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In this paper we study the geometric properties like connectivity and convexity of
digital objects in terms of mathematical morphology. A new definition of digital
convexity is suggested. Connectivity and convexity of digital objects obtained through
morphological operations are investigated in the light of this new definition. This
paper also presents some morphological algorithms for computing topological proper-
ties like connectivity number and genus. Operations are simpler, faster and can be
implemented on parallel machine.

1. INTRODUCTION

In image analysis and computer vision methodologies, geometrical and topological
properties of an object play a major role. Properties like connectivity, connectivity
number, convesi‘y, genus carry important information. For example, convex figures
are much simpler to deal with than concave figures, and concave figures may be
decomposed into smaller convex figures. In a similar note, transforming an object to
its skelton that preserves essential structural -information should preserve its
topological properties also. Th's transformation is guided by the connectivity number.
During last several years considerable amount of effort have been put to determine
such properties in the discrete domain. Definitions of the connectivity number and
genus of digital objects can be found in> & * 17 using local operator rotated around
the candidate pixels. For an understanding of digital convexity, we must translate the
notion of convexity from the continuous domain to th discrete domain. Quite a few
definitions of the convex digital object have been suggested™ > 7 16, However, none
of these definitions of digital convexity is totally compatible with the notion of
convexity in the continuous domain. For example, in the continuous domain, when
a straight line is dilated (a morphological operation) by another straight line the
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resultant object is always convex. This is not, in general, true in discrete domain if
we restrict ourselves to any of the definitions of convexity given in the
aforementioned references. In this context we should mention that a different set of
convexity, namely orthogonal convexity, block convexity, triangle convexity etc. For
explicitly discrete domain have been defined®. These definitions of digital convexity
are very strict and do not correspond to the concept of convexity in continuous
domain. There is, therefore, the necessity of the definition of digital convexity that
corresponds better to the convexity in the continuous domain.

Mathematical morphology is becoming more and more a popular tool for image
processing and analysis, and has inherent ability in dealing with shapes of the object
in the image® !5. It treats an image as an ensemble of sets rather than signal. Its
language is that of the Set theory and operations are defined in terms of the
interaction between two sets: the first one is the object and the second is called
structuring element. Secondly, the morphological operations can be implemented
straightway on the parallel machines. So it may be of interest to see whether the
topological properties like connectivity number and genus can be computed using
purely morphological operations, or to have the definition of digital convexity in
terms of mathematical morphology.

In this paper we study the connectivity and convexity of digital objects which
are resultant of various morphological operations, and also suggest morphological
operations alongwith appropriate structuring elements for computing connectivity
number and genus. Section 2 restates definitions which may be required to understand
the subsequent discussion.. Algorithms for computing connectivity number and genus
are presented in Section 3. In Section 4 we study connectivity and convexity
properties of digital objects. Concluding remarks are cited in Section 5.

2. PRELIMINARIES

In a continuous domain R? an image is defined as a nonnegative function f,
where flx, y) is the value of function f at the point (x y). A digital image is defined
by a finite valued function over a discrete domain Z2. Let us assume the digital
image domain D CZ2 is rectagular array of size M x N, i.e.,

D= lir e} Jerm O S0 0es e 1 o= 0501y Zison, N =13

obtained by sampling of step size & along two orthogonal directions. The (7, ¢)’s are
called discrete points or pixels of digital image. A frame F of a domain D may be
defined as a subset of D containing pixels of the first and last ! rows, and pixels
of the first and last / columns, where (2/ + 1) is length and breadth of structuring
elements. Morphological operations will be applied only to pixels belonged to the
set (D-F). In binary images a point (r, ¢) in D is defined as a foreground point or
object point if its value is 1, and as a background point if its value is 0. Let E,
and E, denote two sets of integers {1, 3, 5 7} and {1, 2, 3, ..., 8}, respectively,
as shown in Fig. 1. Pixel p; denotes its position and value as suitable for the situation.

In our discussion we will use the terms ‘point’ and ‘pixel’ to mean the same thing
in Z2 :
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Fic. 1. Pixel po and its neighbourhood.

Definition 1 — The elements of set {p; | { € E;} are called 4-neighbors of
Po- Similarly, the elements of set {p; | i € E;} are called 8-neighbors of p,.

Definition 2 — Let p and g be two discrete points in Z? with coordinates
(r?, ¢#) and (r9, c9), respectively, then the distance between p and g may be defined
as

@ dpg)=|m—r1| + | et ], or
(i) de(p, @) = max {| -t |, | P—ct |}

Two pixels p and g are said to be connected by a 4-(8-) connected path if there
exists a sequence of pixels p; =p, P2, P3, ..., Pa = g such that for any i value of p; is
same as that of p and ¢, and dy(p;, p; + 1) =1 [ds(p;, pi + 1) = 1]

Definition 3 — A set of pixels A is called a 4-(8-) connected component or
object if every pair of pixels in A is connected by a 4-(8-) connected path.

Although either 4- or 8- connectivity may be assumed for a connected
component, care must be taken to avoid contradiction concerning object pixels and
background pixels. Unless specially stated we assume that the objects are 8-connected
and the background is 4-connected.

Definition 4 — A pixel p is called surrounded by an object A if every
4-connected path from p to F contains at least one pixel of A.

Definition 5 — If the color of p is not the same as that of pixels of A and if
p is surrounded by A, then the set of all pixels connected to p constitutes a hole
in A. The smallest possible ‘hole, i.e., the hole consisting of a single pixel only is
called point hole.

Definition 6 — The genus of an object is defined as ‘‘1-(the number of holes
within that object)’’. The genus of an imge is defined as ‘‘(the number of objects)
- (the number of holes)’”.

Definition 7 — An object is called simply connected if genus is 1, and is called
multiply connected otherwise.
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Definition 8 — Convex hull of A, denoted by H(A), is smallest convex polygon
that contains A.

In continuous domain convex object may be defined in one of the following
ways.

Definition 92 — let A be an object in R2 4 is convex if for every pair of
points p and g, the straight line segment pq connecting p and g is contained in A.

This definition can be rewritten as

Defintion 9 — Let A be an object in R2. 4 is convex if for every pair of
points p and g belonging to A, and for every real y € [0, 1], we have

w+(-v)g EA
This is again equivalent to: A C RZ is convex if and only if A =H(A CA).

Translating this concept of convexity to thé discrete domain requires the digital
straight line segment be defined. An 8- connected finite set L of lattice points is a
digital arc if all but two of the points have exactly two neighbors in L, and the
exceptional two points [the end points] each have exactly one neighbor in L[11]. Let
p, q be any two points in L. The line segment pq, connecting p and g, is said to
lic near L if for any real point (x, y) of pg there exists a point (r, ¢) of L such
that max{| r—x |, | c=y |} < 1. We say that L has the chord property if, for every
p, g in L, the line segment pg lies near L'2

Definition 10 — A digital arc is said to be a digital straight line segment
(DLS) if it has chord property.

With the chord property, Rosenfeld'? has strongly established the Freeman’s
conjectures? of DLS. Rosenfeld and Kim'3 have proposed an algorithm to test whether
a digital arc is a DLS. A simpler algorithm has been presented by Ronsel0. Now
let us see how we can obtain a DLS from two given end points p and g. We define
a straight line parallel to line segment pq such that the smallest of the distances, the
horizontal and the vertical, between these two straight lines is equal to 1. If slope
o of pg satisfies 0 < | « | < 1 then it is the vertical distance which is involved,
and in the other case where 1 < | o | < o, if it is the horizontal distance. We
shall examine the cases where o = 0, 1 or o separately. We can draw two such
parallel line segments: one is above and other is below pg as shown in Fig. 2. Let
us call them m, and mj, respectively. By the term ‘above’ (‘below’) we mean
my(x) > y [my (x) <y], where (x, y) is any point on pq. Consider L, [L,], the set of
all the lattice points that lie between m, [my] and pg and on pg but not on m, [my),
and between p-and g% 7. Thus we get two different DLSs for a pair of points. This
causes a lot of problems in dealing with DLS. People usually take up L, or L,
arbitrarily as DLS connecting p and g for their analysis. The problem of this arbitrary
selection will be discussed later. In the cases where o = 0, 1 or o, all the lattice
points between p and g lie on the line segment pq [Fig. 3]. Hence, in those cases,
DLS is unique.
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HG. 2. Digital straight line segment connecting p and q. Ls consists of pixels marked with ‘x’ and Lp
consists of pixels marked with **’.

9 9
.
%
¥
E 3
p i* 3 ¥ 3t Pt q *
1
¥
#*
p P
(a) Slope=0 {b) Slope=1 (c) Slepe=Infinity

Fic. 3. Digital straight line segment for slope 0, 1 and o. In all three cases L, = Lp.

In addition to the above definitions we also need to define morphological
operations for completeness and clarity. Let A and B are subsets of Z% and ¢ be a
point of Z2 Then

Translation : A, = {p € Z* | p=a+t for some a EA}
Dilation : A ® B = {p € Z? | p=a+b for some a EA and b € B} or,

alternately, can be represented as a union of translates:

i M = UaEA B, = UbeaAb

Erosion : A—B = {p EZ2 & p+b € A for every b € B}
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or, alternately, can be represented as an intersection of the negative translates:

il = mbEB -

Opening : A — B=(A — B) ® B
Closing: A * B=(A @ B)—B)
B is a structuring element. From now on the objects we deal with, unless

otherwise specified, are digital objects and the properties are defined on discrete
domain.

3. CONNECTIVITY NUMBER AND GENUS

In this section we will describe some algorithms for computing topological
properties like connectivity number and genus using morphological operations, namely
erosion. Suppose a binary image of digital object A is denoted by a Indicator
function I, (r, ¢) € {0, 1}. In other words, A is called Domain of support defined

as {(r, ©) | Ia(r,c) = 1}.
3.1 Connectivity Number

Connectivity numbers are assigned to the pixels which belong to the domain of
support. Purpose of this number is to show how the pixels of domain of support is
connected to its like neighbors. Though we call it ‘connectivity number’, it is actually
a label and has no arithmetic property.

Definition 11 — The connectivity number is a label that indicates how the
pixel of interest is connected to it neighbors.

The pixels of an object can be grouped as border pixel and interior pixel.

Definition 12 — A border pixel or boundary pixel of A is a pixel of A such
that atleast one of its 4-neighbors is not in A. The border or boundary A of an
object A is characterized by the set of its border pixels.

The border A may be viewed as a polygon with finite number of vertices. So
the set of vertices of H(A) is a subset of that of A.

Definition 13 — The set of pixels (A - X) is called the interior of A.

Border pixels may again be subgrouped as: isolated pixel, edge pixel, connecting
pixel, branching pixel and crossing pixel. Connectivity number operator associates
with eachpixel belonging to domain of support one of the six different values: five
values for border pixels (0-4) and one value (5) for interior pixels. Accordingly labels
are shown in Fig. 4 with an example. Two different definitions of connectivity are
considered. Here we adopt the definition of connectivity number as was given in °.
The definitions are slight’ modificaiton of the definitions suggested by Yokoi er al.l’?
and Rutovitz!4,

3.1.1 Yokoi Connectivity Number

Definitions are slightly different depending on whether the object is a 4-connected
component or an 8-connected component of image. The Yokoi connectivity number
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Fig. 4. Illustration of a connectivity number'labeling of a binary irnagcs.
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Fi6. 5. Structuring elements for Yokoi connectivity number for 4-connectivity.
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is defined as follows. For n-onnectivity, a 1-pixel is an interior pixel if value of
each of its n-neighbors is 1. In this case the index value 5 is assigned to the pixel.
Otherwise the n-connectivity of the pixel' is given by the number of times a

n-neighbor has value 1 but the corresponding three-pixel corner neighbourhood does
not. The value of n can be 4 or 8.

4-connectivity case :

Connectivity number C(r, ¢) at pixel (r, ¢) is

4 8
C(r, c)=rnax‘ D ABK)(r,c)- Y (AOK)(r,c),5* (AOKy) (1, c)]
i=1 i=5

where, K;’s are structuring elements as shown in Fig. 5.

8 - connectivity case :

Connectivity number C(r, ¢) at pixel (r, ¢) is

8 16
C(r, c)=max{z (AeKi)(rsC)_E ABK)(r,c), 5+ (AOKy)(r, C)J
i=1 i=9
X X X

o x w5 " "

Ky KZ K3 Ks

X X X
Kg Kg K7 Kg
x| x X
74 x [§x w 0| x
x| x X
Kg Kio K K12
x|l x| x x| x| x
x| x |§T x [§X x| x [§] x
x| x x| x x| x| x
Ki3 Kig Kis Kig K17

FiG. 6. Structuring elements for Yokoi connectivity number for 8-connectivity.
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where, K;’s are structuring elements as shown in Fig, 6.
In both cases ‘max’ may be replaced by ‘sum’ of arguments.

3.1.2 Rutovitz Connectivity Number

The Rutovitz connectivity number is defined for 8-conmectivity only and is
defined as follows. A 1-pixel is an interior pixel if value of each of its 8-neighbors
is 1. In this case the index value 5 is assigned to the plxel Otherwise the connectivity
number of the pixel is the number of transitions from 1 to 0 occur as one travels
around the 8-neighborhood of the pixel. This number is also called ‘crossing number’.
So connectivity number C(r, ¢) at pixel (r, c) is

16

C(ryc) = E A @ K)(r,c) - E (A © K)(r,¢)

where, K; are structuring elements as shown in Fig. 7. The connectivity numbers
reveal the structural characteristics of an object in a certain way. Secondly, it may

X X X
Ks Kg K7 Kg
X X | x X | x X

X X | x x| x X
K13 Kig Kis Kig

FIG. 7. Structuring elements for Rutovitz connectivity number.
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be noted that removal of the pixels having connectivity number 1 does not change
~ the genus; whereas the removal of pixels having connectivity number 0 or 2 or 4
or 5 does. Hence, the information is useful for designing structure/topology preserving
transformations, such as thining,

3.2 Genus of Image

Genus of an image is defined as the ‘number of connected components (or
objects) minus number of holes in the entire image’. Situations are different if objects
are considered to be 4-connected from that if they are considered as 8-connected817.
Minsky and Papert® defined the genus G(I,) of the image as

Gy =2 [y(r,o)+Za, I, (ra)ly(r—1,c)+Z a3, (r,c) I (r,c+1)
+ Zogl, (r,'c).l}l r—-Lo)L(rne+DL(r—1,c+1)

where summations are taken over all (r, ¢) E(D-F), and o, =0,;=1 and o, =q, =
—1. The first term of the right-hand side gives sum of value of all pixels or the
number of object [foreground] pixels since the value of foreground pixel is 1. The
second and the third terms give the number of pairs of object pixels that are adjacent
horizontally and vertically, respectively. Finally, the fourth term gives the number of
2 x 2 blocks of object pixels. Instead of taking sum of products as suggested by
the above definition, we can compute these numbers by counting the elements of the
sets, A,ABK,, AOK, and AOK,, respectively, where the structuring elements
K,, K; and K; are shown in Fig. 8. Adjacency of pair of pixels and the 2 x 2 block
of this approach reminds us the 4-connectedness of object. So we can write in

4-connectivity case :
G(I)=#A)-#(ABOK)-#AOK)+#(A0OKy)

Xl x xlxx
X1 ]

K1 K2 K3

Fic. 8. Structuring elements for computing genus for 4-connectivity.

where, (A) means number of elements in set A. The structing elements K’s are
shown in Fig. 8.

Now if we imagine a 4-connected object as a web type collection of polygons
formed by most closely situated pixels, then each pixel of domain of “support may
be viewed as a vertex of these polygons. So each pair of horizontally or vertically
adjacent pixels represents an edge, and a 2 x 2 block represents a face. Hence, the
right-hand side of above definition of genus may be written as

Number of vertices — Number of edges + Number of faces
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This is, again, well known Euler Polygon Formula. Minsky and Papert® has
shown that genus and the number computed by this formula exactly agree to each
other in 4-connectivity case.

When domain of support or object is considered as 8-connected, along with
horizontally and vertically adjacent pair of pixels, diagonally adjacent pair of pixels,
also constitute edge. The number of edges can be obtained by counting the elements
of the sets AGK,, AOK;, AOK,; A®K,, where the structuring elements
K, Ky, K3 and K4 are shown in Fig. 9. Secondly, the polygons formed by the most
closely situated pixels, in this case, are right-angles triangles consisting of three pixels
and 2 x 2 squares. Since we are dealing with objects in two-dimensional space, sides
of polygons should not cross each other. So during counting faces, we count only
the nonoverlapping triangular faces and the square faces. Now it can be readily seen
that the number of nonoverlapping triangular faces plus the number of squares faces
is equal to the number of all triangular faces minus the number of square faces. The

X X
5o i Ax
Ky Ko K3
X X X X
71 7 x| x
Ke, . Kg KG
X X . X X X
5| x 1 ox il ox
K7 Kg Kg

FiG. 9. Structuring elements for computing genus for 8-connectivity.

number of all triangular faces can be obtained by counting the elemetns of the sets
AOK;, AOK;,AOK;and A® K, and the number of square faces can be

obtained by counting the elements of the sets A ® Ky, where the structing elements
K, K¢, K, Kgand Ky are given in Fig. 9. Hence, the polygonal formula for
8-connected domain of support looks like :
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number of vertices — number of edges + number of triangular faces
— number of square faces.

Thus we can write in

8-connectivity case :

4 8
GU) =#(A)- Y #(AOK)+ Y #AOK)-#(AOK)
i=1 i=5

The structing elements K;’s are shown in Fig. 9. Genus can also be
computed using morphological hit-and-miss transforms*15

4. CONNECTIVITY AND CONVEXITY

In this section we study the properties like connectivity and convexity of digital
objects which has undergone some morphological transformation. We begin with
connectivity property since it is simpler to define and easier to conceive than
convexity.

Connectivity is translation invariant property of object, ie. if A is simply
connected, so is A, Similarly, A, contains a hole if and only if A contains a hole
and vice versa.

Proposition 1 : If A and B are convex and are simply connected regions, then
A @B is simply connected.

PROOF : Suppose A @ B is not simply connected. Then there exists at least hole
in A @ B. Suppose A is simply connected. If we define A®B as |J B, , then
a€EA

A is simple connected and A @B contains a hole imply that there exists an a EA
such that B, contains a hole. Now B, can contain a hole if and only if B contains

a hole. That means B is not simply connected.

Similarly if B is simply connected, then A ® B contains a hole implies that A
is not simply connected.

Hence, A ® B is simply connected. Q.ED.

The convexity constraint in the above proposition is important, and cannot be,
in general, relaxed. Fig. 10 shows an example where the gulfs of an object are
merged by dilaton operation as a result of which a lake (hole) is created from the
bay.

We have already said that DLSs cannot be treated simply as a digital object
because.of its digitization techniques. For example, we have shown that if A and B
are imply connected convex objects, then A @ B will also be a simply connected
object. However, this is not always true for DLSs as we will see now.

Proposition 2 : If L and L, are two DLSs then L; ® L, can have at most point
holes.



MATHEMATICAL MORPHOLOGY 193

FiG. 10. An example of dilation.

PROOF : Suppose L, is a sequence of lattice points pg, py, P2, .. Py and L is
another sequence of lattice points gy, 1, g2, ..., g,- Coordinates of p;s and g;s are given

by (#, ) and (¢, c?), respectively. Since L; is a DLS then
rfﬁ—l_’?: 1 a'nd("‘!?+1_c":':,E {_ 11 0> 1},

or

o= =1landrf, ,-rfE€{- 1 0, 1}.
The same is true for L, also. Now L; @ L,

1. will form a DLS with end points (py+ qp) and (p,, + g,),

b= (:5 cl-cf
if —— » Of
"fn "5 ?‘ —"0
2. will form a parallelogram with vertices (pg + qo), (P + Go)s (Pm + ) and (po + gn),
P~ c” cq Ferd
if r:," r” 2, and is bounded by L;, L, a DLS parallel to L; and another
ro

DLS parallel to Lz-

In the first case, L; @ L, is simply connected. In the second case, let us take
any two sets S; and S, of pair of successive pixels one pair from L; and other pair
from L,, i.e.,

S1={ (rf’z Cf), (’J?+17C‘?+1) }
={ (?’?, C?) > (?’?_,_1,(:'?_,_1) }

There are many -different combinations of relations between r; and r;, ¢, and
c;and ¢;, ¢ possible. But the results of S, dilated by S; can be grouped into only
three distinct classes. Here we will consider only three different inputs whose output
correspond to those distinct classes.

Case 1 : ¥, 1=rf+1, f,.1=c+1

q q g 9
rj+]=r}-+1, C}+1=Cj+1
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Hence, $1@8; ={ ({+r], d+cf), (F+rf+1, F+cf+1),
AE+ri+2, d+cf+2) )

So §; @S, contains three points, each in 8-connected to others and there are no
holes.

Case 3. 1 =r+1, &,y=&
fv1=1f, C,?+1=C}q+1
Hence, ;@8 = { (T +rf, f+cf), (F+rf, f+cf+1), (P+ri+1, L+,
(Y +ri+1, F+cf+1) )

So 51 @S, contains four points, each is 4-connected [8-connected also] to others
and there are no holes.

Case 3 duy=r+l, duy=d + 1
Ho=rf+1, = -1
Hence, $1@S; = { (F++], f+c), (F+ri+1, L+cf-1),
F+ri+1, +df+1), F+ri+2, F+cd) )

So §; @8, contains four points, each is 8-connected to others, and there is one
hole at (r} +7f+1, ¢f +cf). No other point from L;and L, will contribute to this
point hole.

Now for all other input combinations, the results of S; @S, will fall in one of

these three cases. Since above discussion is valid for any two pairs of successive
pixels from L;and L;, then L; @ L, can have at most point holes. Q.ED.

We have said earlier that quite a few definitions of digital convexity have been
suggested in the literatures’>"16. One of the problems with these definitions of digital
convexity is that they cannmot gaurantee, in general, digital convexity of objects
resulting from dilation of a DLS with another DLS. So we define the convexity in
the discrete domain in the following way to accommodate such kind of objects in
the class of digitally convex objects. In the following discussion, if not specially
mentioned for continuous domain, the term convex means digitally convex.

Suppose A is a 8-connected component and K = {(-1, 0), (1, 0), (0, 1), (0,
1)} is the structuring element with origin at (0, 0) as shown in Fig. 11. Unless
otherwise stated, the structuring element K always represents this in the rest of our
discussion. Then A © K is the union of the set of interior pixels and the set of point
holes of A.

So the set of points holes and interior pixels may be collectively called the set
of ‘closely surrounded pixels’, where
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X r’ X

Fic. 11. The structuring element to extract the closely surrounded pixels.

Definition 14 — A pixel p is closely surrounded by an object A if all 4-neigh-
bours of p are in A.

Since by definition, boundary pixels have at least one of the 4-neighbours in
Ae, eroding with K deletes all boundary pixels of A. However, union of A ® K with
A fills up point holes in A. Therefore, if A contains at most point holes, then

AU (A ©K) is simply connected. Pixels closely surrounded by an object play an

important role in convexity analysis. A digital object is said to be digitally convex
if the union of its all pixels and pixels closely surrounded by it conver its convex
hull. Thus

Definition 15 — An object A is digitally convex if and only if

AU @ 0K = HA) N2

where, K = {(-1, 0), (1, 0), (0, -1), (0, D}.

This definition implies that the condition for an object being convex is that it
can have at most point holes. This notion of convexity implicitly assumes that no
hole can have an area of one pixel only. Any such hole will be regarded as noise
including digitization error. Secondly, let us denoted the intersection of Z? with a
half-plane that may have point holes in it by Hph, and also denote a Hph that
contains the object A by Hph{4). If A is convex then A must be obtained from the
intersection of all possible Hph(A). Thirdly, suppose a pixel x does not belong to
A, then there must exist a DLS that separates x from A. Finally, in Euclidean plane
geometry the convexity of a region is defined in terms of the straight line segment
between every pair of points in the region. In continuous domain, an object is said
to be convex if for every pair of points in the object, the line segment connecting
them lies entirely in it [Definition 9]. It is of natural interest to check if this property
is valid for present definiton of digital convexity also. The line containment property
of a convex digital region is already proved by Kim and Rosenfeld’ :

Proposition 3 — A simply connected object A is convex if and only if any two
points of A are connected by a DLS in A.

PROOF : Proof can be found in the above mentioned literature. 0.E.D.

Proposition 4 — If A is convex then any two points in A|J (A ©K) are
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connected by a DLS in AlJ (A ©K).

PROOF : Suppose A is an object with at most point holes. Then A |J (A
©K) is a simply connected object. By definition of convex hull, HA |J (4 ©K))
( Z*? is digital convex region. According to Proposition 3, any two points of
H(A | (A®K)) () Z? are connected by a DLS in H(A | (A@K)) N Z* .
Since, the boundary pixels and, in turn, vertices of A and HA |UJ (A ©K)) are
same, so H(A | (A © K))-H(A). From the definition of digital convexity, we can
write, a A is convex then

HA | AOK) N Z*=HA) N Z*=-4 U (A © K).

Hence, any two points of A | (A © K) are connected by a digital line segment
in AlJ (AGK). 0.E.D.

Corollary — If A is convex then any two points in A are connected by a DLS

inA U (A0K).

B
X[ X[ X]|X
X[ X|X|X
X|X|X|X
X|X|X|X
OO0

V1 |(®)

Fic. 12. A simply connected convex object.

In Proposition 2, we have secen that when a DLS is dilated by another straight
line segment, the resultant object can have at most point holes. Now we will see
that resultant object must also be convex. Before that let us restate another result
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from Kim and Rosenfeld (Theorem 7 of 7).
Proposition 5 — A DLS is convex.

PROOF : Proof can be found in the above mentioned literature. Q.E.D.

Proposition 6 — If Ly and L, are two DLSs, then L; @ L, is convex.

« PROOF : Suppose L, is a sequence of lattice points py, pi, P2, - P 2nd Ly is
an other sequence of lattice points pg, py, Py, ..., Pp- Let L = L; @ L,. As explained
in the proof of Proposition 2, L will be either

1. a DLS with end points (py+ gp) and (p,, + g,), or

2. a parallelogram with vertices (pg + go), (Pm + qo), (P + g») and (pg + g,,), and
is bounded by L, L,, a DLS parallel to L,, and another DLS parallel to
L.

Now in the first case, when L is a DLS, according to Proposition 5, L is convex.

In the second case, L can have at most point holes, so L | (L © K) is simply
connected. Again, since, boundary pixels of L form a parallelogram which by
definition is convex, then bounday of L and that of H(L) (1) Z? are same. That

means L |J (L © K) = H(L) N Z~
Hence, L1 @ L, [ or L ] is convex. 0.E.D.

Proposition 7 — If A and B are convex, then A @ B is also convex.

PROOF : Since A and B are convex, then A and B can have at most point
holes. So according to Proposition 3, A @ B can have at most point holes. Let C
= A @ B. Therefore, C | (C © K) is simply connected. Now if we can show

that any two points in C are connected by a DLS in C | (C © K), then convexity
is proved.

Let us take arbitrary points ¢; and c¢; of C. For every pair of ¢, ¢;, there exist
two point. by, b, in B and a;, a; in A such that a; + by =c¢; and a, + b, = ¢;. Since
A and B are convex, then DLSs connecting a; and a;, and b; and b, lie in
AlJ(AB®K) and B U (B ® K), respectively. So we can imagine that DLS
connecting a; and a, is dilated by the DLS connected b; and b, and results in a
parallelogram with vertices (a; + by), (@ + b3), (ay + by) and (a; + b;). Thus ¢; and

¢, is in the parallelogram. Hence, DLS connecting ¢; and ¢, is in C |J (C @ K).
Q.E.D.

Like connectively, convexity property is also translation invariant. Since
convexity of a digital object and containment of DLS connecting any two points of
it are closely related to each other, let us examine some problems associated with
DLS at this point. In the continuous domain a straight line connecting two points is
unique. But in the discrete domain, we have two different DLSs L, and L, connecting
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two points [Fig. 2]. So the DLS connecting two points is not unique. However, L,
and L, are individually unique for any two points. Secondly in the continuous domain,
if the intersection of any two convex object is nonempty then it must be convex.
According to Proposition 5, a DLS is convex. But if we take the intersection of two
DLSs connecting the same pair of points, we may get a nonempty set which is not,
in general, connected; convexity is out of question. These two problems may be
solved if we restrict our definition of DLS either to L, or to L,. Suppose the sequence
of pixels or lattice points corresponding to L, [of previous definition] define the DLS.

Now let us see what happens to convex digital objects is terms of this
constrained definition of digital straight line. Let us consider. a simple digital convex.
object A as shown in Fig. 12. It has vertices v, v, v3 and v4. The sequence of pixels
marked with O characterize DLS connecting two endpoints. In the figure we see that
DLS connecting v; and v, is in A, but that connecting v; and v, is not in A. As a
result A (M) Ais,—yy will give two well separated points corresponding to v,(v4) and
vy(v3). We may call the edge segment v; v, bound and v, v, open. Similarly, v, v; is
open and v4v; is bound. In fact, Kim and Rosenfeld’” considered both L, and L, to
prove line containment property of convex objects. The convexity problem of
intersection of two convex objects may be solved by binding the open edge segments
of objects. ‘Binding open edge segment’ means taking the union of the object with
the DLSs connecting the vertices associated with the open edge segments. However,
augmenting pixels to an object means an increase in the area of the object which
is undesirable too.

Hence, we drop the idea of augmenting pixels to the object and accept both
L, and L, as DLS connecting same pair of points. This leads us to following two

propositions which are most close to the property of intersection of two convex
objects in the continuous domain but not exactly same because of the connectivity
problem.

Proposition 8 — If A and B are simply connected objects and A () B is

connected, then A (] B mast be simply connected.

PROOF : Suppose A () B is connected but not simply connected. Then there

exists at least a hole in A (1) B. This implies that either A or B or both contain
a hole. Accordingly, either A or B or both are not simply connected. Q.E.D.

Hence, A () B is simply connected.
Proposition 9 — If A and B are two convex objects, and

FC=AUMA®OK)) () (B (B ©®K)), then C is a convex object if it
_ is connected.

PROOF : If A and B are convex, then each can have at most point holes. Thus
AlJA OK)and B [J (B © K) are simply connected. Now
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C=AUMAB®K)N ®B®U BOK)

and C is not empty. Then it can have
1. one pixel only, or
2. more than one pixel but not connected, or
3. more than one pixel and connected.

In the first case, C is always convex. We discard the second since C is not
connected. In the third case, since C is connected, according to Proposition 8, C
must be simply connected. Let us consider any two points p and ¢ in C, and possible

DLS connecting them are denoted by Lf and Lf. Since CC A |J (A ©® K) and
A is convex, then p,g € A |J (A © K) and either L’: or L‘; or both connecting p
and g must be in A |J (A © K). Similarly, B | (B © K) also contains p and g
as well as either Lf or Lf or both connecting p and g. Now since L, and L,
connecting p and g are unique, then =181} = Lf and aLi} = Lj = Lbc. Since
C is simply connected then either L,,c or Lf or both must be in C. Hence, C or

AU@AeK)MN ®BU@BO K)) is convex.

Corollary 2 — If A and B are simply connected convex objects, then
A () B is also a simply connected convex object if it is connected.

PROOF : Suppose A () B is connected. Since A and B are simply connected
and A (| B is connected then, according to Proposition 8, A () B is simply
connected. Again since A and B are simply connected, then A | J(A 6@ K) = A
and B | (B © K) = B. According to Proposition 9, since A and B are convex,
then A UMAOK) MN®BUMBOK) is convex if (A |J(A © K))
M B U (B © K)) is connected, i.e., A (| B is convex if A (| B is connected.

Hence, A () B is simply connected convex. Q.ED.
Corollary 3 — If Ay, Ay, A, ..., A, are simply connected convex objects, then
AiNA2 M A3 ... A, is also convex if it is connected.

Corollary 4 — If A is a simply connected convex object, then for any struc-
turing element B, A ® B is a simply connected convex object if it is connected.

PROOF : From definitio of erosion we can write
AO®B-= nbe A A._b = Ab] ﬂAbzmAbj m mAb"

where —by, —-b;, — b, ....,—b, are elements of B. Now since convexity is translation
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invariant property of objects, A translated by b, is simply connected convex for all
i. Suppose A @ B is connected, i.e.,

Abl m Ab2 m A.b3 m sann nAbﬂ
is connected. Therefore, according to Corollary-3,
Ap, N A, MNA, NN A,

is simply connected convex. Q.E.D.
Hence, A © B is simply connected convex.

Proposition 10 — If A is a simply connected convex object, then for any
structuring element B, A © B is connected if it is non-empty.

PROOF : To prove this proposition let us consider the definition of erosion in
another form that states that

A ©B={pez?|B,CA}

Suppose A is a simply connected convex object, and also suppose that C =
A © B and C is not connected. Then there exists at least a pair of pixels p and g
such that p, g€ C and p and g are not connected. So we can say that there exists
a pixel r that lies on the DLS connecting p and g, and r & C. Now consider a pixel
of the structuring element, i, bEB, then (b + p) €B8,, (b+q)EB, and
(b+r)EB,. Thus (b + r) also lies on the digital straight line segment connecting
(b + p) and (b + gq). Since p, g €EC and r&C, then B,CA, B,CA, and B, ¢ A4,
respectively. That means for some value of b, (b + p), b + g0 €EA and
(b +r)&A. Therefore, there exists at least a pair of pixels (i.e. (b + p) and (b +
q)) such that the DLS connecting them is not contained in A. If this is true, according
to Proposition 3, A is not simply connected convex.

Hence, A ® B (or C) is connected. Q.E.D.

Proposition 11 — If A is simply connected convex object, then for any struc-
turing element B, A © B is a simply connected convex object.

PROOF : Proof is straightforward and can be done just by combining the proofs
of Corollary-4 and Proposition 10. Q.E.D.

Proposition 12 — If A and B are simply connected convex objects then A ° B
is also a simply connected convex object.

PROOF : Proof is straighforward and can be done just by combining the Proposi-
tion 11 followed by Proposition 7. Q.E.D.

Corollary 5 — If A is simply connected and B is convex, then A ° B is convex.

Proposition 13 — If A is a simply connected object and L is DLS then A ° L
is a convex object.
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PROOF : Since L is a DLS, L is convex. By definition, A o L = (AGL)®L.
Now (A®L) can be : (i) a point; (ii) a DLS; or (iii) an extended region. let us
consider each case separately.

Case 1 : If (A®L) is a point, then (A©® L)@ L is a DLS and, hence, is digitally
convex.

Case 2 : If (A®L) is a DLS, then (A®L)®L, according to Proposition 6, is
convex. However, according to Proposition 2, (A® L)@® L can have point holes, i.e.,
is not cimply connected.

Case 3 : If (AO©L) is an extended region, (A® L)@ L (as shown in Case 2 of
the proof of Proposition 2) is 'simply connected. According to Proposition 7,
(AGL)®L is convex.

Therefore, in general, A o L convex. Q.E.D.

Proposition 14 — If A and B are simply connected convex, then A °* B too is
simply connected convex.

PROOF : Proof is straightforward and can be done just by combining the
Proposition 7 followed by Proposition 11. Q.E.D.

Proposition 15 — If A and B are convex, then A ° B is also convex.

PROOF : Since both A and B are convex, they can have, at most, point holes.
Consequently, according to Proposition 7, (A @ B) is convex and can have at most
point holes. Now we know that AC A ¢ B. That means A * B can have at most
point holes. So the erosion of (A @ B) by B does not create any hole. Secondly, the
closing operation smoothes the boundary of A. So the erosion of (A @ B) by B does
not create any concavity on the boundary.

Hence A ¢ B is convex.

5. CONCLUSION

In this paper, we have presented morphological algorithms for computing some
topological properties like connectivity number and genus of digital objects. For
connectivity number both the definitions suggested by Yokoi et al.l”7 and Rutovitzl4
are considered. For computing the genus of an binary image we propose a new
algorithm. This algorithm auggests that the simple erosion operation with appropriate
structuring elements is capable of computing genus. At this point we recall that Gray*
and Serra®> computed genus using hit-and-miss transform. However, the present
discussion reveals that both connectivity number and genus of an binary image can
be computed using erosion only.
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We have also presented a new definition for digital convexity. This definition
has the+property that when a digital convex object is dilated by another digital convex
object the resultant object will always be digitally convex. The same is true for
erosion, opening and closing also, if the resultant object is nonempty. So this
definition has a direct resemblance with that in the continuous domain except for
the fact that it takes into account also the objects that have point holes. Secondly,
the definition is equivalent to existing definitions of digital convexity in the case of
simply connected objects. In fact, the proposed definition is more general and holds
the line containment property. However, this definition of digital convexity, like other
definitions except that suggested by Freeman and Shapira’, lacks the intersection
property. The intersection of two digital objects, which are declared convex by the
proposed definition, may not be connected when it is nonempty. On the other hand,
the definition of digital convexity suggested by Freeman and Shapira covers only a
subset of digital objects which are digital versions of convex objects in the continuous
domain. We have seen that the above mentioned intersection problem is actually
caused by the ambiguity in digitization of straight line segment.
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