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Abstract—Given the two-dimensional perspective projection of a known conic or polygon of unknown size
and position in three-dimensional space, we show how to determine the camera look angles relative to the
plane where the curve lies. Separate cases are discussed for conic and polygons. We then show that this
technique can be used to solve for any planar or nonplanar curves, as long as they can be represented in

parametric forms.

Perspective projection Conics Polygons

1. INTRODUCTION

The problem of determining camera viewing angle
parameters and camera translation parameters from
3D and 2D point correspondences is an important one
in scene analysis. In this paper, we show how to
decompose the one six-parameter problem to two
three-parameter problems if the shape and size of the
curve is known. The first problem is to solve for the
camera look angle parameters. The second is to solve
the translation parameters from these angles. We also
show that our method does not require knowing the
exact point correspondence as most other methods do.

Fischler and Bolles'"? show that, given the coor-
dinates of three 3D points and the corresponding
image points, then it is possible to compute the
position of the camera, as well as its look angles.
Watson and Shapiro® describe a method for recogniz-
ing different curves by solving camera position and
look angles. They use periodic cubic splines to ap-
proximate curves and then compute the Fourier
coefficients of the curvature function of the spline
functions. The Fourier transform of the curvature
function represents the shape. The match between
a projection and curves in database is found by
determining a set of camera parameters which minim-
izes the error between their shapes.

Haralick® shows that it is possible to determine the
camera parameters from the observed perspective
projection of a 3D rectangle of known size and
unknown orientation and position in 3D space. In this
paper, we generalize the techniques Haralick used to
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include conics, polygons and curves in parametric
form. Sections 2—4 describe how to decompose the six-
camera-parameter problem to one three-parameter
search problem followed by an algebraic solution for
the camera position parameters for projections of
conics and polygons. Sections 5 and 6 discuss some
possible extensions and the algorithm complexity.

2. HOW TO DECOMPOSE THE SIX-CAMERA-VIEWING-
PARAMETER PROBLEM TO TWO THREE-PARAMETER
PROBLEMS

Suppose we are given the perspective projection
(image) of planar space curves, such as conics or line
segments, and the parametric equations of these curves
in three-dimensional space. We assume that the optic
axis of the camera passes through the center of the
image. The problem is to determine the six camera
viewing parameters (X1, Y1, Z1, 0, ¢, ), where (X1,
Y1, Z1)is the camera lens position relative to the origin
of the three-dimensional curve and (8, ¢, ) are the
pan, tilt and swing angles which determine the look
direction of the camera relative to the coordinate
system of the three-dimensional curve. Details of this
perspective geometry can be found in Haralick.'®
Without loss of generality, we can assume that the lens
is at (0, 0, 0) and we will determine the look angle (6, ¢,
) of the camera and the absolute coordinate of the
origin of any curve relative to the camera lens. Fig. 1
shows the geometry of the camera. Fig. 2 shows a
worked example for the case of a rectangle.

We have already shown® that this problem can be
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Image plane

Lens

Fig. 1. The camera model. The lens s at the origin. The optical

axis is the Y-axis and the image plane is parallel to the X-Z

plane. Relative to the axis direction of a given three-

dimensional curve, the camera coordinate system has been

rotated @ around the Z-axis, ¢ around the X-axis and yr
around the Y-axis.

solved as a nonlinear optimization problem with six
variables. In the following, we will show that this
problem can be decomposed into two parts. The first
part is an optimization problem with three unknowns,
namely the three look angle parameters (6, ¢, i). The
second part is to solve for the translation parameters
based on the camera angles computed in the first part.
This decomposition is important because it reduces a
six-parameter search to one three-parameter search of
much smaller complexity, followed by an algebraic
solution for the three-parameter specification of the
absolute position of the conic.

The approach discussed here is more general than
the previous one.® This approach does not need to
know where the space curve lies (we need only know its
form) and yet we can solve for all six parameters in the
camera-oriented coordinate system.

Suppose the object image given is a projection of a
conic, let the center of the image have coordinates (0, 0)
and the upper right corner be (1, 1). The conic can be
represented by a sequence of image points {(x;, z;)}. We
will assume that this conic lies on a plane whose Z-
coordinate is constant. Later we generalize it to planes
of arbitrary orientation.

From Haralick,'® we know that the ray of 3D points
having (x;, z;) can be given by

X X
b Y
VA Z

x;/cos@ — fsin @ cos¢ + z;sin O sin ¢
i | xisin 0 + fcosf cos ¢ — zjcos O sin ¢
cos iy siny

fsin¢ + zicos¢
A\sinljf cosy }
Since we are only dealing with planar curves, we can,
without loss of generality, choose a coordinate system

1)

for some A; where

‘

X X

;
Zi

Zi
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Fig. 2. A rectangle in its own coordinate system and a rotated
and translated camera coordinate system viewing the
rectangle.

so that the plane has the form Z = constant in our
coordinate system. For simplicity, we will assume that
the parametric equations of the space curve are in
standard form (i.e. no rotation of coordinates axis is
needed) first. We will show in Section 3 that for curves
not in standard form, similar results can be derived.

The parametric equations of a conic on a Z = Z,
plane are given by

X(t) = X, + acos(t),
Y(t) = Y, + bsin(t),
Z = Z, for an ellipse;

X(t) = X, + asec(t),

Y(t) = Y, + btan (1),
Z = Z, for a hyperbola with its axis parallel to the X-
axis;

X(t) = X, + at?,

Y(t) =Y, + 2at,
Z = Z, for a parabola with its axis parallel to the X-
axis. The unknown point (X,, Y, Z,) specifies the
absolute position of the conic relative to the lens
position, which is at (0, 0, 0). The parameters a and b
are assumed unknown. For a parabola and hyperbola

with its axis parallel to the Y-axis, similar equations
can be derived.

2.1. The ellipse

Since for every point (X, Y, Z) on the space curve
there exists a parameter value t; such that X, Y, Z can
be expressed in terms of t,, then for the i-th perspective
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projection point (x;, z;) of the space curve, there must Subtracting equation (3) with j = 1 from equation
exist parameter values 1, A; satisfying (3) with j = i, we get

BiZyA, — B, ZyA; = A;Ajacos(t;) — A;A acos(t;)
CiZyA; — CiZyA; = AiA bsin (t) — A4, bsin (t,).

)

Divide both sides of (4) by 4;4, and use the relation
cos (f;)? + sin (z;)> = 1 to get

_ —2{[Bi/(ad) — B,/(aA)] cos (t;) + [Cf(bA4;) — C,/(bA,)] sin (¢,)}

Zo

[By/(ad;) — B1/(aA;)]* + [Ci/(b4;) — C./(bA)]? (5)
Setting 5.0 = 521 = 3,4, .., N, we can eliminate Z,
and obtain
—2{[Bi/(a4;) — B,/(aA;)] cos (t;) + [Ci/(bA;) — C,/(bA,)] sin (z,)}
[Bi/(ad;) — B1l"(aA1)]2 + [Ci/(b4;) — C1/(bA1)]2 (6)

_ —2{[By/(ad,) — By/(aA,)] cos (t;) + [Ca/(bA;) — C,/(bA,)] sin (,)}
[B1/(aA;) — By/(a41)]* + [Co/(bA,) — Cy/(bA,)]? '
From (6) we regroup the terms of cos(t;), sin(f;)

together.
Let

b B/(aA) — Byf(aA,)
' [Bi/lad;) — By/(aA)]* + [Ci/(bA;) — C,/(bA,)]?
_ B,/(ad,) — By/(aA,)
[B2/(ad;) — By/(ad;)]* + [Co/(bA,) — Ci/(bA)]*
Let

_ —Cyfad;) — Cy/(ad,)
[Bi/(aAi) = B:/{aAl)]z + [Ci/(bAi) = C1/(bAi)]2
g Cy/(ad;) — C1/(aA1)
[Ba/(ad;) — Bi/(ad,)]* + [Cy/(bA,) — C,/(bA,)]*

O

X, + acos(t)
Yo + bsin ()

Now equation (6) is equivalent to

cos(t,) P, =sin(t;) Q.

Zy
xjcosf — f sin @ cos¢ + z;sin O sin ¢ Squaring both sides and simplifying it, we have
=4 | xisin@ + f cosfcos ¢ — zjcosfsin ¢ | (2) cos(t;)? = QF(P? + 0?), i=34,5...N.
fsing + zicos ¢
for some A; and t; (i = 1, ..., N) where Setting equation 6.i = 6.3, we obtain
xp| | cosysing | |x QH(PE+ Q) =0Q3(P3+Q3%), i=4,5 .., N.
z i siny cosy z | 7

For simplicity, let us assume
A;=fsin¢ + zjcos ¢,

Equation (7) has three unknowns: 6, ¢, .

We can now apply an optimization technique to

B; = xjcosf — fsinfcos¢ + z;sin@ sin ¢, solve equation (7) for the three angle parameters 6, ¢,
G; = x8iné +f cosd cos # —Zcone S, ;i.ﬁt‘ter they are solved, by equation (6), we can solve
1'

From the third component of equation (2) we have 4, ) Fperid S i0is
= Zy/A, Substituting J; into the first and second cos(t,) = * [Qi/(PF + Q)]°%,

components of (2) we have

B;Zy/A; = Xy + acos(t)),

CiZo/A; =Y+ bsin(ty), j=1,

sin (t,) = + [P}/(P} + QH)]°°.

3) Substituting this value for cos (t,) and sin (¢, ) into (5),
s N we obtain
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Z, = —2[(By/(ad;) — Bi/(ad,))cos (t,) + (Cy/(bA;) — Cy/(bA,))sin (¢,)]

[Bi/(ad)) — Bl/(aAl)]z + [Ci/(bA) — C,/(bA,)]?

From (1), 4, = Z,/4,. Hence,

X, = —acos(t;) + 4, B,
Yo= —bsin(t,) + 4, C,.

For the case where only the shape is known, the
parameters a and b are unknown. The above deri-
vation is still true, except that the unknown optimi-
zation parameters are the three angle parameters and
the major and minor axis length. For a parabola, the
last two unknowns can be reduced to one directrix
length parameter.

2.2. The hyperbola

For every point (X, Y, Z) on the hyperbola there
exists a parameter ¢; such that X, Y, Z can be expressed
in terms of it. Equation (1) can then be rewritten as

L=

_ —2{(Bi/(a4) — B,/(ad,)] sec(t,) — [Ci/(bA:) — C,/(bA,)] tan (t,)}

From the third component of equation (2') we have
A = Zy/A4; Substituting A, into the first and second
components of (2) we have

B Zy/A; = X, + asec (t;), (3)
CiZo/A; =Yy + btan(t), j=1, .., N.

Subtracting equation (3') with j = 1 from equation (3')
with j = i, we get

B;ZyA; — B, ZyA; = AjAjasec(t;) — A4 asec(t,)
CiZoAy — CiZyA; = A;A b tan (t) — A,4,b tan (¢,).

4)
Dividing both sides of (4') by 4;4, and using sec (1,)> —
tan (£;)2 = 1 we get

[Bi/(aAi) = B1/’(0A1)}2 - [Cill(bAi) - cl/(bAl)]l 0
Setting 5i = 5’21 = 3,4,..., N, we can eliminate Z,,
and get
—2{[B/(ad;) — B /(ad,)] sec (t,) — [Ci/(bA4;) — C,/(bA,)] tan (¢,)}
[Bi/(ad;) — Bif(a4,)]* — [C/(bA,) — C,/(bA,)]?
_ —2{[By/(a4;) — By/(aA,)] sec(t;) — [Cy/(bA,) — C,/(bA,)] sin (¢)} ©)

[Bz/(aAz) - B:/(aA1)]2 = [Cz/(bAz) - C1/(bA1)]2

From (6') we regroup the terms of sec (¢;), tan (t;)

together.
Let

Bi/(aA;) — B, /(a4,)

P
" [Bif(ad;) — B,/(ad,)]* — [Ci/(bA;) — C,/(bA,)]?
B,/(ad,) — B, /(ad,)

" [Byf(ad,) — B,/(aA,)]* — [C,/(bA4;) — C,/(bA,)]*

Let

Ci/(ad;) — C,/(ad,)

Qi

" [B/(aA;) — B,f(ad,)]* — [CJ(bA) — Cy/(bA,))?

Caf(ad,) — Ci/(ad,)

" [Byf{ad,) — B,/(aA,)]? — [Co/(bA4;) — Ci/(bA)]*

Xo + asec(t;)
Yo + btan ()
Zy
x;cosf — f sin @ cos ¢ + zisin @ sin ¢
=/ | x;sinf + f cosflcosd — zicosOsin ¢ | (29)
fsing + zicos ¢

for some A, and ¢, (i = 1, ..., N), where

\ cosy sini

—sinyy cosy

x!

X

2zt

z; |

Equation (6') is equivalent to sec (¢,) P; = tan (t,) 0,
We have sin (t,) = P,/Q, and cos(t;)*> = 1 — P}/Q?,
i =3,475... Setting 6.i = 6.3, we obtain

PyQ; = P3/Q3- (7)

Equation (7') has only three unknowns, 6, ¢, V.

We can now apply an optimization technique to
solve the angle parameters. After they are solved, by
equation (6'), we can solve for ¢,.
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cos(ty) = +(1 — PZ/Q3})°5.
sin (t;) = Py/Q,.

Substituting these values for sec (t,) and tan (t,) into
(5), we obtain

For simplicity, we introduce new variables such that
Zy = (Eif1 + Ff)/Gi-

Setting 5" = 5".2i = 3, 4,..., N, we can eliminate Z,
and get

_ —2[(Bi(ad) — B,/(ad,)) sec(t,) — (Ci/(bA;) — C,/(bA,)) tan (1,)]

Zo

Since A, = Zy/A,, we have
Xo= —asec(t;) + A, By,
Yo=—btan(t;) + 4, C,.

2.3. The parabola

For every point (X, ¥, Z) on the parabola there
exists a parameter ¢, such that X, Y, Z can be expressed
in terms of it. Equation (1) can then be rewritten as

X() + i
Yo + bif
Zy
x;cos8 — fsin 0 cos ¢ + z;sin G sin ¢
= A | xisin @ + f cosfcos ¢ — zjcos @ sin ¢
Sfsin¢ + zicos ¢
2"

for some A; and ¢, (i = 1, ..., N), where

xh

cos Y sinyr
—siny cosw

Xi
z

Z;

From the third component of equation (2") we have
Ay = Zy/A, Substituting A, into the first and second
components of (2) we have

BiZy/A; = Xy 4 ¢,
CZofdy= To 4+ b j=1,.5 N

(37

Subtracting equation (3") with j = 1 fromequation (3")
with j = i we get

B,ZyA, — B\ ZoA, = A, A t, — AA,tL,
CiZoAy — C1ZoA; = A,A\bt? — A,A,bt,.

@)

Dividing both sides of (4”) by 4,4, leaving terms with
t; on the right hand side, squaring both sides of the first
component of (4”) and multiplying by b and then
subtracting it from the second component, we obtain
AA(CA, — CiA;) — Zo(BiA, — B A)b

— 2(BjAy — By A)4,A,t,b = 0. (5")
Z, =
—2b{[Bid, — B4, ]4i4:}t; + 4:4,(Cidy — C,4))

[Bid, — B, A;]*b

_ _2[Bi/Ai - B1/A1]-t1 + (C/4; — C1/A1)
- [Bi/A; — Bi/A,J%

[Bi/(ad;) — 31/{01‘11)]2 — [Ci/(bA) — Ci/(bA)]?

[Eit, + F)/G; = [E,t, + F,]/G,.
Rearranging we get

L = (F2/62 — Fl‘/GE)/(E:'/G:‘ - Ez/Gz)

(6")

or
(FaofGay — FiG)[EJG; — E,/G,]
e (Fz/62 - Fafca)/[Eaf'Ga - Ez/Gz]~ (7

Equation (7") has only three unknowns, 6, ¢, . We
can now apply an optimization technique to solve the
angle parameters. After they are solved, by equation
(6"), we can solve ¢,. Now we can solve Zyfrom(5")and
Xo, Yo from (3”) with j = 1.

3. OPTIMIZATION AND QUANTIZATION ERRORS

From Section 2 we are minimizing the sum

2 IP/o; — P3/Q5]* i=4,..,N.

N is the number of points of the input image coor-
dinates. The optimization technique we use is the same
as the one used in Haralick et al*®) The routine we use
is ‘'LMDIF’ in MINPACK.®

The algorithm employed by this program is a
version of the Levenberg-Marquardt algorithm. The
Levenberg-Marquardt algorithm is a combination of
the method of steepest descent (gradient search) and
the classical Gauss-Newton method for nonlinear
least squares problems. Itisessentially steepest descent
when the initial guess is far from the minimum point.
Thus its global behavior is good and its ultimate
convergence rate to the minimum point is also good.
The method uses only first derivative information, yet
typically, has second derivative convergence rate.

The disadvantage of this type of iteration method is
that it usually requires the user to supply an initial
guess. In our experiments, this problem is avoided by
generating multiple random initial guesses. If it does
not converge with one random guess we try and repeat
the process until it converges.

The input image coordinates always contain the
quantization errors and noise introduced in digiti-
zation. The point correspondences approach will
degrade more rapidly than the optimization approach,
because it depends heavily on the exact location of
these image points. By using the optimization ap-
proach, this error is reduced to a minimum, because it
always finds the best fit if no exact solution exists.
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4. CURVES NOT IN STANDARD FORM

We can obtain the standard form of a conic after
proper rotation. Let us assume the rotation angle is R.
Suppose the parametric equations after rotation are

X' =Xy+acos(t), Y =Y, + bsin(z)

We know X' = X cos(R) + Ysin(R)and ¥ = — X
sin (R) + Y cos (R). Substituting X', Y'interms of X, ¥
and simplifying, the equations for X and Y become
X = (X, + acos(t))cos (R) — (Yy + bsin (£)) sin (R),
Y = (X, + acos (1) sin (R) + (Y, + bsin ()} cos (R).
We also have X cos (R) + Ysin(R) = X, + acos(t),
—Xsin(R) + Ycos{R) = Y, + bsin (t).
From equation (2) we know that

X x;cos8 — f sin @ cos¢ + zjsin O sin ¢

Y =4 | xisin0 + f cosfcos ¢ — zicos B sin ¢

Zy [sing + zicos ¢ 2)
for some A; and £; (i = 1, ..., N), where

’

x| cos i sin i

B ‘Lsind/ cos i

Xi

’

Zi

Zy
4.1. The ellipse case
Equation (3) of section (2) is then changed to
B,Zy/A; = X,
CZy4; =Y.
(B;Zo/A,) cos(R)
+ (CiZo/Ap sin (R) = X, + acos (1)
— (BiZy/A)) sin (R)
+ (CiZo/A;) cos(R) = Yo + bsin(ty). (3)

We can also derive similar equations for (4), (5) and (6).
We carry out the computation here.
Let

ZoE; = (BiZo/A;) cos (R) — (By1Zy/A,) cos(R)
+ (CiZo/A;) sin (R) — (CyZ/A4,) sin (R),
ZoF; = —(BiZo/A)) sin (R) + (B Zy/A,) sin (R)

+ (CiZo/4;) cos (R) — (C1Zo/A;) cos (R).

We have
ZyE; = acos(t;) — acos(t;),
ZyF; = bsin(t;) — bsin (ty).
Eliminating t; first we have
(ZoE/a + cos (1)) + (ZoF /b + sin (t,))? = 1.
If Zy # 0,
Zy = —2(cos (t;)E;/a + sin (t,)F;/b)/
(E}/a® + F}/b%). (5)
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Setting 5.0 = 521 = 2,..., N, where N is the number of
image points, then
E,/a
Eyja® + F3Jb? )Cos {h)
F,/b .
E¥ja® + Fg/bz)sm e

Eija B
E}/a® + F}/b*
B —Fy/b
~ \ E}a® + F2/p®

Introducing new variables U,, ¥, such that
U;cos(t;) = V;sin(t,),
and squaring both sides, we get
cos (t,)* = VI/(U} + V7). (6)
Setting 6.0 = 6.3 we get
VINUE + VE) = V(U] + V).
Again, this is an equation which only involves three

unknown angle parameters if @, b and R are known.

4.2. The hyperbola case

For the hyperbola, the computation is similar.
Equation (3') in Section 2 is changed to

BZy/A; = X,

CZy/A, =Y.

(BiZo/A;) cos (R)

(CiZo/4;) sin (R) = X, + asec(t),
— (BiZy/A;)sin (R)

(CiZy/A;) cos (R) = Y4 + btan (1) (39
Then, we can derive similar equations for (4), (5) and

(6). We carry out the computation here.
Let

ZoE; = (BiZy/A;) cos(R) — (By1Z,/4,) cos(R)

+ (CiZo/A}) sin (R) — (C,Z,/4,) sin (R),
ZoF; = —(B,Zy/A;) sin (R) + (B, Zy/A,) sin(R)

+ (CiZ4/A4;) cos (R) — (C,Z/A,) cos (R).
We have

ZoE; = asec(t;) — asec(t,),

ZoF; = btan (t;) — btan (t,).

Eliminating ¢, first we have
(ZoEja + sec(t,))* — (ZoF,/b + tan (t,))* = 1.
IfZ, #0,

Zy = —2sec (t,)E,/a — tan (t,)F/b)/(E¥a® + F?/b?).
(5
Setting (5'.1) = (5'2)i = 2,..., N, we have
Ela ___ Eja
Efja® + F2jb®  Ea® + F%/bl)scc )
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F./b F,/b —
= \E}/a® + F}/b*  E3/a® + F2/p? .
Introducing new variables U, ¥V such that U, sec (ty)
= V; tan (t;), we have

sin (t;) = UyV,. (6"
Setting 6'.i = 6.3 we get
UV, = U,/V,.

Again, this is an equation which only involves three
unknown angle parameters if a, b and R are known,

4.3. The parabola case

For the parabola, equation (3) in Section 2 is
changed to

BZ,/A; = X,
CZy/A; = Y.
(BiZo/4;) cos (R)
+ (Cio/A4y) sin (R) = X, + ¢,
—(B:Z/A4,;) sin (R)
+ (CiZo/A;) cos (R) = Y, + be2.
Then, we can derive similar equation for (4), (5)and (6).

We carry out the computation here.
Let

ZoE; = (BiZo/A;) cos (R) — (ByZy/A,) cos (R)

+ (CiZo/4) sin (R) — (C,Zo/A, ) sin (R),
ZoF; = —(BZ,/A;) sin (R) + (B,Z,/A,) sin (R)

+ (CiZo/A;) cos(R) — (CyZy/A,) cos (R).

We have
ZyE, =t — t,,
ZoF; = bi} — bt?,
Eliminating ¢, first we have
b(ZoE; + t,)* — (ZoF; + bE2) = 0.
or
Zo = (F, — 2bE;t,)/(bE?).
Setting 4”.i = 4”.2 and rearranging it we have
_ _(F/(bE?) — F,/(bE3))
' 2bE/(bE?) — 26E,/(bE})’
Now setting 5".i = 5".3 we get
Fi/(bE}) — F,/(bE%)
2bE,/(bE?) — 2bE,/(bEZ)

(")

(5

_ _ Fy/bE3) — F/(bE})
~ 2bE/(bE3) ~ 2bE,/(bEY)’

Again, this is an equation involving only three
unknowns,
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5. STRAIGHT LINE PROJECTION

Finally, we solve the same problem for the pro-
jection of two or more lines. If there is only one line on
the image, the constraints we derived are not sufficient
to determine a unique solution. We will use the same
techniques asin Section (2) to derive the constraints for
the three angle parameters first. Based on these
constraints, the parameters can be solved via minimi-
zation, then the position parameters are solved
algebraicly.

First consider one line lying in the unknown plane.
Let M; = (B, C,, 4,)7 be the same kind of vector we
defined in (1) of Section 2. For each image point (x,, z,)
on the same line we have M1, = (Xo + aty, Y, + b,
Zy + ct;)". Now, compute 4, from the third component
of each equation and substitute it into the first and
second components. We have

Bi(Zo + cti)/A; = Xy + at,,

Ci(Zo + cty)/A; = Yq + bt
Subtracting 1.1 from 1.i we get
Bi/Ai(ZD+ctl-)—Bl/A1(Zo+ct1)=ati-at1,

(1)

2)
ClAZo+ct)— Cy/Ay(Zy+ 1)) =bt,— bt,.

Multiplying the second component by a/b and then
subtracting it from the first component to eliminate £
we have

(B/A; — afb C/A;) (Zg + ct;)
= (Bi/A; — afb Ci/A,) (Zy + ct,) = 0. (3)
Ifc = 0and Z;, # 0 then we have
Bi/A; — a/b Cj/A; = Bi/A, — a/b Cy/A,.

Ifa =0orb = 0then B/A, = B,/A4; or C/A; =
C,/A;. These three equations have only three un-
knowns, the angle parameter (6, ¢, ¥ )-

Applying the same techniques to the remaining lines
lying in the plane, each line correspondence will
introduce a new set of constraints on the unknowns.
Putting all these constraints together we can then
optimize on the three angle parameters (and slope b/a
ifit is unknown). After they are solved, solve for 4,, B,,
C, from the matrix equation. Then solve for Ay in terms
of Z, and substitute it into the first and second
components of the matrix equation (1). We will have
2N equations in N + 3 unknowns: N tysand X, Y,
Zy. (N is the number of points on these lines.)

The slope of the line with parametric form, as we
described above, in the Z = constant plane is b/a. For
the remaining lines, their parametric equations will
have a different X, Y, from the first line. For example,
the line which intersects line 1 at the other end points of
line 1 has values X, + L cos(p) and Y, + Lsin(p),
where L is the length of the first segment and p is the
angle between the first segment and the X-axis.
Nevertheless, equation (2) is still true for these lines, as
long as we use the right image point coordinates to
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compute A4;, B; and C,. It is easy to see a = L cos(p)
and b = L sin(p).

A better way to solve the same problem without
minimization is to compute ¢; directly. Setting ¢ = Qin
(1) we get

BiZo/A; = Xy + at,
CiZo/A; = Y, + bty

Subtracting 4.1 from 4.i, i = 2, ..., N, where N is the
number of points in the first line, we have

(4)

Zo(B/A; — ByJA) = alt; — t,)

Zo(CifA; — C/A}) = b(t; — ;).
Simplifying it we have

Zy = alt; — 1,)/(B/A4; — By/A,;)

Zy = b(t; — t))(Ci/A; — Ci/Ay)

(5)

Setting 5.2 = 5.i and solving for t; we get
L—ty = (t3—t;) (Bif4;— By A1 )/(By/A, — By /A4,)

(6)
L=t = (tZ_tl) (C.’/Ai_CL/A1)/(C2/A2_C1/A1}-

If we treat (¢, — ¢,) as a constant, then we can find the
proper ratio between the remaining t;’s. Setting t,,,,, =
L, we can then find the value of the other ¢;’s. Next,
substituting t;’s into equation (5) we get Z,. Substitut-
ing Z,, t; into equation (4) we get X, Y, This
procedure works if we assume that the slope is known.
We will only apply it to the first line, due to remarks
stated in above paragraph.

6. DISCUSSION

If the plane where the curves lie is not the Z =
constant plane, we have to do a rotation first. The
rotation matrix rotates the given plane normal I, m,n»
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into €0, 0, 1. Then we can carry out the procedure we
just described.

The techniques discussed in the above sections
depend heavily on the parametric form of the curve.
For example, for the ellipse we use the identity
cos? +sin? = 1 to eliminate all the ts. For the
hyperbola we have to use sec? — tan? = 1. So, there is
no general formula for conics. Nevertheless, the ideas
discussed here can be used for any curve in parametric
form. The difference will be the identity to use to
simplify the equation and the number of parameters to
optimize.

The same techniques can be used to solve for non-
planar curves, as long as the curve can be described in
parametric form. The disadvantage is if we cannot
climinate parameter t; from the first and second
components, then we will have to perform optimi-
zation on them as well.

The computation time needed for the optimization
MINPACK" routine ‘LMDIF’ is proportional to the
fourth power of the number of unknowns. Assuming
that V is the number of unknowns and P is the number
of constraints, according to MINPACK the cpu
timing is approximately N = (V + 1) (PV? + V)
multiplied by the cpu time which is needed to update
the optimization function in each iteration, Table 1 isa
comparison on the number of operations to evaluate
the optimization function with different parameters.

7. CONCLUSION

In this paper we have described a new method for
solving camera parameters when observing planar
conic or polygon arcs. Instead of solving all six
parameters at one time, we decomposed the problem
into two parts: finding the look angles and then the
position. By working in the camera-oriented system
first, this problem is easily decomposed into two parts,
as we have described. The first part is a three-
dimensional optimization problem and the second
part is an algebraic computation of point coordinates.

REFERENCES

1. M. A. Fischler and R. C. Bolles, Random sample
consensus, Proc. DAPRA Image Understanding
Workshop, Arlington, VA (1980).

2. L. T. Watson and L. G. Shapiro, Identification of space
curves from two dimensional perspective views IEEE
Pattern Anal. Mach. Intell. PAMI-4, 469-475 (1982).

3. R. M. Haralick, Using perspective transformations in
scene analysis, Comput. Graphics Image Process. 13,
191-221 (1980).

4. R. M. Haralick, Y. H. Chu, L. T. Watson and L. G.
Shapiro, Identification of wire frame objects from their
two dimensional perspective projection, Proc. IEEE
Conf. on Pattern Recognition and Image Processing, 1982,
pp- 572-579.

5. J. J. More, MINPACK Documentation, Argone Na-
tional Laboratory, Argone, IL (1979).

About the Author—R 0BErRT M. HARALICK was born in Brooklyn, New York, on 30 September 1943. He
received a B.S. degree from the University of Kansas in 1966. He has worked with Autonetics and IBM. In



Camera parameters from the perspective projection

1965 he worked for the Center for Research, University of Kansas, asa Research Engineer and in 1969, when
he completed his Ph.D. at the University of Kansas, he joined the faculty of the Electrical Engineering
Department, where he served as a Professor from 1975 to 1978, In 1979 Dr. Haralick joined the faculty of the
Electrical Engineering Department at Virginia Polytechnic Institute and State University, where he was a
Professor and Director of the Spatial Data Analysis Laboratory. In 1984 Dr. Haralick joined Machine Vision
International, where he is Vice President of Research. Dr. Haralick has done research in pattern recognition,
multi-image processing, remote sensing, texture analysis, data compression, clustering, artificial intelligence
and general systems theory. He is responsible for the development of GIPSY (General Image Processing
System), a multi-image processing package which runs on a minicomputer system.

He is a member of the Institute of Electrical and Electronic Engineers, the Association for Computer
Machinery, Sigma Xi, the Pattern Recognition Society and the Society for General Systems Research.

About the Author—Y. H. CHureceived a B.S. degree in Mathematics from the National Central University in
Chungli, Taiwan, R.0O.C, an M.S. in Mathematics from Virginia Tech., Blacksburg, VA, and a Ph.D.
program in Computer Science, also from Virginia Tech.,, in 1983.

He is currently with the Department of Computer Science of Old Dominion University, Norfolk, VA. His
research interests include computer vision, expert system construction, numerical analysis, natural and
programming languages and image processing.

645





