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It is shown that understanding the three dimensional objects depicted in the orthographic
views employed in enginecring drawings can be achieved by solving a sequence of three
consistent labeling problems. The constraints used in the engineering drawings are stated, the
translation to the constraints of the consistent labeling problems are given, and the computer
solution is illustrated by the execution of an appropriate tree search.

1. INTRODUCTION

The world consists of objects having three dimensions: height, width, and depth.
Drawings and pictures are two-dimensional representations of these three-dimen-
sional objects. One system of representation of three-dimensional objects in two-
dimensional drawings is the orthographic views employed in engineering drawings.
These drawings are universally used in manufacturing because they do not have
perspective distortion and they facilitate inspection which can be easily done by
comparing the manufactured part with a full-size drawing in a template-matching
manner.

In this paper an algorithm is developed to enable a computer to understand the
three-dimensional objects represented in engineering drawings. By understanding we
mean being able to give the surface equation of every face and the equations of the
bounding-line segments to every face on the basis of the line segments in the
engineering drawing.

Three-dimensional objects are represented in engineering drawings by two to six
two-dimensional orthogonal views. The American standard arrangement for the six
principal views is shown in Fig. 1 (1).

The following definitions are used in reference to Fig. 1 and in the remainder of
the paper.

1. The line of sight of a view is the direction from which the object is viewed.

2. Any two views placed side-by-side are called adjacent views and have their
common dimensions aligned.

3. The parallel lines connecting and aligning adjacent views are called parallels.

4. All views adjacent to the same view are called related views.

In Fig. 1 the top and front views are adjacent views, but the right side and top
views are related views.
The orthographic geometry has the following properties.

Rule 1. The lines of sight for any two adjacent views are perpendicular.
Rule 2. Every point of the object in one view is aligned on a parallel directly
opposite the corresponding point in any adjacent view.
Rule 3. The distance between any two points on the object measured along the
parallels is the same in all related views.
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F1G. 1. The American standard arrangement for the six principal views.

From the orthographic geometry it is apparent that each view contributes infor-
mation not in the other views and that to understand the object portrayed by the
orthographic view the information in one view must be used in a coordinated way
with the other views. In the remainder of this section the coordinating process for
three-dimensional objects with planar faces is explained.

The analysis of the object consists of considering the object as three sets of its
components parts: a set of points, a set of lines, and a set of faces. Rules 2 and 3
give the constraint relationship for the set of points.

To develop the relationships for the set of lines and the set of faces, the principal
views of a line and a triangular plane are given in Figs. 2 and 3, respectively.

As seen in Fig. 2 a line is seen as a line or as a point that is an end view of the line.
The fourth rule can thus be given.

Rule 4. A line can only appear as a line or a point, a point being the end view of
a line.

As in Fig. 3, the face is seen as a face with the same number of vertices or as a
line, the line being an edge view of the plane. The fifth rule can thus be given.

Rule 5. Every face can appear only as an edge or as a figure of similar
configuration.

To develop the relationships for the set of faces, an understanding of the views
must be developed. First, a line is understood as being the intersection of two faces.
Therefore, the two faces intersecting in this line must be in different planes. Second,
the top view shows the highest observable points and faces of the object. Similarly,
the most extreme front, lateral, back, and bottom points and faces are seen from the
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front view, side view, back view, and bottom view, respectively. Using these two
principles, the last two rules, called the view consistency rules, can be given.

Rule 6. Each face seen in a view is the first face seen along the line of sight for

that view.
Rule 7. No two contiguous faces can lie in the same plane.

These seven rules are the constraints needed to understand an engineering
drawing where understanding means to be able to precisely describe the three-
dimensional objects given in the two-dimensional orthographic views. In Section 2
we show one method of understanding engineering drawings. In Section 3 we show
how understanding the engineering drawing is a consistent labeling problem.

2. A METHOD FOR UNDERSTANDING ENGINEERING DRAWINGS

The process of understanding an engineering drawing of an object means being
able to identify each face of the object and the (x, y, z) coordinates of each vertex of
each face. To do this requires a tree search given the original two-dimensional
coordinates on the engineering drawing. In this section we discuss what information
is selected from the engineering drawing and how it is used in a tree search.

The tree search has four parts: first, to determine the set of (x, y, z) three-dimen-
sional points eligible to be vertices; second, to determine the set of visible surfaces;
third, to determine for each visible surface a sequence of eligible three-dimensional
vertices that is consistent with the observed view of the surface; and fourth, to select
from the available vertex sequences one sequence, called an interpretation, for each
visible surface face that is consistent with that interpretation selected for every other
face.

The set of eligible vertices is easily determined. Let P be the set of vertex points
given in the top view, Q the set of vertex points given in the front view, and R the set
of vertex points specified on the side view. Each point p in P has x and y coordinates
which we denote by x(p) and y( p). Each point ¢ in Q has x and z coordinates,
which we denote by x(g) and z(g). Each point r in R has y and z coordinates which
we denote by y(r) and z(r). Let ¥ denote the set of eligible vertices. We shall specify
each point in ¥ by specifying a triple ( p, ¢, r) from the top, front, and side views:

V={(p,q.r)€PxQxR|x(p)=1x(q), y(p)=y(r), z2(q) = 2(r)).

This is a restatement of Rules 2 and 3. Obviously, the x coordinate of any triple in V/
can be obtained as an x coordinate of its first or second component. The y
coordinate of any triple in ¥ can be obtained as the y coordinate of its second or
third component. The z coordinate of any triple in V' can be obtained as the z
coordinate of its first or third component.

The set of projections of visible surfaces is determined next. The following terms
are used in explaining how the projections of the visible surfaces are determined.

1. The valency of a point p is the number of lines in the object having the point p
for one of its endpoints.

2. A normalized line is a line with unit length. For a line passing through (0, 0)
and (x, y), the normal representation would be (x/ x> + y2, y/ Jx* + y?).

3. To determine the right-most (left-most) line at a given point, set up a new
coordinate system with the point at (0,0) and the last line traveled as the negative x
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axis. Then there are three cases for determining the right-most (left-most) line, given
two lines.

In the new coordinate system observe the following.

1. If both normalized lines have positive second coordinates, choose the line with
the larger (smaller) first coordinate.

2. If both normalized lines have negative second coordinates, choose the line
with the smaller (larger) first coordinate.

3. If the lines have second coordinates of different signs, choose the line with the
negative (positive) second coordinate.

Each projection surface is specified as a sequence of two-dimensional vertices from
one of the views. For a given view, we begin at an arbitrary starting point. For
example, the starting point can be chosen from the set of points with the smallest
first coordinate and second coordinate, taken in that order. From the starting point
we travel along its leftmost line to the next point, using the line, in normal
representation (1,0), as the last line traveled. We continue to travel along the
rightmost line at each point until the starting point is reached. The area enclosed by
the boundary we just traveled around is then given a unique label. Take as the next
starting point the first point reached with a valency of 3 or greater. Reduce the
valency of each point by 1 each time it is used in a surface. An example of
determining the visible surfaces is given in Section 3.

Let { p(0),..., p(I — 1)} be the sequence of vertices of a visible surface seen in
top view. The sequence S = ((p(0), g(0), r(0)),...,(p(I — 1), gl = 1) 1L — 1)}
is called an interpretation of the surface whose top-view projection is given by
(p@),..., p(I — 1}y if and only if

L (p(),q(i), r(i)eV,i=0,...,1—1;

2. there exists a line in the top view whose endpoints are given by (p(d),
p(i+ D);

3. there exists a line in the front view whose endpoints are given by (g(i),
q(i + 1)); and

4. there exists a line in the side view whose endpoints are given by (r(i), r(i + .
(Note that the index arguments are taken modulo 1. Also, it is legal, by Rule 4, for a
line to be seen on end in some view. In this case both endpoints are identical.)

Likewise, the sequence S is called an interpretation of the front view visible surface
whose projection is given by (g(0),..., g(I — 1)) if and only if S satisfies 1-4. And
the sequence S will be called an interpretation of the side-view visible surface whose
projection is given by (r(0),..., r({ — 1)) if and only if S satisfies 1-4.

Finally, we restate the criteria for consistent interpretation of surfaces: top-view
surfaces must be higher (must have points with larger y coordinates); front-
view surfaces must be nearer (must be points with smaller z coordinates); side-view
surfaces must be points with larger x coordinates; and two object surfaces in the
same view must lie in different planes. If S| is an interpretation of any surface visible
from the top view and S, is an interpretation of any surface visible from another
view, then to be consistent (x, y, z) € S| and (x, y, z') € S, implies z > 2. If §, is
an interpretation of any surface visible from the front view and S, is an interpreta-
tion of any surface visible from another view, then to be consistent (x, ¥, z) €S,
and (x, y’, z) € S, implies y > p*. If S, is an interpretation of any surface visible
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from the side view and S, is an interpretation of any surface visible from another
view, than to be consistent (x, y, z) € S, and (x’, y, z) € §, implies x > x’.

ExaMmpLE. Consider the object of Fig. 4a. It can be represented by three views,
one from each of the directions illustrated by the arrow in the figure. These three
views are shown in Fig. 4b where the respective coordinate system for each view is
given. Notice that in Fig. 4b we have labeled each vertex in each view with a unique
numeric label.

The set of points P, Q, R in the top, front, and side views are given by

P={1,2,3,4)
0 =1{5,6,7,8,9
R ={10,11,12,13,14}.

The set V of triples eligible to be vertices of the object is, therefore,

v ={(1,5,11),(1,7, 14), (2,6, 11), (2,8, 14), (3,5, 10),
(3,7,13), (4,6,10), (4,9, 12), (4,8, 13)).

In Fig. 4b there are six visible surfaces in the three views. In Fig. 4c, we have
labeled the areas of the surface projections by the letters 4, B, C, D, E, and F. To
obtain a sequence of eligible vertices for a surface projection, we note that for any
two points in a sequence of eligible vertices, there must be a line between each pair
of corresponding points from the same view. Noting also from Rule 4 that a line

(n

———— (3)

g (2)

F1G. 4a. A three-dimensional object.
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FIG. 4b. The three views of a three-dimensional object specified in the engineering drawing of Fig. 4a.
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F1G. 4c. The three views of a three-dimensional object specified in the engineering drawing of Fig. 4a
with the visible surfaces labeled.
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TABLE |
Sequences of Eligible Vertices for the Projection of Each Visible Surface

Surface Interpretation

A S = (1,5, 11),(2,6,11),(3,5,10))
S, = {(1,7,14),(2,8,14),(3,7,13))

B Sy = {(2,6,11),(3,5,10),(4,6,10))
Sa = {(2,6,11),(3,5,10),(4,9, 12))
S5 ={(2,8,14),(4,8,13),(3,7,13))

c Ss = ((3,5,10),(4,5,12),(4,8,13),(3,7, 13))

§; = {(3,5,10), (4,6, 10),(4,9,12))
Sp = {(3,5,10),(2,6, 11, (4,9, 12))

Sy = ((2,6,11),(4,9,12),(4,8,13),(2, 8, 14))

F S0 = {(2,6,11),(4,9,12), (4,6, 10))
S = {(2,6,11),(4,9,16),(3,5,10))

may appear as an end view, we see that Table 1 gives all the interpretations for each
visible surface.

To obtain a consistent interpretation we note that in any pair of interpretations,
adjacent surfaces from the same view must not lie in the same plane and that any
pair of interpretations in different views must satisfy the constraint that top-view
surfaces must be higher, front-view surfaces must be nearer, and side-view surfaces
must have greater x coordinates. Two interpretations of the object are shown in
Fig. 5.

3. THE UNDERSTANDING OF AN ENGINEERING DRAWING AS A
CONSISTENT LABELING PROBLEM

The consistent labeling problem is a generalization of the constraint satisfaction
problem (2). The labeling problem involves a set of units, a set of labels, the
constraint relation for the given pairs of units, and units and labels. The consistent
labeling problem is to find a label for each unit such that the resulting set of
unit—label pairs is consistent with the constraints. More formally, if U is the set of
units and L is the set of labels, then the binary constraint R can be represented as a
binary relation on U X L: RC(UX L)X (UX L). If a pair of unit labels
(uy, I}, 4y, 1,) € R, then labels /;, and /, are said to be consistent for units »,, and
u,. A labeling f of all the units is called a consistent labeling if for every pair u,, u,
of units (u,, f(u,), 45, f(u,)) € R. In this section we shall show why understanding
an engineering drawing is a consistent labeling problem.

The understanding of an engineering drawing has four parts: first, to determine
the set of (x, y, z) coordinates eligible to be vertices; second, to determine the set of
projections of visible surfaces; third, to determine for each projection of a visible
surface a sequence of eligible vertices; and fourth, selecting from the available vertex
sequences an interpretation for each surface face that is consistent with that
interpretation selected for every other face. The first, third, and fourth parts are
solvable using the consistent labeling problem. The second part is solvable using the
algorithm of Section 2.
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F1G. 5. Two of the three possible interpretations for the engineering drawing of Fig. 4b. The top object
15 a box with its upper right-hand corner cut off. The bottom object shows a box with its upper right-hand
corner cut off and its back left-hand corner cut off all the way to the base, which has a thin triangular
sheet extending to the back bottom left-hand corner.

The first part: to determine the set of (x, y, z) coordinates eligible to be vertices. Let
the set of units be the views of the object, U/ = {vy,..., ). Let the set of labels be
the set of points from the two-dimensional drawings, I = {pis---» p,)- Then for a
labeling ( p,, p,,- .. ps) we have the following constraints.

1. p, must be in view v,.
2. p, must be in view v,.

6. ps must be in view v;.
7. The common coordinate for points p, and p; must be equal.

Then the unit relation T and the unit-label relation R can be defined using 1-7.

L. (u;, u;) € Tif u, and u; are different views.
2. (u i, uy,l)) € Rif the common coordinate of points l; and /, is equal.

The third part: To determine for each projection of a visible surface a sequence of
eligible vertices. Let the set of units be the points in the projection U = { p(0),...,
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p(I — 1)) of the surface. Let the set of labels be the set of eligible vertices
L = (py, Ps»---» Pg)- Then we have the following constraints on the labeling from U
to L.

1. (p,(§), py(i + 1)) is a line in view v,.
2. (p,(i), po(i + 1)) is a line in view v,.

6. (pg(i), ps(i + 1)) is a line in view vg.
Then the unit relation 7 and the unit-label relation R can be defined using 1-6.

1. (u;,u;)€ Tif u; and u; are points in surface projection S.

15

2. (u; I, u;, 1) € Rif (1) there exists a line between all corresponding points
from the same view in the eligible vertices /; and /; when u; and u; are consecutive
points in the surfaces, or (2) if u;, 4; are not consecutive points on the projection of

the visible surfaces.

The fourth part: To detect from the available vertex sequences an interpretation for
each surface segment that is consistent with that interpretation selected for every other
segment. Let the set of units be the set of visible surfaces, U = {4, B,..., N}. Let
the set L of labels be the set of surfaces generated by the third part, L = {S§,,..., S, ).
Then we have the following constraints on the labeling from U to L.

Top view surfaces must be higher.

Front view surfaces must be nearer.

Side view surfaces must be farther to that side

Bottom view surfaces must be lower.

Back view surfaces must be farther away.

Any two contiguous surfaces must be in different planes.

On A R s

Then the unit relation T and the unit-label relation R can be defined using 1-6.

1. (u,u)€ Tif i+j Thatis, u; and u; are different projections of a visible
surface.

2. (u,l,u,l)ER if the sequences of eligible vertices, /; and /,, satisfy 1-6 for
their respective views.

The example of Section 2 is now redone using a tree search. The point sets and
line sets are given for the object in Tables 2 and 3, respectively.

To select the set of eligible vertices, we construct the graph of Fig. 6 showing all
pairs of inconsistent points. Treating this as a binary constraint, we may use the
forward checking algorithm to determine all the consistent vertices. Part of the tree
search for the eligible vertices are shown in Fig. 7.

An example of finding the visible surfaces for the view seen from direction 1 in
Fig. 4a is as follows.

The starting point is the point (0, 0), which is point 3. The last line traveled is the
normalized line (1,0). There are three lines—lines 2, 4, and 5—from which to
choose the leftmost line. As secen in Table 3, all three lines have a positive second
coordinate. The one with the smallest first coordinate is chosen. This is line 2 which
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TABLE 2
The Set of Points

Point X Y
1 0 3
2 3 3
3 0 0
4 3 0
5 0 3
6 3 3
7 0 0
8 3 0
9 3 1

10 3 0
11 3 3
12 1 0
13 0 0
14 0 3

goes from point 3 to point 1. At point 1 the only line to choose is line 1 which goes
from point 1 to point 2. At point 2 there are two lines—lines 3 and 5—from which
to choose the right-most line. As seen in Table 3 both lines have a negative second
coordinate. The one with the smallest first coordinate is chosen. This is line 5 which
goes from point 2 to point 3. At this point an area is finished. This area is labeled
area A. The next area is now found.

TABLE 3
The Set of Lines
Line First point Second point Normal representation
1 1 2 (1.0000, 0.0000)
2 1 3 (0.0000, — 1.0000)
3 2 4 (0.0000, — 1.0000)
4 3 4 (1.0000, 0.0000)
5 2 3 (—0.7070, —-0.7070)
6 5 6 (1.0000, 0.0000)
7 5 9 (0.8320, —0.5547)
8 5 7 (0.0000, — 1.0000)
9 6 9 (0.0000, — 1.0000)
10 7 8 (1.0000, 0.0000)
11 8 9 (0.0000, 1.0000)
12 10 11 (1.0000, 0.0000)
13 10 12 (0.0000, — 1.0000)
14 11 12 (—0.8320, —0.5547)
15 11 14 (0.0000, — 1.0000)
16 12 13 (0.0000, — 1.0000)
17 13 14 (1.0000, 0.0000)
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Fi1G. 6. All pairs of points that are compatible.

Point 3 is chosen as the starting point since in area 4 it is the first point reached
with a valency of 3 or greater. The last line traveled is the normalized line (1,0).
There are two lines—lines 4 and 5— from which to choose the leftmost line at point
3 since line 2 is eliminated when the valency is reduced after line 2 is used in area A.
Since both lines have a positive second coordinate, the line with the smaller first
coordinate is chosen. This is line 5 which goes from point 3 to point 2. At point 2

F1G. 7. Part of the tree search based on the compatibility graph of Fig. 6.
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there are two lines—lines 1 and 3—from which to choose the rightmost line. Since
line 5 is not on the negative x axis with respect to point 2, the normalized lines must
be redefined for the new coordinate system:

Line 1 (—0.7070,0.7070)
Line3 (-0.7070, —0.7070).

Since the lines have different second coordinates, the one with the negative second
coordinate is chosen. This is line 3 which goes from point 2 to point 4. At point 4 the
only line to choose is line 4 which goes from point 4 to point 3. At this point an area
is finished and this area is labeled area B. There are no points in area B with valency
three or greater, so this view is finished.

To select a sequence of eligible vertices for each visible surface, we construct the
graph of Fig. 8 showing all pairs of consistent vertices. Treating this as a binary

F1G. 9. Part of the tree search based on the compatibility graph of Fig. 8.
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F1G. 10. All pairs of interpretations that are incompatible.

Fic. 11. The tree search based on the incompatibility graph of Fig. 10 and using the forward checking
algonithm (3).
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constraint, we may use the forward checking algorithm (3) to determine all the
sequences of the eligible vertices. Part of the tree search for the sequences of eligible
vertices is shown in Fig. 9.

To select a vertex sequence for each surface that is consistent with the interpreta-
tion for every other segment, we construct the graph of Fig. 10 showing all the pairs
of inconsistent interpretations. Treating this as a binary constraint, we may use the
forward checking algorithm (3) to determine all the consistent interpretations. A tree
search for the interpretations is shown in Fig. 11.

4. CONCLUSION

In this paper we have shown that understanding an engineering drawing amounts
to solving three consistent labeling problems: one to obtain a set of eligible vertices,
one to obtain a set of candidate vertex sequences, and one to obtain the set faces,
We have translated the interpretation rules employed in understanding engineering
drawings to the constraints of the consistent labeling problem and have illustrated
the solution to one example problem.
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