedelow and Sedelow [13] to
stylistic analysis with the help of thesauri. The association mechanism could,
of course, also be useful in Information Retrieval Systems, for example, to
interactively find keywords.

Subject and object or other characteristics of a verb could be defined by
generalizations as in 3.3,3. The subject of human activities could, for instance,
be a generalization of “human being”,

We can imagine a program which learns such generalizations from particular
instances. Let a program encounter the commands “pick up a block” and
“pick up a pyramid”, it could use these particular occurrences of the verb
“pick up” to find a generalization of “block™ and “pyramid” to use this as a
definition of the object of “pick up”. On the basis of high association measures
the program could try new candidates, and find new generalizations if it is
given feedback signalizing correctness or falseness of a guess. Thus, the
program could learn by guessing and experience, though to a modest extent.
After new concepts have been added to the universe the concomitant
variations of the values could be recalculated. Of course, this would change the
associations; but humans also encounter a change in their view of things
when they gain new knowledge about them. It might be interesting to see
whether the dullness of the association mechanism could make the program

.come up with unexpected processes and answers. These ideas are still vaguely
stated, however quite appealing.

4.2. Current shortcomings

Like nearly all Artificial Intelligence papers which deal with natural language
processing, our paper is based on experiments with a subset—though a
reasonably sized one for a first start—of concrete English words. A large
universe will create some problems because of the amount of computation
involved in the association measure. A larger universe will also require more
specific categories in order to distinguish between highly similar objects.
As already mentioned in 3.3.1, the efficiency of a category system should be
investigated with a closer look at the concomitant variations of the values.

It is probably advisable to distinguish between the two cases that a variable
cannot be decided or that it is not applicable, in the description of a word.
Morcover, the category system does not contain important aspects of
meaning like special “whole/part” relations, the “opposite/similar”, “final”
and “causal” relations. How to implement these in the category system or
Artificial Intelligence 6 (1975), 75-99
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how to combine the category system with a linked-list dictionary in a larger
program, still has to be solved. One would also like to have a critical look at
the influence of the composition of the universe on the statistical measures.

Finally, one could define a similarity measure between the words in order
to find still more structure in U. This definition should be based on an
asymmetric measure like the conditional concomitance.

Despite all these problems, we regard this approach as valuable since it
bridges the gap between categorization and associations, and allows for many
useful applications, though it only concerns a subset of all the problems on
the way towards an efficient Natural Language Processing System.

REFERENCES

1. Deese, J. On the structure of associative meaning. Psychological Review 6% (1962),
161-175.

2. Goodman, L. A, and Kruskal, W. H. Measures of association for cross classifications.
J. Am. Statist. Assoc. 49 (1954), 732-764.

3. Goodman, L. A. and Kruskal, W. H. Measures of association for cross classifications
H: Further discussion and references. J. Am. Statist. Assoc. 54 (1959), 123-163,

4. Haralick, R. M. and Haralick, J. G. Behavioral problems of deaf children: Clustering
of variables using measures of association and similarity. Partern Recognition 3 (1971),
269-280.

5. Hebb, D. O. The Organization of Behavior, Wiley, New York (1949).

6. Hunt, E. B., Martin, J. and Stone, P. J. Experiments in Induction. Academic Press, New
York (1966).

7. Katz, J. J. and Fodor, J. A. The structure of a semantic theory. The Structure of
Language, J. J. Katzand J. A, Fodor (eds.), Prentice Hall, Englewood Cliffs, N.J. (1964).

- 8. McCalla, G. I. and Sampson, J. R. MUSE: A model to understand simple English.
Comm. ACM 15 (January 1972), 2940,

9. Quillian, M, R, Semantic memory. Semantic Information Processing, M., Minsky (ed.),
MIT Press, Cambridge, Mass. (1968), 216-270,

10. Raphael, B. “SIR*': A computer program for semantic information retrieval. Semantic
Information Processing, M. Minsky (ed.), MIT Press, Cambridge, Mass. {1968}, 33-134,

11. Reitman, W. R. Cognition and Thought. Wiley, New York {1965).

12. Schank, R. C. and Tesler, L. G. A conceptual parser for natural language. Proceedings
of the IICAI (1969), 569-578.

13. Sedelow, 8. Y. and Sedelow, W, A, Categories and procedures for content analysis in
the humanities. The Analysis of Communication Content, Gerbner et al. (eds.), Wiley,
MNew York (1969), 487499,

14. Siklossy, L. Natural language learning. Representation and Meaning, H. A. Simon and
L. Siklossy (eds.), Prentice Hall, Englewood Cliffs, MN.J. (1972), 288-328.

15. Tuggle, F. D., Moore, D., Vestal, 8. C. and Isaacs, R. Computer solution of verbal
analogy problems. To appear.

16. Winograd, T. Understanding natural language. Cogn. Psych. 3 (1) (1972).

17. Wittgenstein, L. Philosophical Investigations. Basil Blackwell, Oxford (1953).

18. The English Duden—Pictorial Dictionary. 2nd revised ed., Adler, Mannheim (1960).

Received December 1973; revised September 1974
Artificial Intelligence 6 (1975), 75-99



