Journal of Mathematical Imaging and Vision, 2, 173-183 (1992).

© Kluwer Academic Publishers. Manufactured in The Netherlands,

Unification of Nonlinear Filtering in the Context of Binary Logical

Calculus, Part I: Binary Filters

EDWARD R. DOUGHERTY

Center for Imaging Science, Rochester Institute of Technology, Rochester, NY 14623-0887

ROBERT M. HARALICK

Department of Electrical Engineering, University of Washington, Seattle, WA 98105

Abstract. The mathematical structure of nonlinear filtering is expressed in the context of binary
logic. This first part of a two-part study concerns the binary setting. Operator properties, such
as antiextensivity and idempotence, are expressed in finite logical expressions, as are the Matheron
representation for morphological filters and its extension to translation-invariant operators, thereby
giving simplicity to both operational properties and representations and also exposing the manner in
which logic methods can be used for filter design and analysis. The second part of the study treats

gray-scale filters.

Key words. nonlinear filter, morphological filter, image algebra, representation, cellular logic

1 Introduction

The present two-part paper secks to address a
basic question regarding mathematical imaging:
What is an appropriate algebraic framework for
image processing? The goal is not to seek
the most abstract setting or the most complete,
nor is it to present new mathematics or a new
representation theory. In fact, in it we step
back from some existing algebraic frameworks to
reformulate some basic filter theory in a practical
setting, that of binary logical calculus. The
word nonlinear in the title reflects the fact that
the filters considered herein are nonlinear, but
given the limitation to practical cellular-logic
implementation, it is in a sense redundant since
there is no vector-space structure within which
to ground linearity. Nevertheless, since we are
concerned with algebraic structures classically
identified with nonlinear image processing, the
title appears appropriate.

Loosely, an image algebra is a collection of
objects and operations between these objects
that form an algebraic structure in which to for-
mulate image-processing algorithms. Sternberg
[1] has used the term image algebra to refer to
morphological (Minkowski) algebra, and it is in

this context that Crimmons and Brown [2] use
the same term in relation to automatic shape
recognition. More recently, image algebra has
been used to describe two algebraic structures
containing more structure than morphological
algebra. One image algebra, developed by Rit-
ter and colleagues [3], [4], is heterogeneous in
that it contains many sorts of entities, the es-
sential two being images and templates. The
other, developed by Dougherty and Giardina
[5], possesses a heterogeneous form and, as fur-
ther developed by Dougherty [6], [7], a homo-
geneous form. Both image algebras serve to
represent image-processing operations, both lin-
ear and nonlinear. In particular, they serve
as a framework for linear operations because
cach contains the linear algebra of matrices as
a subalgebra, and they serve as a framework for
nonlinear operations because each possesses the
necessary lattice structure. Regarding the neces-
sity of structure within image algebra, Dougherty
and Giardina [8] take special note of the induced
nature of subalgebras. But what subalgebras
need to be induced? Indeed, what subalgebras
should be induced, given the computational na-
ture of image processing?

In point of fact, digital images do not form a

77

174

vector space relative to induced image addition
and scalar multiplication. Strictly speaking, be-
cause the gray range is discrete and finite, image
addition is not even closed. Even if we ignore
the finitude of the gray range, we are still con-
fronted by discreteness, so that the whole notion
of linearity, including linear operators, cannot
be subsumed within any image algebra that re-
mains faithful to digital processing. This does
not mean that richer mathematical structures
cannot be of use, only that one should not see
these as fully exhausting the algebraic question.
It should be kept in mind that digital process-
ing involves logic gates and bounded finite 0-1
representations. If we are to stick more closely
to actual processing when we propose mathe-
matical representations, then we need to stay
within the confines of digital logic (or discrete
set theory).

The set-theoretic properties of binary image
filtering have been laid down by Matheron [9].
These include monotonicity, extensivity (antiex-
tensivity), and idempotence. These are logical
(or set-theoretic) concepts, and they play dom-
inant roles in binary filtering. Matheron also
carefully examines the role of translation invari-
ance. This latter concept involves the transla-
tional structure within which image processing
takes place and is related to image stationarity.
If one reads Matheron closely, it is clear that
the basic morphological operations of erosion,
dilation, opening, and closing do not appear by
chance in image processing. Indeed, he recog-
nizes that any translation-invariant, monotoni-
cally increasing operator must be formed from
a union of erosions and that any translation-
invariant, increasing, antiextensive, and idem-
potent operator must be formed from a union
of openings. Hence, by the very nature of digi-
tal image processing, mathematical morphology
must play a key algebraic role, and therefore it
is not surprising that Minkowski (morphologi-
cal) algebra is central to the image algebras of
both Ritter et al. and Dougherty and Giardina.

The algebraic framework for binary images
established by Matheron [9] is extended to
gray-scale images by means of lattice theory by
Serra [10], [11] and Matheron [12]. They recog-

78

Dougherty and Haralick

nize that a complete lattice is the appropriate
framework for the algebraic properties central
to morphological processing and that the ba-
sic Matheron propositions thereby apply. Per-
haps more importantly, the abstract lattice set-
ting provides a framework for image processing
that is more directly related to its logical (com-
putable) nature than are richer algebras (con-
taining vector-space subalgebras). More recent
papers have further substantiated the proposi-
tion that a complete lattice provides the set-
ting for the “algebraic basis of mathematical
morphology” (Heijmans and Ronse [13], [14],
Heijmans [15], Ronse [16]).

The central role of binary mathematical mor-
phology arises from the set-theoretic aspects of
binary processing; the key role of cellular logic
arises from the manner in which image opera-
tors must be implemented on a digital computer.
Cellular logic, and relevant related architectures,
impress themselves on the algebraic analysis of
image processing because processing is digital.
It might be tempting to separate the computa-
tional and the abstract-mathematical problems,
treating the former as architectural and the latter
as algebraic; in fact, however, they are interre-
lated. Here is where we step back from the
abstract set-theoretic analysis of Matheron and
the subsequent lattice-theoretic approaches.

In part I of the present study we begin with
cellular logic and explain the manner in which
algebraic binary-filter theory emerges therefrom
(see part II for gray-scale analysis). Such an
approach naturally places those concepts typ-
ically considered to be morphological directly
into the framework of cellular logic, which,
of course, explains (in hindsight) the major
role of cellular logic in the implementation of
morphological processing. In particular, the
minimal Matheron representation of increasing,
translation-invariant binary-image operators as
unions of erosions reduces to the well-known
proposition that every finite positive Boolean
expression possesses a minimal sum-of-products
form. In addition, the extension of the Math-
eron representation by Banon and Berrera [17]
to binary-image operators that are merely trans-
lation invariant, specifically, that these can be

Unification of Nonlinear Filtering, Part I

represented by unions of hit-or-miss operators,
is seen to have a straightforward interpretation
in cellular logic.

One might ask whether there is anything to
be gained by the exercise of stepping back from
the more general lattice framework, other than
perhaps some readjustment of thinking. In fact,
as will become evident, there is much more to
be gained. By recognizing the practical Boolean
nature of morphology and by formulating filter
theory in the language of logic design, we see
that standard computing tools, such as Karnaugh
maps and Quine-McClusky reduction, can be
applied to the construction of morphological op-
erators. In operator design we are confronted
by the need both to compose operator repre-
sentations and, on the other hand, to decom-
pose operators into constituent parts satisfying
different algebraic constraints. Having a clear
appreciation of the discrete logical character of
nonlinear operators permits application of ex-
isting automatic routines.

2 Cellular-Logic Filters

We consider translation-invariant, moving-wind-
ow operators on the space Sg of binary signals
defined on Z, the set of integers. We assume
that the window W (m) is centered at m and is
of length 2M + 1. If ¥ is an operator of the
specified type and z = {z[m]} is a binary signal
in Sg, then

¥(z)[m] = ¥(z[m — M],z[m - M + 1],
.o z[m 4+ M), 1)

where we do not distinguish between the op-
erator and the function rule defining the op-
erator, calling them both ¥. Relative to com-
puter architecture, window logic is manifested
as cellular logic, and therefore the filter ¥ will
be called a cellular-logic filter. The choice of
Z as the domain space for Sp is for conve-
nience. Insofar as the subsequent logical anal-
ysis is concerned, the operative functional ex-
pression is (1), which depends only on denu-
merability (discreteness) of the domain and the
finiteness of the window. In a setting different
from Z (say, binary images defined on Z x Z)

175

the window can be of any shape and the or-
dering z[m — M), z[m — M + 1],...,z[m + M]
merely represents some given listing of the way
in which the window is to be scanned. In partic-
ular, the assumption that the window is centered
in (1) serves only the purpose of notational con-
venience.

Since ¥ is translation invariant, much of its
analysis can be accomplished by considering the
single output value ¥(2)[0], whose value de-
pends on the window W(0) = {-M,-M +
1,...,M} centered at the origin. @(z)[0]
can be considered to be a binary functional
on the set M of {0,1}-valued functions de-
fined on W{0). Every element of M can be
represented by a string of ones and zeros,
(zx[-M],z[-M + 1],...,z[M]). From a set-
theoretic perspective, every element of M is
a subset of W(0), where 5 lies in the subset if
and only if z[j] = 1. Union and intersection in
W(0) are replaced by the logical maximum and
minimum operations

zVy = (z[-M]Vy[-M],

oy 2[M] v y[M]), (2)
Ay = (z[-M] A y[-M),
- 2 M] A y[M]) (3)

in M. Moreover, the order relation z < y if
and only if z[:] < y[i] for i = —M,..., M cor-
responds to the subset relation in W(0).

As a binary functional, ¥(z)[0] can be written
in logical format as a maximum of minima or,
by using logical notation, as a canonical sum of
products

P(@)[0] =) o[- MM
z[—M + 1p-M+
s B[R, (4)

where, for j = —M,..., M, p[j] is -1, 0, or 1
and where z[j]™' is the negation of «[j] (also
written z[j]') and z[j]° means that the logical
variable z[j] does not appear in the product.
In other words, ¥(z)[0] is a Boolean expres-
sion over 2M + 1 binary variables. As is well
known, there are many expressions equivalent
to (4), and, in fact, there are methods, such as

79

176

Karnaugh maps and the Quine-McClusky pro-
cedure, for minimizing the number of logic gates
forming canonical sum-of-product expressions.

Owing to ftranslation invariance the logical
expression (4) applies to ¥(z)[m] for any m;
the p[j] remain the same:

U(z)[m] = Z z[m — MM
e m[m + j]I’m
cooz[m + MM, (5)

The variables z[7] lie in the translated window
W{m}) = W{(0) + m centered at m.

Another way of looking at the expansion (4)
[and therefore at the expansion (5)] is to pro-
ceed in the following manner: (i) group the
variables with +1 exponents in each product,
and let W;(0) denote their product; (ii) group
the variables with —1 exponents in each product,
and let W;(0) denote their product; (iii) ignore
all variables with 0 exponent. Then, omitting
null products, unless ¥(z)[0] is the zero func-
tion, expression (4) takes the form

¥ (2)[0] = Y Wi(0)Wi(0)', (6)

where it is possible for W;{0) or W;{0)’ to be
null, in which case it is denoted by 1.
Geometrically, W;(0) can be interpreted as
a subwindow of W{0) corresponding to positive
Boolean variables (exponent +1) and W;{0)' can
be interpreted as a subwindow corresponding to
negative Boolean variables (exponent —1). We
will subsequently make use of this convention by
considering translates W;(m}) and W;(m)'. For
instance, if W{0) is the five-point window and

¥(2)[0] = z[-1]=[0]=[1]

+z[0]=[1]

+z[—1]z[1]=[2], M

then Wi(0) = z[-1]z[0]z[1], W {0}y = 1,

W (0) = z[0]z[1], Wa(0) = 1, W3{0) = z[-1],

and W3{0) = z[1]'z[2]. Among other things,

the subwindow notation facilitates writing out-

puts at points other than the origin. Here, for
instance, ¥(z)[m] is written simply as
¥(z)[m] = Wi(m} + Wa(m)

+ W (m)Ws(m)', (8)

80

Dougherty and Haralick

where Wi(m) and W;{m)’ refer to the trans-
lated subwindows W;{(0) + m and W;{0) + m,
respectively.

3 Increasing Filters

A cellular-logic filter ¥ is monotonically increas-
ing if <y implies ¥(z) < ¥(y). Owing to
translation invariance, ¥ is increasing if and
only if (z[~M),...,z[M]) < (y[~M],...,y[M])
implies ¥(z)[0] < ¥(y)[0]. ¥ is increasing if
and only if it can be expressed as a minimal
sum of products for which there exists no nega-
tion in the expansion; i.e., W;{0)' = 1 for all i.
(In logical terminology, ¥ is a positive Boolean
function.) Hence an increasing filter ¥ has a
canonical representation

¥ (z)[0] = W1(0)
+Wa2(0) + -+ + W,(0) 9)

that possesses a minimal number of product
terms. The minimal expression is unique and
can be obtained from any other sum-of-products
expression. In general, any number of products
can be adjoined by summation to the minimal
expression without changing the filter so long
as each is formed from an existing product by
adjoining positive factors. In the minimal ex-
pression (9) the factors of W;(0) do not form a
subset of the factors of W;(0), for j # 1.

There is a natural ordering on binary oper-
ators. Suppose W¥; and ¥, are two operators.
We write ¥, < ¥, if and only if ¥ (z) < ¥y(x)
for any signal =. Now suppose ¥; and ¥, are
increasing and in minimal sum-of-product form.
Then ¥ < ¥, if and only if for any product
of ¥, there exists a product of ¥ whose factors
form a subset of the factors of the given product
for !pl-

An increasing cellular-logic filter ¥ is said to
be antiextensive [extensive] if ¥(z) < z [¥(z) >
x] for all z. Relative to a sum-of-products
expression for ¥(z)[0], ¥ is antiextensive if and
only if each product term of ¥(z)[0] contains
z[0]. ¥ is extensive if and only if it possesses
the singleton product term z[0] in its minimal
sum-of-products representation.

Unification of Nonlinear Filtering, Part |

4 Iteration

Of great concern in filtering is iteration: given
filters ¥ and @, what can be said about the prod-
uct $¥? For the moment, we consider arbitrary
filters ¥ and &, not necessarily increasing, and
we examine the sum-of-products representation
for #¥. The cumbersome part of the problem
is this: when & operates on ¥(z), each variable
y[m] in y = ¥(z) is expressed as a sum-of-
products of the original z variables lying in the
window W (m) about z[m]. Thus the expression
for @@ (x)[0] potentially includes the variables
z[-2M], 2[-2M + 1],...,2[2M]. The expres-
sion for #¥(z)[0] results from putting the expres-
sions for ¥(z)[-M], ¥(z)[-M +1],...,¥(z)[M]
into the expression for &(z)[0] in place of
z[~M], z[-M + 1],...,z[M)], respectively. A
key point is that once this has been done, re-
duction can be done to achieve a minimal-gate
representation, and this can be accomplished
automatically by some procedure such as the
Quine-McClusky algorithm.

If ¥ and @ happen to be increasing, the same
reasoning applies; however, here reduction is
much simpler. We need only expand the terms
within the minimal sum-of-products representa-
tion for @ when we replace the variables x[j] by
¥(z)[s] and eliminate redundant products. This
can always be done automatically.

As an illustration, consider the three-point
window about the origin and let

U(z)[0] = z[-1]z[0] + z[0]z[1]. (10)
Then

v (2)[0] = (z[-2]e[-1] + =[-1]=[0])
(z[~1]z[0] + =[0]=[1])
+(z[-1]=[0] + z[0]=[1])

(z[0]z(1] + =[1]=([2])

= ¥(z)[0](z[-2]z[~1] + =[—1]=[0]
+a[0]z[1] + =[1]z[2])

= ¥(z)[0](x[-2]z[-1]
+¥(z)[0] + z[1]z[2])

= ¥(z)[0], (11)

the last equality following from the fact that for
any logical expression ab, where a < b, ab = a.

177

For this particular example we obtain the very
special relation U@ = ¥,

5 Idempotence

A filter ¥ is said to be idempotent if U@ = W.
For increasing filters idempotence can be charac-
terized in terms of sum-of-products expressions.

Consider the minimal sum-of-products expres-

sion for an increasing filter ¥. Some product
terms of ¥(z)[0] contain z[0], and some do not.
Thus we can express ¥(z)[0] as

T(2)[0] = 2[0] > fi(z[-M],...,z[-1],

z[1],...,z[M])
+> gi(a[-M],...,z[-1],
2] L M]); (12)

where f; and g; are products of the variables in
the centered window W{0), excluding the vari-
able z[0]. If z[0] happens to be a product term
of ¥(z)[0], then one of the f; is 1 and with-
out loss of generality we assume f; = 1. If
the second sum is empty, then ¥ is antiexten-
sive; otherwise, it is not. If f; = 1, then ¥
is extensive; otherwise, it is not. We write the
decomposition (12) as

¥(2)[0] = 2[0]%(x)[0] + ¥i(2)[0]. (13)

Operating a second time by ¥ yields

PP (z)[0] = ¥(z)[0] > fi(¥(x)[-M],
o ¥ (@) [-1], ¥ (2)[1],
o T()[M]).
+ > gi(W(2)[-M],
e ¥ (z)[-1], &(2)[1],
- U(2)[M]). (14)

In terms of the decomposition (13) idempotence
takes the form

¥ (@)[0] = & (=)[0]%(¥())[0]
+8(¥(2))[0], (15)

which is a logical identity of the form a = ab+-c.
A necessary condition for the identity is ¢ < a.

81

178

Two sufficient conditions are ¢ = a and b >
a> c.

A key subcase concerning idempotence for
an increasing filter ¥ is when the operator is
antiextensive. In such a situation ¥; is null, so
that equation (15) is of the logical form a = ab,
and hence a necessary and sufficient condition
for idempotence is

¥ (z)[0] < @o(¥(2))[0]. (16)

This is precisely what happened for the antiex-
tensive filter of equation (10). For it,

o(@)[0] = «[~1] + 2[1], (17)
(@ (@))[0] = 2[~2)a[~1] + o[~1]a[0]
+z[0)e[1] + 2[1]=[2). (18)

The filter of equation (10) belongs to the im-
portant subclass of all increasing antiextensive,
idempotent cellular-logic filters.

The filters in this special class are called 7-
openings, and within this class are the openings,
which, in the context of a fixed window W {0),
will be called W {0)-openings. A W (0)-opening is
defined by specifying a primitive product whose
first factor is #[0]. To wit, let

ho = z[0)z[51]else] - - 2[5], (19)

where 0 < j; < -+« < j, < M, be the primitive
product. For k= 1,2,...,r let

he = x[—gilzlii — k] - 2[d — Jk]. (20)
Define the W{0)-opening ¥(z) by
T()[0] = ho+ hi+ - +h.. (21)

Since z[0] appears in every product, ¥ is antiex-
tensive.

By using strictly logical calculus it can be
shown that every W(0)-opening is idempotent.
We consider » = 2, the proof for general r
being similar but tedious. For r = 2 express
ho, hl, and hz, as h() = ’E[O]m[p]m[q], hl =
z[—plz[0]z[q — p], and hy = z[—qz[p — q]z[0],
so that

¥ (2)[0] = z[0](z[p]x[q]
+az[—plz[g — p]
+z[—glz[p — q]), (22)

82

Dougherty and Haralick

the sum being ¥y(z)[0]. Moreover,

Yo (¥ (2))[0] = ¥(z)[p]¥(z)[q]
+¥(2)[—pl¥(z)[q - P]
+(z)[-q)P()[p — q]. (23)
There are three summands, each possessing two

factors, forming ¥,(¥(z))[0]. The factors of the
first summand are

¥(z)[p] = =[p)(=[2p]=[p + 4]
+z[0]2[q]
+a[p - glz[2p - q]),
¥(z)[gq] = z[ql(z[p + q]=[2q]
+alg — ple[2q — p]
+z[0]z[p]). (24)
Since each factor contains the summand z[0]z[p]
z[q] = hg, the product ¥(z)[p]¥(z)[q] also con-

tains the summand hy. The factors of the second
summand forming ¥, (¥(z))[0] are

¥(z)[—p] = z[-pl(z[0])z[q — p]
+a[—2plz[g — 2p]
+a[—p — gle[—q]),
¥(z)[g — p] = z[g — pl(z[q]2[2q — p]
+2z[q — 2plz[2q — 2p]
+z[—p]z[0]). (25)

Each factor contains the summand z[—p]z[0]
z[g — p] = hy. Hence ¥(z)[-plY(z)[g — p] also
contains the summand h;. Finally, a simi-
lar computation shows that the final summand
forming Wy(¥(z))[0] contains h,, and therefore
Vo(¥(z))[0] = @(z)[0] and ¥ is idempotent.
Although every opening is a T7-opening, not
every increasing, antiextensive, idempotent cell-
ular-logic filter is an opening. For instance,

¥(z)[0] = 2[0](=[-2]
+z[-1] + z[1] + z[2]) (26)
is increasing, antiextensive, and idempotent but
is not an opening.
It is, however, a sum (union) of openings since
¥(x)[0] = (z[-1]z[0]
+z[0]z[1])
+(z[-2]2[0] + =[0]=[2]) (27)

Unification of Nonlinear Filtering, Part I

and both summands are openings. The expres-
sion of T-openings as unions of openings is a
question that, starting with Matheron [9], has
been long addressed in mathematical morphol-

ogy.

6 Monotonic Cellular Logic and Binary Math-
ematical Morphology

The advantages of implementing binary math-
ematical morphology in cellular-logic architec-
tures have long been recognized. The success
of the cellular approach is based on the fact
that binary morphological operations are actu-
ally reformulations of Boolean expressions, so
that binary Minkowski (morphological) algebra
is equivalent to cellular-logic algebra, which is
itself simply Boolean algebra with translations.
We examine this equivalence.

Suppose ¥(z)[0] is defined by a single product

¥(2)[0] = =i]lse]- - [4:], (28)

where ~M < j; < jo < +++ < 5. < M. Let
Ag(0) = {j1,72,...,7-} be the subset of W(0)
associated with the product ¥(z)[0]. Then
Z(z)[0] = 1 if and only if Ay(0) is a subset
of the set corresponding to =, this latter set to
be denoted by (z). In general, ¥(z)[m] = 1
if an only if Ay(m) is a subset of (z). Since
Ap(m) = Ay(0) + m, this equivalence can be
expressed in morphological terms: if we let ¥
denote the set mapping corresponding to the
logical mapping ¥, then

v((z)) = (=) © Ag (0}, (29)

where © denotes erosion. Because the collec-
tion of 0-1 signals is isomorphic to the collection
of integer subsets, ¥ and ¥” are actually the
same operator, so that (29) states that every
single-product increasing logical binary opera-
tor defined over the window W (0) is equivalent
to an erosion whose structuring element lies in
W{0).

More generally, a cellular-logic operator ¥ is
defined by a sum of products possessing no nega-
tions if and only if ¥ is monotonically increasing.
Since the logical operation + is equivalent to
union, ¥ is a positive Boolean expression if and

179

only if it is equivalent to a union of erosions,
the structuring elements in the erosion expan-
sion corresponding to products in the logical
expansion. In sum, we have four equivalent
conditions: (i) ¥ can be expressed as a sum
of products possessing no negations; (ii) ¥ is
monotonically increasing as a logical operator;
(i) ¥ is monotonically increasing as a set op-
erator; (iv) ¥ ™ is a union of erosions.

Define the kernel of an increasing logical filter
¥ to be the collection Ker[¥] of all signals =z
for which ¥(2)[0] = 1. Then z € Ker[¥] if and
only if there is a product z[5;]---z[j,] in the
sum-of-products expansion defining ¥ such that
z[ji] = -+ = z[j;] = 1, which is equivalent to
saying that A = {7,...,7:} is a subset of (z),
which in turn means that 0 lies in (z) © A. Since
A is one of the structuring elements forming the
union of erosions comprising ¥, 0 € T"((z)).
By definition, a set lies in the kernel of a set
mapping if and only if the filtered version of the
set contains the origin. Hence the kernel of ¥
as a logical operator is equivalent to the kernel
of ™ as a morphological filter,

If a set operator ¥ is increasing and transla-
tion invariant, the Matheron representation [9]
states that & is expressed as the union of ero-
sions by kernel elements, namely,

FNS8) =U{S8 A: AcKer[¥} (30)

It was noticed by Maragos and Schafer [18]
and by Dougherty and Giardina [19], [20] that
the kernel expression is redundant. Bas[¥"] is
called the basis for ¥" if (a) every clement in
the kernel possesses a subset in Bas[¥"] and
(b) no two elements in Bas[¥#"] are properly
related by the subset relation. Bases are unique.
If there exists a basis for ¥”, then the kernel
expansion of equation (30) can be replaced by
an expansion over the basis of the filter. The
defining conditions of a basis mean there is no
redundancy in the Matheron representation.

A monotonically increasing cellular-logic op-
crator ¥ possesses a minimal sum-of-products
representation. In that minimal form no product
is a proper subproduct of another product. But
this says that no structuring element is a proper
subset of another structuring element in the ero-
sion expansion representing ¥”, which is then

83

180

precisely the basis form of the Matheron repre-
sentation for ¥ Thus in the discrete-window
context the Matheron basis representation of
a translation-invariant, increasing set mapping
is actually a restatement of the fact that every
increasing logical operator over a finite set of
variables has a minimal sum-of-products rep-
resentation, the minimizing products being the
filter basis.

As an illustration, consider the logical opera-
tor defined by

¥ (2)[0] = 2[-1]=[0](=[1] + =[2])
+a[—1](z[-2] + z[0]). (31)

Logical calculus yields

U(x) = z[—1]z[0]=[1]
+z[-1]z[0]z[2]
+z[-2]z[-1] + [-1]=[0]. (32)

Reduction yields the minimal sum-of-products
representation

O(z) = z[—1]2[0] + «[-2]z[-1]. (33)

Direct translation of equation (32) yields an
erosion representation of the set operator cor-
responding to ¥, namely,

@Aﬂm)) = ((:‘E) S {—LO) 1})
U((e) © {-1,0,2})
U((z) © {-2,-1})
U((z) © {-1,0}). (34)

Since {—1,0} is a subset of both {-1,0,1} and
{-1,0,2}, the Matheron basis representation

¥(z)) = (=) ©{-1,0})
U(=)e{-2,-1}) (35)

is obtained, and this representation corresponds
to the minimal sum-of-products representation
of equation (33).

In the context of the Matheron representation
we sec the morphological interpretation of open-
ings. As defined by Matheron, an operator that
is translation-invariant, increasing, antiextensive,
and idempotent is called a T-opening. The most
basic 7-opening is the elementary opening de-
fined as erosion followed by dilation with the

84

Dougherty and Haralick

same structuring element: for signal (z) and
structuring element A the opening of () by A
is defined by (z) o A = ({z) © A) ® A. The mor-
phological basis of the opening {z) o A consists
of all translates of A that contain the origin.
Consequently, if A is finite, 4 = {jo, j1,..., by
then

(z)o A= U{(z) © (A~ ji)
k=0,1,...,r} (36)

Letting hy = z[0]z[j, — jo] - - - z[r — jo], we see
that (z)oA is equivalent to ¥(x), where ¥(z)[0] is
defined by equation (21). Hence, a cellular-logic
opening (as we have defined it) is equivalent to a
morphological opening. Regarding 7-openings,
Matheron [9] has shown that an operator is a
T-opening if and only if it can be represented
as a union of openings, and this is precisely the
import of equation (27), which expresses the
T-opening ¥ defined in equation (26) as a sum
(union) of openings.

A key advantage of the logical formulation of
mathematical morphology is the ability to check
properties and relationships automatically. For
instance, since idempotence for binary morpho-
logical operators is equivalent to idempotence
for logical operators and since the latter char-
acterization is machine checkable, we ipso facto
have machine algorithms to check the morpho-
logical property. A second important example
concerns the Matheron representation. Given
the Matheron representations of several filters,
the Matheron representation of an iteration can
be found by the same algorithm that reduces
an iteration of sum-of-product expansions to a
single minimal sum of products.

7 Cellular Logic and Hit-or-Miss Transforma-
tions

Positive Boolean expansions are equivalent to
the Matheron representation; what about the
general sum-of-products expression (4)? Let us
again begin with a single product

¥ (2)[0] = z[51]x[s2]
z[j-Jeli1] w[ia)
m[is]', 37

Unification of Nonlinear Filtering, Part I

where -M < j) < -+~ < j, < M,—-M <4 <
-+ <4y < M and there does not exist a pair
of indices j, and %, such that j, = i, If we
let A= {5,...,5-} and B = {8son ohe by THED
¥(z)[m] = 1 if and only if A+ m is a subset of
(z) and B+m is a subset of (z)°, the complement
of (z). This means that m lies in both {z) © A
and (z)°© B. But the intersection of these two
erosions is the hit-or-miss transform (Serra [21])
generated by the structuring pair (4, B):

(@) ® (A, B) = ((z) 0 A)n((z) ©B), (38)

and ¥ is equivalent to the hit-or-miss operator.

If we now consider the most general form of
the sum-of-products Boolean expression in equa-
tion (4), we see that every translation-invariant,
moving-window binary logical function is equiv-
alent to a union of hit-or-miss operators with
structuring elements in the window. Thus a
general Boolean operator ¥ possesses a mor-
phological equivalent ¥ In the discrete, mov-
ing window case, minimal-gate expressions can
be found by considering the operator as a sum
of products and applying some reduction algo-
rithm.

As an illustration of how to employ the logic—
morphology isomorphism, consider a four-point
image window with the origin in the lower-
left corner, so that W(0) = {(0,0), (0, 1),(1,0),
(1,1)} in the Cartesian grid. If we let gz,
Y, z, and w denote the left-right, top-down
raster scan of the four-point square, then ev-
ery moving-window operator can be defined by
a truth table consisting of strings of the form
zyzw, where the operator ¥ takes the form
wyzw — ¥(zyzw). Suppose that we wish to find
the minimal morphological implementation of
¥, where ¥ is defined by the truth table output
(in the usual order): 0,0, 0, 0, 1, 1, 1, 1, 0,
0,0,0,0,0, 1, 1. A Karnaugh map reduction
yields ¥(zyzw) = ya' + yz. Its morphological
equivalent is given by

UNS) = [S® (4,B)U[SeC], (39)

where A = {(1,1)}, B = {(0,1)}, and C =
{0,0),(1,1)}.

Just as the representation of a monotonically
increasing cellular-logic operator as a minimal

181

sum of products constitutes a finite logical real-
ization of the Matheron erosion representation
the interpretation of a general cellular-logic op-
erator as a union of hit-or-miss transforms con-
stitutes a finite logical realization of a different
morphological representation theorem, namely,
Banon and Berrera’s extension [17] of the Math-
eron representation to translation-invariant set
mappings that are not necessarily increasing. If
¥™ is a translation-invariant set operator, then

UNS) = U{S ® (4, B)
:[4,B] <Ker[#7)}, (40)

where [A,B] = {T': A < T < B}, a subset
of the power set, is called the closed interval
with extremities A and B (Birkhoff [22]) and
S® (A, B) is the hit-or-miss operator applied to
S with the structuring pair (4, B°). In certain
circumstances, the representation (40) can be
reduced. A closed interval in Ker[# is said to
be maximal if no other closed interval contained
in Ker[¥"] properly contains it. The set B[¥™
of all maximal closed intervals in Ker[&"] is
called the basis of ¥~, and B[¥" is said to
satisfy the representation condition for ¥” if and
only if for any closed interval in Ker[#"] there
exists a closed interval in B[¥"] containing it.
If the basis B[¥"] satisfies the representation
condition, then the expansion (40) reduces to

¥(S) = U{S ® (4, B)
: [4, B] € B[w). (41)

As with the Matheron representation for in-
creasing cellular-logic operators, the represen-
tation (41) is related to a general cellular-logic
operator ¥ by recognizing, as we have in equa-
tion (39), that ¥ corresponds to a set mapping
¥~. To illustrate the relationship, we consider
two examples over a three-point window.
First suppose

¥(z)[0] = z[-1][0] + =[0]x[1]. (42)

To lie in the kernel of ¥, a signal z must be
defined in one of the following four ways over

{~1,0,1}:

z1:z[-1] = 1,[0] = 0,z[1] = 0,
zy:z[—1] = 1,2[0] = 0,2[1] = 1,

85

182

zg:z3[—1] = 0,23[0] = 1, 23[1] = 1,
zgt za[—1] = 1,24[0] = 1, 2z4[1] = 1. (43)
Because ¥ operates only over a three-point win-
dow, values of z outside {—1,0,1} play no role.
Thus when applying expansion (41) we need
consider only maximal closed intervals formed
from the four three-point signals in (43). There
are three of these: [z, 23], [22, 24], [#3, z4]. Thus
representation (41) yields

¥(z)[0] = z[~1]=[0]
2[~1]=[1]

which is equivalent to the definition of ¥ in
equation (42). Next consider

¥()[0] = z[—1]'z[0]=[1]
+2z[1] + z[-1]z[0]=[1].

To lie in Ker[¥] a signal z must be defined in
one of the following five ways over {—1,0,1, }:

+ z[0]z[1], (44)

(45)

z:2[—1] = 0, 21[0] 0,z[1] =0
zp:z[—1] = 1, %[0] = 0, 2[1] = 0,
z3:2[—1] = 0 z3[0] = 1,z[1] = 0,
zg:z[—1] = 1, 24[0] = 1, z4[1] = 0,
z5:z[—1] = 1,25[0] = 1,z5[1] = 1. (46)

There are only two maximal closed intervals
formed from the five three-point signals of equa-
tion (46): [z1,24], [74,25]- Thus representation
(41) yields

¥(z)[0] = =[1]

which is equivalent to the original expression
for ¥ in (45).

+ z[—1]=[0], (47)

References

1. S. Sternberg, “Image algebra,” unpublished notes, 1983.

2. T Crimmons and W. Brown, “Image algebra and auto-
matic shape recognition,” IEEE Trans. Aerospace Electron.
Systems, vol. 21, 1985,

3. G.X. Ritter and PD. Gader, “Image algebra techniques
for parallel image processing,” Parallel Distrib. Comput.,

86

10.

11.

13.

14.

15.

16.

17.

19.

20.

21.

22.

. G. Matheron, “Filters and lattices,”

Dougherty and Haralick

vol. 4, 1987.

. G.X. Ritter, J.N. Wilson, and J.L.. Davidson, “Image al-

gebra: an overview,” Comput. Vis., Graph., Image Process.,
vol. 49, 1990.

. E.R. Dougherty and C.R. Giardina, Mathematical Meth-

ods for Artificial Intelligence and Autonomous Systems,
Prentice-Hall: Englewood Cliffs, NJ, 1988. pp. 399-414

. E.R. Dougherty, “A homogeneous unification of image

algebra, part I: the homogeneous algebra,
vol. 33, 1989.

" Imaging Sci.,

. E.R. Dougherty, “A homogeneous unification of image

algebra, part II: unification of image algebra,”
Sci., vol. 33, 1989.

Imaging

. E.R. Dougherty and C.R. Giardina, “Image algebra—

induced operators and induced subalgebras,” Proc. Soc.
Photo-Opt. Instrum. Eng., vol. 845, 1987.

. G. Matheron, Random Sets and Integral Geometry, John

Wiley: New York, 1975.

J. Serra, “Mathematical morphology for complete lat-
tices,” in Image Analysis and Mathematical Morphology,
vol. 2, J. Serra, ed., Academic Press: New York, 1988.
J. Serra, “Introduction to morphological filters,” in Image
Analysis and Mathematical Morphology, vol. 2, J. Serra,
ed., Academic Press: New York, 1988.

in Image Analysis and
Mathematical Morphology, vol. 2, 1. Serra, ed., Academic
Press: New York, 1988.

H. Heijmans and C. Ronse, “The algebraic basis of math-
ematical morphology, I: dilations and erosions,” Comput.
Vis., Graph., Image Process., vol. 50, 1990.

H. Heijmans and C. Ronse, “The algebraic basis of math-
ematical morphology, II: openings and closings, Comput.
Vis., Graph., Image Process.,” vol. 54, 1990.

H. Heijmans, “Theoretical aspects of gray-level morphol-
ogy,” IEEE Trans. Patt. Anal. Mach. Intell. vol. 13, 1991.
C. Ronse, “Why mathematical morphology needs com-
plete lattices,™ Signal Process., vol. 21, 1990.

G.J. Banon and J. Berrera, “Minimal representations for
translation invariant set mappings by mathematical mor-
phology,” SIAM J. Appl. Math., vol. 51, 1991.

. P. Maragos and R. Schafer, “Morphological filters—part I:

their set-theoretic analysis and relations to linear shift-
invariant filters,” IEEE Trans. Acoust., Speech, Signal Pro-
cess., vol. 35, 1987.

E.R. Dougherty and C.R. Giardina, “A digital version
of the Matheron representation theorem for increasing
tau-mappings in terms of a basis for the kernel,” in Proc.
IEEE Conf. on Computer Vision and Pattern Recognition,
July 1986.

C.R. Giardina and E.R. Dougherty, Morphological Meth-
ods in Image and Signal Processing, Prentice-Hall: Engle-
wood Cliffs, NJ, 1988,

J. Serra, Image Analysis and Mathematical Morphology,
Academic Press: New York, 1982,

G. Birkhoff, Lattice Theory, American Mathematical So-
ciety: Providence, RI, 1967.

Unification of Nonlinear Filtering, Part I

¥ A

Edward R. Dougherty is an associate professor at the Center
for Imaging Science of the Rochester Institute of Technology
and also serves as an industrial consultant. He holds an M.S.
in computer science from Stevens Institute of Technology
and a Ph.D. in mathematics from Rutgers University. He has
written numerous papers in the area of mathematical mor-
phology and imdge algebra and has authored or coauthored
six books: An Introduction to Morphological Image Process-
ing, Matrix Structured Image Processing, Image Processing—
Continuous to Discrete, Morphological Methods in Image and
Signal Processing, Mathematical Methods for Artificial Intelli-
gence and Autonomous Systems, and Probability and Statistics
for the Engineering, Computing, and Physical Sciences. He
regularly teaches conference short courses in morphological
image processing, including those for SPIE, and serves as
a chair for two SPIE conferences, Iiage Algebra and Mor-
phological Image Processing and Nonlinear Image Processing.
His current research involves several principal areas: design
of statistically optimal morphological filters, development of
model-based approaches to morphological image analysis,
granulometric characterization of texture, and development
of intrinsically fuzzy approaches to mathematical morphol-

ogy.

183

Robert M. Haralick is the Boeing Clairmont Egtvedt Pro-
fessor in Electrical Engineering at the University of Wash-
ington. His recent work is in shape analysis and extraction
using mathematical morphology, robust pose estimation, and
techniques for making geometric inference from perspective
projection information.

Professor Haralick has made a series of contributions
in the high-level vision area, specifically dealing with the
consistent labeling problem, arrangements, relation homo-
morphism, matching, and tree search. In the low-level and
mid-level areas, Professor Haralick has worked in image tex-
ture analysis using spatial gray-tone co-occurrence texture
features, and in the feature detection area he has developed
the facet model for image processing.

Professor Haralick is a Fellow of IEEE for his contribu-
tiops in computer vision and image processing. He serves on
the Editorial Board of IEEE Transactions on Pattern Analy-
sis and Machine Intelligence. He is the computer vision area
editor for Communications of the ACM. He also serves as
associate editor for Computer Vision, Graphics, and Image
Processing and Pattern Recognition.

He received a B.A. degree in mathematics in 1964, a B.S.
degree in electrical engineering in 1966, an M.S. degree in
electrical engineering in 1967, and his Ph.D. in 1969, all
from the University of Kansas.

87

