Geo-Processing, 1(1980) 313—337 313
Elsevier Scientific Publishing Company, Amsterdam — Printed in The Netherlands

A SPATIAL DATA STRUCTURE

Linda G. Shapirol and Robert M. Haralick2

lDepartment of Computer Science
2Departments of Electrical Engineering and Computer Science
Virginia Polytechnic Institute and State University, Blacksburg, VA 24061

ABSTRACT

Shapiro L.G. and Haralick, R.M., 1981l. A spatial data structure. Geo-Processing,
1:313-337.

A spatial data structure has been designed for representing geographic data in a
relational form. The structure is rich, flexible, and efficient enough to logically
store any of the spatial information in maps, line drawings, region adjacency graphs,
and other geographic entities. In this paper we define the spatial data structure
and discuss the manipulation of a spatial database for answering queries and for
structural matching.

INTRODUCTION

Digital map data, line drawings, and region adjacency graphs are all instances of
spatial data that is usually organized in a discrete structural form as opposed to
the iconic form of the gray tone or color image. Such structural organizations can
be derived by hand gathered data or by segmenting an image, associating attributes
with the image segments, and determining relationships between segments. In this
paper we are not concerned with the origin or generation of the spatial information.
We are concerned with the representation of the spatial information once it is

created and the kinds of interactions we may wish to have with it.

We pose our interaction as a sequence of questions and commands. We may wish to
know whether a railroad yard is 1in the image that the spatial information was
extracted from. We might ask where the industrial areas are or whether there is any
evidence that a brush area between a forest and an urban area has ever been burned.
We may wish to find the biggest body of water within twenty miles of a particular
city. We may ask the system to construct a region consisting of all the irrigated
cropland in a certain state or to construct a road network including all the roads

314

that go through a given city. Or, we may simply indicate that a region's area has
changed and then specify the new boundary of the region.

Whether the form of interaction is a question or a command, finding the answer,
modifying or returning the required region(s) or line(s) or point(s) involves search-
ing the data structure for one or more objects or distances that satisfy the condi-
tions of the query. We will focus attention on those interactions that require the
execution of procedures that rely heavily on the structural representation of the
spatial information. We will not concern ourselves at this time with the problem of
efficient geometric and distance algorithms.

We consider maps to be a visual representation of spatial data. We call the for-
mal organizational structure by which we may represent spatial data in the computer a

spatial data structure. In this paper we give a definition of spatial data structure

and some examples illustrating its use in raster format data, in vector format data,
in procedures which do region editing, and in procedures which make spatial refer-
ences. The structure is rich, flexible, and efficient enough to logically store any
of the spatial information in maps, line drawings, region adjacency graphs, and other
geographic entities that we might desire to represent.

In Section II we define the spatial data structure, give some specific examples
wnich illustrate the use of the structure to represent spatial information, and show
how the geographic data structures used by other researchers can be accomodated by
the spatial data structure. In Section III we discuss the manipulation of a spatial
database for answering queries. In Section IV we discuss the mathematical nature of
spatial data matching problems.

THE SPATIAL DATA STRUCTURE

The basic kinds of data found in maps are points, lines and areas. This data can
be stored in many forms; grid cells, lists of points, 1lists of line segments, and
polygons are common examples. The best storage representation is the one that can be
accessed most efficiently for a given application. Unfortunately, if everyone uses a
different data structure, very little sharing of software or data can take place. In
this section we define a general spatial data structure that can be used to represent
any spatial or relational data.

Definition of the Spatial Data Structure

An atom is a unit of data that will not be further broken down. Integers and

character strings are common examples of atoms. An attribute-value table A/V is a

B PN T e T s e
TS p

315

set of pairs A/V = {(a,v) | a is an attribute and v is the value associated with
attribute a}. Both a and v may be atoms or more complex structures. For example, in
an attribute-value table associated with a structure representing a person, the
attribute AGE would have a numeric value, and the attribute MOTHER might have as

its value a structure representing another person.

A spatial data structure D is a set D = {Rl,...,RK} of relations. Each relation

Rk has a dimension Nk and a sequence of domain sets S(1,k);...,SMk,k). That is for
each k = 1,...,K, Rk ¢ S(1,k) X ... X 8(k,k). The elements of the domain sets may
be atoms or spatial data structures. Since the spatial data structure is defined in
terms of relations whose elements may themselves be spatial data structures, we call
it a recursive structure. This indicates 1) that the spatial data structure is

defined with a recursive definition (and not that the information stored in it is
infinitely recursive), and 2) that it will often be possible to describe operations

on the structure by simple recursive algorithms.

A spatial data structure represents a geographic entity. The entity might be as

simple as a point or as complex as a whole map. An entity has global properties,

component parts, and related geographic entities. Each spatial data structure will

have one distinguished binary relation containing the global properties of the entity
that the structure represents. The distinguished relation is an attribute-value
table and will generally be referred to as the A/V relation. When a geographic
entity is made up of parts, we may need to know how the parts are organized. Or, we
may wish to store a list of other geographic entities that are in a particular rela-
tion to the one we are describing. Such a list is just a unary relation, and the

interrelationships among parts are n-any relations.

For example, we may represent the state of Virginia by a spatial data structure.
In this case, the A/V relation would contain global attributes of the state such as
population, area, boundary, major crop, and so on. The values of most of these
attributes (population, area, major crop) are atoms. The value of the boundary
attribute is a spatial data structure defining the boundary.

One obvious division of the state is into counties. A list of counties could be
included as one of the relations, or it might be more valuable to store the counties
in a region adjacency relation, a binary relation associating each region (county)

with every other region (county) that neighbors it. Counties, of course, would also

be represented by spatial data structures.

Some other geographic entities that are related to a state are its highways, rail-
roads, lakes, rivers, and mountains. Some of these entities will be wholly contained

316

in the state and others will cross its boundaries. One way to represent this
phenomenon is to use a binary relation where the first element of each pair is a geo-
graphic entity, and the second element is a code indicating whether the entity is
wholly contained in the state. The spatial data structures representing the geo-
graphic entities themselves would contain more specific information about their loca-
tions. Figure 1 illustrates a simplified spatial data structure containing an attri-
bute-value table, a county adjacency relation, and a lakes relation for the state of
Virginia.

VIRGINIA
attribute value
AV - > POPULATION 4,648,494
COUNTY ADJACENCY AREA 40,815 sa M
LAKES T BOUNDARY (VIRGINIA BOUNDARY)
MAJOR CROP TOBACCO
(LAKE ANNA) INSIDE
CROSSES
(BUGES 1. LAKE) BOUNDARY
(LEESVILLE LAKE) INSIDE
Vi
(MONTGOMERY) (ROANOKE)
(MONTGOMERY) (GILES)
(GILES) (CRAIG)

Figure 1 illustrates a spatial data structure representing the state of Virginia.

Comparison to Other Geographic Data Structures

One of the earlier and successful geographic information systems is Tomlinson's
Canadian Geographic Information System (Tomlinson, 1967; Switzer 1975). This system
includes such features as a command language, an assessment language, the possibility
of overlaying maps, interactive graphics, and input from a drum scanner or an X-Y
digitizer. In this system, regions are represented by polygons. Two files of data

317

are used: the image data set which contains the line segments that define the
polygons and the descriptive data set which contains the user assigned identifiers,
centroid, and area for each polygon. In the image data set, a line segment points to
its left and right polygons and to the next two boundary chains that continue bound-
ing the polygons on the left and on the right. Each polygon in the image data set
points to its representation in the descriptive data set and vice versa.

In the U.S. Census DIME files (Cooke and Maxfield, 1967), the basic element is a
line segment. Line segments are defined by two end nodes plus codes for the polygon
on the right side and the polygon on the left side of the segment. In this system,
the data structure has been kept simple at a cost of extra CPU time for certain oper-
ations. For instance, determining what line segments share a node or finding the
whole outline of a polygon requires searching the database. This structure is suffi-
cient to represent all topological spatial relations between regions, and is also
used by Hanson and Riseman (1976) in their VISIONS system.

The POLYVRT system (Harvard Laboratory for Computer Graphics and Spatial Analysis,
1974) and the LUDA system (Fegeas, 1977) are similar to the DIME system, except the
the basic unit is a chain-——a directed list of points that can be used to define an
entire polygon. In POLYVRT, searching can take place in two directions: from chain
to polygen and from polygon to chain.

The spatial data structure defined here can easily store the spatial data in all
of the above systems in exactly the same logical manner. We illustrate this by
defining a system with similar characteristics. 1In our system a point is an atom
consisting of an ordered pair (X,¥) where X represents latitude and Y longitude.
A chain C is a spatial data structure C = {A/VC, LP}. LP is an ordered list (unary
relation) of points that define the chain. The attribute-value table A/VC of a chain
contains the attributes LEFT POLYGON, RIGHT POLYGON, NEXT CHAIN LEFT, and
NEXT CHAIN RIGHT whose values correspond to the pointers in Tomlinson's system. The
attribute-value table can alsoc contain such global information as the length of the

chain or a function to be used to interpolate between the points.

A polygon P is a relatively simple spatial data structure P = {A/VP}. In this
case, the attribute-value table contains the attributes FIRST CHAIN and POSITION.
The value of FIRST CHAIN is the first chain of the polygon, and the value of POSITION
is LEFT or RIGHT depending on whether the polygon lies to the left or to the right of
the first chain. Such global attributes as AREA and CENTROID can also be stored in
the attribute-value table.

318

Pl

PIFIRST CHAIN| (CD) *TFIRST CHAIN JcCD)
AP A/VA
POSITION LEFT FOSITION RIGHT
AREA AREA (P1) AREA AREA (P2)
CENTROID CENTROID (PD) CENTROID CENTROLD (P2)
(1 2 3
ANC v A/VC A/NC
LP] LP '[LP r
\F—‘__I
El IPZIP3|P4‘ mFsIPE|P7]P1| lPQlPlOWPQlFB{PlI
LEFT-REGION (PL) | LEFT-REGION (P1) LEFT-REGION
RIGHT-REGION [(P2) RIGHT-REGION RIGHT-REGION [(P2)
NEXT-CHAIN-LEFT |(C2) NEXT-CHAIN-LEFT |(C1) HEXT-CHAIN-LEFT
| NEXT-CHATN-RIGHT(C3) HEXT-CHATN-RIGHT. | REXT-CHATN-RIGHT|(C1)
LENGTH LepsTH(CD) | | LEKGTH LEnsTH(CD) | | LEHGTH oTH(CS)
INTERPOLATE (FL) INTERPGLATE (F2) IHTERPOLATE (F3)

Figure 2 illustrates a spatial data structure for a simple map that encompasses the
structures used in the Canada Geographic Information System, the DIME System, the
POLYVRT system, and LUDA system.

Figure 2 illustrates this structure for a simple 'map' of two regions Pl and P2.
In this example, we have chosen the chains to be the longest sequence of points that
have exactly one region to their right and one region to their left. The directions
of the chains were chosen arbitrarily. We do not mean to suggest that the points in
a chain be stored sequentially as (X,Y) coordinates. Instead, we are leaving the
physical storage mechanism open. In other applications, storing the chain in a par-
ametric functional form might be appropriate. Regardless of the physical form of

storage, the structural aspect of the representation is the same.

Edwards, Durfee, and Coleman (1977) use a hierarchical polygonal data structure to
represent regions that can have holes, which in turn can have holes of their own, to
any level of nesting. Because the spatial data structure is a recursive structure,
it can naturally handle such a hierachy. We define the boundary of a region as fol-
lows. A boundary is a polygon plus a (possibly empty) list of boundaries of interior
polygons. Thus a boundary can be represented by a spatial data structure B = {A/VB,
LB} where A/VB contains the attributes FIRST CHAIN and POSITION, and the unary rela-

319

tion LB is a list of boundaries. As before, FIRST CHAIN is the first chain of the
polygon, and POSITION indicates whether the bounded region lies to the left or the
right of the first chain.

When LB is empty, B is a polygon or simple boundary. When LB is not empty, then
B has holes in it. Each of these holes is also a boundary, so it may also have
holes. Thus this spatial data structure handles the hierarchical polygonal data
structures. Other hierarchic structures such as Brassel's hierarchically organized
spatial database of Thiessen polygons can be handled similarly by our spatial data
structure (Brassel, 1977).

Burton's polygonal representation (Burton, 1977) allows quick solutions of the
point in polygon and polygon intersection problems. It is based on breaking up a
polygon into basic sections that are maximal length chains, monotonic in both coordi-—
nates. The chain spatial data structure as described above may be modified so that
the list of points are monotonic in both coordinates. Thus Burton's algorithms may

be applied to our chain structure.

The triangle data structure has been used for representing surface data. A trian—
gle represents a piece of a three-dimensional surface. The vertices of the triangle
are nodes containing information such as elevation and slope. To obtain information
about points of the surface interior to a triangle, an interpolation may be used with
a homogeneous coordinate system based on the three nodes' sampled values (Gold, 1976;
Males, 1977). 1In the triangle data structure, each triangle points to its vertices
and adjacent triangles. Thus a triangle is a spatial data structure T = {LV, AT}
where LV is a list of three vertices, and AT is a list of adjacent triangles. Each
vertex V is a spatial data structure V = {A/VV} where the attribute-value table A/VV
contains the attributes SLOPE, ELEVATION, and other information.

GEOGRAF is a system proposed by Peucker and Chrisman (1975) to handle both planar
data and surface data. The system includes the concepts of 1) a least common geo-
graphic unit (an area that will not be partitioned futher) 2) a chain group (a set of
chains that form a boundary of two areal units of a given polygon class, and 3) an
attribute cross-reference table. To handle surface data the system has a two-part
data base including both a triangle structure and a set of points that lie along
lines of high information content. The triangle structure is a low level structure
comparable to the image data set of the Canada Geographic Information System. The
points in the second set consist of peaks, pits, and passes. This set in some ways
corresponds to the descriptive data set of Tomlinson. The GEOGRAF system is a move—
ment toward unification of geographic data structures.

320

Go, Stonebraker, and Williams (1975) describe a relational database approach to
implementing a geographic data system. The basic entity in their system is a map, a
collection of lines, points, line groups (polygons), and zones (collections of poly-
gons) represented by a 9-ary relation. A query language QUEL which is similar to
SEQUEL (Chamberlin and Boyce, 1974) is used to interrogate the system. The system
can handle simple queries about a map and can display information from a map.
Because of its relational nature, this system is related to the more sophisticated

system we discuss in this paper.

The structures just described are all vector format structures. Vector form is
only one form of spatial data. It represents areas by their boundaries and has the
advantage of a very compact representation. Raster or grid form is another form of
spatial data. In this form areas are represented by the grid cells that cover them.
The advantage of raster format data is the simplicity of performing certain tasks
such as map overlay. Our spatial data structure can handle raster form data just as

easily as it handles the vector form.

Consider, for example, storing an entire map of regions in a run length encoded

form of raster grid cell data. Shown below is one row of such map data.

1 7 20 6l 75 98 114

In the row shown, there are seven intervals, each one of which belongs to one of
three regions: A, B, or C. Each interval is specified by a beginning pixel, an end-
ing pixel, and an interval label. By grouping together all intervals of the same

label we may represent this row by the following table.

Internal List Name

A (1,6),(20,60),(114,130) IL47A Partition
B: (61,74),(98,113) IL52D List
c: (7,19),(75,97) IL36E PLB1B

In this case, the row points to the partition list (Merrill, 1973) PL81B which con-

321

tains the interval lists IL47A, IL52D, and IL36E, each of which contains a set of

intervals for some region in the row.

Grid cell data structures explicitely represent areas. We will call the entities
employing this representation 'map areas'. Thus, the entity 'map area' is a spatial
data structure MA = {A/VMA,PLR}, where the attribute-value table A/VMA has the attri-
bute THEME with values such as 'soil type' or 'land use'. PLR is the partition list
binary relation. It consists of a set of ordered (row,partition list) pairs. The
entity 'partition 1list' is a spatial data structure PL = {A/VPL,ILS}, where the
attribute-value table A/VPL has the attribute ROW whose value is the number of the
row being divided up by the partition list. ILS is the set of interval lists compos-
ing the partition PL. Finally, the entity 'interval list' is a spatial data struc-
ture IL = {A/VIL,HS}, where the attribute-value table A/VIL contains the attributes
NAME and ROW. The attribute NAME takes on a value which is the name of the region to
which the intervals in IL belong. The attribute ROW has as its value the row number.
HS is the ordered list of horizontal strips (intervals) in the interval list. Each
strip in HS is an ordered pair whose first component is the beginning pixel and whose

second component is the ending pixel of the strip.

DESIGN OF A SPATIAL INFORMATION SYSTEM

We are currently involved in the design and implementation of an experimental spa-
tial information system using the spatial data structures concept of Section II.
The system will answer user queries and solve problems presented to it in a subset of
English. In this section, we describe some of the important features of the proposed

system.

Major Data Structures

The spatial data structure is the primitive or building block of the system. A
finite number of spatial data structure types will be allowed. For instance, the
system might include spatial data structures representing the high-level entities
states, cities, counties, highways, rivers, lakes, and mountains and the lower-level
entities boundaries, simple boundaries, and chains. Thus the system might contain a
spatial data structure whose name is MONTGOMERY and whose type is COUNTY.

For each type of spatial data structure, the system will keep a prototype struc-
ture. The prototype will indicate what attributes may be found in the A/V relation
of this type of spatial data structure and what relations besides the A/V relation
comprise the data structure. Similarly a finite number of relation types will be
allowed, and the system will keep prototypes of the allowable relations. Thus the

322

STATE prototype might indicate that all spatial data structures of type STATE have a
COUNTY ADJACENCY relation. The COUNTY ADJACENCY prototype would indicate that this
is a binary relation and that both components of each pair in the relation are spa—
tial data structures of type COUNTY. (See Figure 4 in the section entitled Primitive
Operations.) A user query might involve a specific spatial data structure or a spe—
cific type of spatial data structure. For fast access in either case, the system

will include a spatial data structure name dictionary that maps a name to a spatial

data structure and a spatial data structure type dictionary that maps a type to a

list of all spatial data structures of that type. Similarly a relation type diction
ary will map a relation type to a list of all relations of that type. We are plan—
ning to implement relations as relational trees (Shapiro, 1979). Note that all of

these structures can be represented by spatial data structures, unifying the whole
system.

Program Structure

We envision an intelligent system that can handle a variety of queries. For exam-
ple,
1) What is the population of Richmond?

2) What cities with population greater than 20,000 lie in Montgomery
County?

3) What crops are grown within a radius of one hundred miles from Char-
lottesville?

4) In what counties is 20 per cent of the area mountainous?

5) What is the shortest route from Alexandria to Blacksburg?
are all reasonable queries. Some of the questions require quick table-look—-ups to
produce the answer and some require searching through the database and using special
purpose algorithms. It is also possible that there are several different procedures
or several different paths through the database to find an answer to a query. In
this case, the system should be able to choose the most efficient way to solve the
problem. We propose the following program organization.

The user queries are processed by a PARSER routine which translates the query into
a component command and a list of qualifiers. The PARSER will detect any syntax
errors and try to rectify the mistakes through dialog with the user. The output of
the PARSER is accepted by the TREE-GENERATION routine which creates a tree of possi-

323

ble solution paths through the database. The most efficient solution path
determined by the TREE-EVALUATION routine which produces, as its output,

is
a procedure
of primitive database functions which when executed will satisfy the user query.

Finally, the EXECUTOR executes the procedure to complete the command. Figure 3 dep-

icts the flow of a user query from input to answer.

LA O

Cm
)

USER
QUERY
GRAMMAR

e

PARSER
WORLD COMMAND
KNOWLEDGE QUALIFIERS
TREE-GENERATION
SPATIAL
KNOWLEDGE
QUERY
TREE
DATABASE TREE-EVALUATION
STRUCTURE
KNOWLEDGE
PRIMITIVE
PROCEDURE TO
ANSWER QUERY
COST
KNOWLEDGE
EXECUTOR
AN
DATABASE SHER

Figure 3 illustrates the flow of a user query through the spatial information system.

Each of the major modules must access information structures as part of its input.
The PARSER requires a grammar that describes the syntax of the query language. Since
the query language should be English-like, the PARSER will also need some world know-
ledge to help disambiguate some of the phrases used (See Winograd, 1972).
GENERATION routine uses world knowledge, spatial knowledge,

The TREE-
and knowledge of the

324

database structure. The world knowledge and spatial knowledge can be represented in
-several different ways including relational tables (Codd, 1970), production rules
(Shortcliffe, 1970), and procedures (Hewitt, 1972). Again each of these knowledge
representations can be represented by spatial data structures. The database struc—
ture knowledge should include the spatial data structure name dictionary, the spatial
data structure type dictionary, the relation type dictionary, and all the prototypes.

The TREE-EVALUATION routine uses cost knowledge to choose a path from the set of
paths produced by the TREE-GENERATION routine. The cost knowledge may be stored in
tabular form or built into the TREE-EVALUATION routine in the form of procedures.
The TREE-EVALUATION routine may be offered a choice between a high cost for an exact

answer or a lower cost for a less than perfect answer.

The input to the EXECUTOR is a procedure of primitive functions that operate on
the database. The EXECUTOR has access to the entire database of information. The
EXECUTCR can also access the primitive functions and special purpose high-level
algorithms that are built into the system.

Primitive Operations

The spatial data structure is a relational structure. Because of this, the spa-—
tial database system shares many characteristics of relational database systems. In
particular, all of the primitive operations used in relational database systems are
applicable to the relations of a spatial data structure. We will use a small example

database to motivate the use of these and other primitive operations.

Figure 4 illustrates a set of prototypes for spatial data structures and their
relations that might be found in a spatial information system. The STATE prototype
indicates that STATE is a type of spatial data structure having an A/ relation, a
COUNTY ADJACENCY relation, and a RIVERS relation. The A/V relation has four attri-
butes: NAME, whose value is a character string, POPULATION and AREA whose values are
numbers, and BOUNDARY whose value is a spatial data structure of type POLYGON,

The COUNTY ADJACENCY relation is a binary relation, and each member of each pair
is a spatial data structure of type COUNTY. The RIVERS relation is a unary relation,
and each element is a spatial data structure of type RIVER. The other prototypes

convey similar information.

The following questions are possible queries to a spatial information system hav—
ing the prototypes of Figure 4. Under each question, we suggest a sequence of opera-
tions that might be performed to answer the query.

325

PROTOTYPES
STATE NAME CHAR
A/N_STATE POPULATION | NUMBER
COUNTY_ADJACENCY . AREA NUMBER
IVERS ? BOUNDARY | (POLYGON)
(RIVER)] [(COUNTY)
COUNTY NAME CHAR
A/V-COUNTY . POPULATION | NUMBER
CITIES 1 | AreA NUMBER
i BOUNDARY | (POLYGON)

CITY NAVE CHAR

| av_cry | —]—>{ poruLaTion | numBer

COORDINATES | POINT

RIVER NATE CHAR

[A/V_RIVER [——F—>] courst (CHAIN)
CHAIN
AV -CHAIN —1—{ et | nurBer |
POINTS 1
POLYGON

[chalns |

Figure 4 illustrates a set of prototypes for the spatial data structure types STATE,

COUNTY,

CITY, RIVER, CHAIN, and POLYGON and the relation types COUNTY ADJACENCY,

RIVERS, CITIES, POINTS, and CHAINS.

1)

2)

What cities are in county X?

A. lLocate county X.
B. For each CITY C in CITIES (X).
1. Look up N = NAME (C) .
2. Add N to the relation being created.

What cities are in state X?
A. Locate state X.

B. Perform a projection operation on COUNTY
ADJACENCY (X) to obtain a list of

326

counties.
C. For each county Y in the list
For each city C in CITIES (Y)
1. Look up N = NAME(C).
2. Add N to the relation being created.

3) What is the length of river R?

A. Locate river R.
B. Return value of LENGTH (COURSE (R)) .

4) What cities lie on rivers in state X?

A. Locate state X.
B. Perform a projection operation on COUNTY
ADJACENCY (X) to obtain a list of
counties
C. For each county Y in the list
For each city C in CITIES(Y)
For each river R in RIVERS (X)
if POINT CHAIN_DISTANCE (COORDINATES (C),
COURSE (R})=0
then add C to the relation being created.

5) What cities are within 15 miles of a river in state X?

same as 4) except change '=0' to '15'.

6) What counties in state X does river R flow through?

A. Locate state X.

B. Perform a projection operation on COUNTY
ADJACENCY (X) to obtain a list of
counties.

C. For each county Y in the list
if CHAIN INTERSECTS_POLYGON (COURSE R),
BOUNDARY (Y))
then add Y to the relation being created.

7)

8)

9)

327

What states does river R flow in?

For every state S
if R is an element of RIVERS(S) then add S to the relation being
created.

What points do river X and river Y share?

A. Locate river X.

B. Locate river Y.

C. Construct the intersection of POINTS (COURSE (X))
with POINTS (COURSE (Y)) .

Answer the following questions about the region R defined by the states XY,
and Z.

A. Locate state X.

B. Locate state Y.

C. Locate state Z.

D. Create a new temporary spatial data structure R from the information in
X,Y, and Z and dependent on the prototype for spatial data structures of
type REGION. This will include such operations as finding sums of popu-
lations and areas and constructing a new boundary based on three exis-
tant boundaries.

From these sample queries, we find the following operations are necessary.

10.
11.

projection in the relational database sense
selection in the relational database sense
intersection or join in the relational database sense
look up the value of an attribute

call on geometric or distance functions

create a list

add elements to a list

compar ison

determine if an N-tuple is a member of a relation
create a new relation

Create a new spatial data structure

328

The system will also require a number of relation utility functions. To give the
reader some feeling for these, we list several of the utility access operations that

are required.

return the i'th N-tuple in a relation

return the position in a relation at which a give N-tuple is found
return the next N-tuple in a relation

insert an N-tuple in a relation

delete an N-tuple from a relation

delete a relation from a spatial data structure
add a relation to a spatial data structure
delete a spatial data structure from the system
copy a relation

copy a spatial data structure

catalogue a new relation

catalogue a new spatial data structure
construct the union of two relations

construct the intersection of two relations

Geometric Operations

Thus far we have emphasized operations which explicitely depend on the relational
kind of information the system might have stored. In this section, we illustrate how
a basic geometric operation such as interactive region editing might be done. For
this example, we use the run length encoded raster format data. The algorithm
sketched here is more general than the one given in Peuquet (1979).

In the region editing situation, a connected region is given and an operator
desires to change the boundary of the region. The change can consist of adding area
to the region and/or subtracting area from the region. To specify the required
change, the operator can draw an arc overlaying a picture of the given region and can
designate which side of the arc is associated with area to be inside the region and
which side of the arc is associated with area to be outside the region.

Figure 5 illustrates an example region having a boundary shown as a solid line and
the operator-specified arc shown as a dashed line. Notice that the arc crosses the
boundary. We view this situation as one in which the arc is partitioned into two
pieces by the boundary which crosses it. The arc segment which lies entirely outside
the region can have its sides designated as inside and outside in two possible ways.

These are show in Figure 6. Likewise, the arc segment which lies entirely inside the

329

inside and outside in two possible ways.

region can have its sides designated as

These are shown in Figure 7.

7y =
Iy ?’

\m

(a) (b)

Figure 5(a) shows a region enclosed by the solid boundary and an operator drawn arc
which designates the way in which the region is to be modified. Figure 5(b) shows

the new region after modification as the hatched area.

\

out !

(a) {b)
its sides

illustrates how an arc lying outside the region can have
(shown as

Figure 6
thereby defining two different areas

designated in two possible ways,
hatched) which may be added to the area of the original region.

WA
V A

(a) (b)

Figure 7 illustrates how an arc lying inside the region can have its sides designated
in two possible ways thereby defining two different areas (shown as hatched) which

may become the new region.

330

One algorithm which can do the region editing begins with the original arc divided
into segments, each of which is entirely inside or outside the region and each of
which touches the region boundary only at its beginning or ending point. The algor-
ithm can be explained in terms of coloring. For an arc segment which lies outside
the region, locate any point on the "in " labeled side of the arc. Color this point.
Then color all points reachable from this point without crossing either the arc seg-
ment or region boundary. All such colored points must be subtracted from the region.

Coloring regions requires a connected components labeling algorithm (Rosenfeld and
Kak, 1976). First the vertical boundaries of the operator-specified arc are used to
modify the interval lists of the region to be edited. Then each interval is consid-
ered as a node in a graph. If a pair of intervals or successive rows has overlapping
columns and the pair of rows for the duration of the overlapping columns is not sepa—
rated by a horizontal segment of the operator-specified arc, then the corresponding
nodes in the graph are linked together. Each connected component of the resulting
graph corresponds to a connected region whose intervals are defined by the nodes of
the graph component. The edited region will correspond to exactly one of the compo-
nents determined by the labeling algorithm. Which component it is can be determined
by locating any part of its boundary which is coincident with some part of the opera-
tor specified arc and seeing if the inside of the region corresponds to the "inside"
label of that boundary segment.

To carry out this kind of operation the following two geometric primitives are
required.

1) Search through all the horizontal strips in the interval lists specified by
the region and/or its complement to determine that strip containing a given
(row,column) pair.

2) Given the ordered interval lists for a pair of rows, determine all inter-

vals having overlapping columns.

In addition, the relational primitive of transitive closure of a binary relation
is required in order to determine the connected components cf the associated graph.

Of course for other basic queries, the system will require a number of geometric
utility functions. Included are
1) interval list intersection,
2) interval list union,

3) interval list complement, and

331

4) interval list growing by a specified distance both horizontally and verti-
cally.

HOMOMORPHISMS ON SPATIAL DATA STRUCTURES

A different kind of question that can be asked about map data is whether two enti-
ties have similar structures. For example, it might be interesting to compare the
road network structures around two cities. A function that preserves structure is
called a homomorphism. If there is a homomorphism from cne structure to a part of
another then we have a basis for considering the two structures similar and comparing
them further. Since the spatial data structure is a recursive structure, we will
define a homomorphism for this structure with a recursive definition. First we
define the composition of a function with a relation.

Let R1 ¢ S1 X 82 X...X SN and R2 ¢ T1 X T2 X...X TN be two N-ary relations, and
let h be a function from $ =81 U S2 U...USN to T =Tl U T2 U...U TN. The composi-
tion of Rl with h is defined by Rl e h = {(tl,...,tN) € Tl X...X TN | there exists
(sl;...,sN) € Rl with h(si)=ti, i=1l,...,N}.

Thus the composition of an N-ary relation with a function is another N-ary rela-
tion. If Rl ¢ h = R2, then Rl and R2 have the same structure. If Rl ° h ¢ R2, then
Rl has the same structure as a subset of R2. A spatial data structure is a set of
relations. Two spatial data structures can be considered similar if each of their
common relations have similar structures. However, we may wish to compare two struc-
tures on the basis of only some of their common relations. This motivates the fol-

lowing definition of homomorphism.

Let D1 and D2 be two spatial data structures. For each relation R in D1 U D2,
there is an integer N(R) and a sequence of sets S(1,R),...,SM(R),R) such that R c
S(1,R) X...X SN(R),R). A homomorphism from D1 to D2 is a pair (f,F) where

1) f is a function from a subset D of Dl to D2 satisfying for every RE€ D,
N(R) =N(E(R)).

2) F= {hR,HR) | R € D} where

A) h_is a function from
S(R)=S (1,R) U.....U SM{R),R) to
S(E(R))=S(1,£(R)) U.....U SM(E(R)),£(R))
satisfying

332

a) s € SR) is a spatial data structure iff hR(s} € S(E(R)) is a
spatial data structure

b) Reh cf®)

B) HR is a set of homomorphisms, HR ={G | s€ SR)} satisfying that if s
s
is a spatial data structure then G is a homomorphism from s to hR(s).
S

Intuitively, if D1 and D2 are two spatial data structures and D is a subset of the
relations of D1, then £ is a function that maps each relation R in D to a relation
f(R) of D2 of the same order. For each such pair of relations (R,f(R)), h is a
function that maps each element of the domain of R to an element of the domain of
f(R). Since these elements can be either atoms or themselves spatial data struc-
tures, h_is restricted to map atoms to atoms and spatial data structures to spatial
data structures. Furthermore, if hR maps a spatial data structure s to another spa-
tial data structure hR (s), then there must be a homomorphism form s to hR (s). HR is
the set of such homomorphisms.

To illustrate the recursive homomorphism, we will look at a simple, abstract exam—
ple. Figure 8 shows two spatial data structures SDS1 and SDS2. A homomorphism (f,F)
can be defined as follows. Let D be the subset of SDS1 defined by D = {A/V1,R1} and
define £:D -> SDS2 by £(A/V1) = A/V2 and f(Rl) = R3., This function f satisfies our
restriction in that it maps order 2 relations to order 2 relations.

The set F consists of the pair (h l,H) and (th,HRl). Let hA l(al)=a5,
h a2)=a4, h SD53)=5SDS4, and h v2)=v4. Then h maps atoms to atoms and
A 1(J=ad, A l() v @ i l() AN ps
spatial data structures to spatial data structures. (It also maps attributes to
attributes and their values to the corresponding values, which is a desirable

requirement for attribute-value table relations.) Since hA maps spatial data

/V1
structuré SDS3 to spatial data structure SDS4, the set H must contain a homomor-
phism G from SDS3 to SDS4. Let Gs =(g,G) ere g(A/V3) = A/N4 and

G={ (dA 3,]3)}. Let dA 3(a3)z.516 and d 3(v3)=v6. Since a3, a6, wv3 and v6 are
atoms, no further levels of homomorphisms are needed.

Now, with respect to Rl and R3, let th (SDS3)=SDS4 and th (SDS4)=8DS3. Then Rl ©
h ¢ R3 as required in 2.A.b above, and we have already given a homomorphism G Sils
from SDS3 to SDS4. In a similar manner we can construct a homomorphism G from
SDS4 to SDS3. Thus 2.B is also satisfied, and we have a two-level homomorpﬁ?ssﬁ from
SDS1 to 8DS2, The dashed arrows in Figure 8 illustrate this homomorphism pictori-

ally.

333

sp51 ss2
’,-—_______:‘;7_.77-:::h\— ~af
Ul sl | 1 [wo|w k
. 1 \
Rl I\ Azﬁh_ivg _Ri) B B [/,// A5 ¥
r = TR R e R L -
J, —777_‘—;:—'*"_" “\‘
(5052) (s0s3) [sps® | | [spsy | cspswy
(5D53) (SD53) | (sD8t) osw | sosw F
Yag g (spsy | (5053
i B 1 :
$083 sDs4 1

Figure 8 illustrates a homomorphism from spatial data structure SDS1 to spatial data
structure SDS2.

Some discussion of the construction of this homomorphism is important. First, the
function f was defined on the set of relations D={A/V1,R1}. The relation R2, al-
though a part of SDS1, was left out of D since there was nothing in SDS2 of the same
order that R2 could map to. In general, a measure of similarily must be defined
which takes into account the percentage of the relations included in each level of
homomorphism. Clearly we can always define a null homomorphism that uses relations

at every level, but this would not be a very interesting mapping.

Second, the definition of homomorphism requires no special handling of the attri-
bute-value table. 1In a previous paper (Shapiro and Haralick, 1978), we singled out
the attribute-value table relations for special restrictions. The function mapping
elements of pairs in one table to elements of pairs in a second table was required to
map an attribute to an attribute and in this case, a homomorphism had to exist bet—
ween their (spatial data structure) wvalues. A stricter requirement might force an
attribute in the first table to map to the same attribute in the second table.

Figure 9 shows two geometric spatial data structures GSDS1 and GSDS2. GSDS1 con—
sists of a bridge, a city, a railroad, and a highway in a specified geometric rela-
tionship. GSDS2 consists of a bridge, a city, a river, and a highway in a similar

relationship.

334

B
R1|rel
o

G

E

| —

CITY 1

H

W

Y

1
GSDS1 6SDS2
/1 P R2 9
BRIDGE_1 CITY_1 | ENTRANCE-TO BRIDGE_2 | CITY_.2 | enTRANCE-TO
HWY_1 BRIDGE_1 | rouTED-OVER HHY 1 BRIDGE_2 | ROUTED-OVER
BRIDGE_1 | RR1 CROSSES BRIDGE_2 RIVER_2 | crosses

Figure 9 illustrates two geographic spatial data structures that are similar at least
at the top level.

At the top level, the pair (£,(h ,H where
P r pa (£, er Rl”

f(R1) = R2

h 1(BRIDGE__l) = BRIDGE 2

h 7 (CITY 1) = CITY 2

h l(HWY_l) = HWY 2

th (RR1) = RIVER 2

h (entrance-to) = entrance-to
th (routed—-over) = routed—-over
th (crosses) = crosses

H ={G_ ' G r G r G
Rl Bridge 1 CITY 1 HWY 1 RR1

G =G =G =G__=§
BRIDGE 1 CITY 1 HWY 1 RRl

}

is a homomorphism from GSDS1 to GSDS2. In order to extend the homomorphism to

another level, we must define non-null homomorphisms from BRIDGE 1 to BRIDGE 2,

335

CITY 1 to CITY 2, WY 1 to HWY 2, and RR1 to RIVER 2. At each level, the
homomorphisms may be weak or strong, depending on how many relations are compared and
how much collapsing takes place. For instance, BRIDGE 1 and BRIDGE 2 have different

physical attributes, but in some ways are still similar.

Finding homomorphisms in map data can provide interesting information about the
structure of the data. We envision an interactive system where the user may specify
whiEh spatial data structures, which of their relations, and how many levels to com-
pare. However, finding even one-level homomorphisms has been shown to be an NP-com—
plete problem, although look-ahead operators have been proposed to speed up the
search. Finding these multi-level homomorphisms is an interesing problem that we

will be investigating in the near future.
SUMMARY

We have defined a spatial data structure that can be used to represent spatial
objects. The structure consists of a set of N-ary relations often including an
attribute-value table. The entries in the table and the objects on which the rela—
tions are defined may also be spatial data structures. Thus the spatial data struc-

ture is a recursive structure.

The use of the spatial data structure was illustrated by a representation of a
portion of a map of Virginia including counties and lakes. The spatial data struc-
ture was shown to be able to handle all the geographic data structures proposed by
other researchers. A discussion of the manipulations required to answer queries
about such a structure suggested that the database system should contain a control
processor which when given a query would determine all possible paths through the
structure to answer the query and select the best path with the use of a cost func-
tion. The control processor would need a prototype of each kind of spatial data
structure in the system and must have some knowledge of the semantics of the rela-
tions in the spatial data structures. The control processor might also possess some
special purpose knowledge about particular objects in the systems. A study of the
operations needed to answer queries concerning spatial data structures led to a list
of suggested primitive operations in the system.

One high-level operation of interest in a system of spatial data structures is the
matching of two structures. Since the spatial data structure is a recursive struc-
ture, the function mapping one spatial data structure to another can also be defined
recursively. The definition of a spatial data structure homomorphism allows us to

336

measure the similarity of two spatial data structures at one or more levels of the
structures. The problem of finding these multi-level homomorphisms is the subject of

our future work in this area.

REFERENCES

Brassel, K., 1977. A Topological Data Structure for Multi-Element Map Processing. Aan
Advanced Study Symposium on Topological Data Structure for Geographic Information
Systems, Harvard University, Cambridge, Massachusetts.

Burton, W., 1977. Representation of Many-Sided Polygons and Polygonal Lines for Rapid
Processing. Communications of the ACM. 20:166-170.

Chamberlin, D.D. and R.F. Boyce. SEQUEL: A Structured English Query Language. Proc.
1974 ACM SIGMOD Workshop on Data Description, Access and Control.

Codd, E.F., 1970. A Relational Model of Data for Large Shared Data Bases. CACM.
13:377-389.

Cook, D. and W. Maxfield, 1967. The Development of a Geographic Base File and Its
Uses for Mapping. Proceedings of URISA, Garden City, Long Island.

Edwards, R.L., R. Durfee, and P. Coleman, 1977. Definition of a Hierarchical Polygo-
nal Data Structure and the Associated Conversion of a Georgraphic Base File from
Boundary Segment Format. An Advanced Study Symposium on Topological Data Structure
for Gecgraphic Information Systems. Harvard University, Cambridge, Massachusetts.

Fegaes, R., 1977. The Graphic Input Procedure - An Operational Line Segment (Polygcn
Graphic to Digital Converison). An Advanced Study Symposium on Topological Data
Structure for Geographic Information Systems. Harvard Univerity, Cambridge, Mas—
sachusetts.

Freeman, H., 1974. Computer Processing of Line Drawing Images. Computing Surveys.
6:57-97.

Go, A., Stonebraker, M., and Williams, C., 1975. An Approach to Implementing a Geo-—
Data System. Memo No. ERL-M529, Electronics Research Laboratory, College of
Engineering, University of California at Berkeley.

Gold, C., 1976. Triangular Element Data Structures. Users Applications Symposium Pro-
ceedings. The University of Alberta Computing Services, Edmonton, Alberta, Canada.

Hanson, A. and E. Riseman, 1976. A Progress Report on Vision: Representation and
Control in the Construction of Visual Models, COINS TR 76-9. University of Massa—
chusetts, Amherst, Massachusetts.

Hewitt, C. Procedural Embedding of Knowledge in PLANNER. Proceedings of the Second
Joint Conference on Artificial Intelligence, London: British Computer Society,
pp. 167-182.

Laboratory for Computer Graphics, 1974. POLYVRT: A Program to Convert Geographic
Base Files. Harvard University, Cambridge, Massachusetts,

Males, R., 1977. ADAPT - A Spatial Data Structure for Use with Planning and Design
Models. An Advanced Study Symposium of Topological Data Structures for Geographic
Information Systems. Harvard University, Cambridge, Massachusetts.

337

Merrill, R., 1973. Representation of Contours and Regions for Efficient Computer
Search. CACM. 16:69-82.

Peuguet, D. J., 1979. A Raster-Mode Algorithm for Interactive Modification of Line
Drawing Data. Computer Graphics and Image Processing. 10:142-158.

Peucker, T.K. and N. Chrisman, 1975. Cartographic Data Structures. The American Car—
tographer. 2:55-69.

Rosenfeld, A. and A.C. Kak, 1976. Digital Picture Processing, Academic Press, New
York.

Shapiro, L. G., 1979. Data Structures for Picture Processing: A Survey. Computer
Graphics and Image Processing.

Shapiro, L.G. and R.M. Haralick, 1978. A General Spatial Data Structure", Proceedings
of the IEEE Conference on Pattern Recognition and Image Processing. Chicage, pp.
238-249.

Shortcliffe, E. H., 1976. Computer-Based Medical Consultations, MYCIN, Elsevior, New
York.

Switzer, W. A., 1975. The Canada Geographic Information System. Automation in Cartog-
raphy. eds. J. M. Wilford-Brickwood, R. Bertrand, and L. van Zuylen, International
Cartographic Association, The Netherlands, pp. 58-81.

Tomlinson, R., 1968. A Geographic Information System for Regional Planning. Land
Evaluation. (Stewart, ed.), McMillian of Australia, Sydney, Australia.

Winograd, T., 1972. Understanding Natural Language. Academic Press, New York.

