Photogrammetria, 39 (1984) 193—215 193
Elsevier Science Publishers B.V., Amsterdam — Printed in The Netherlands

RELATIVE ELEVATION DETERMINATION FROM LANDSAT IMAGERY

S. WANG!, R.M. HARALICK? and J. CAMPBELL?

! Department of Computer Science, George Mason University, Fairfax, VA 22030 (U.S.A.)
2 Machine Vision International, Ann Arbor, MI 48104 (U.S5.A.)

3 Dept. of Geography, Virginia Polytechnic Institute and State University, Blacksburg, VA
24061 (U.S.A.)

(Received March 29, 1984)

ABSTRACT

Wang, S., Haralick, R.M. and Campbell, J., 1984. Relative elevation determination from
LANDSAT imagery. Photogrammetria, 39: 193—215.

In LANDSAT imagery, spectral and spatial information can be used to estimate a
relative digital terrain model in mountainous areas. To do this, the mixed information of
direct and indirect illumination, material reflectance, and topographic modulation in the
original LANDSAT imagery must be first separated. From the direct and indirect illumi-
nation information, ridges and valleys can be determined. From the material reflectance
information, big visible rivers can be detected. Finally, a relative elevation model can be
generated by elevation growing. In elevation growing valley pixels are assigned increasing
elevations as they become more distant from the rivers or other valley pixels already
assigned an elevation. It also proceeds in a direction perpendicular to valleys climbing up
to the ridges assigning elevations to any unassigned pixel.

1. INTRODUCTION

It is a common task for a photointerpreter to examine the spatial pattern
on an aerial image and by appropriate interpretation be able to tell the eleva-
tion of one area relative to another and be able to infer the stream network
and the drainage network even though some of the streams may be below
the resolution of the sensor. There is a wealth of information in spatial
patterns on aerial imagery but most computer data processing of remotely
sensed imagery, being limited to pixel spectral characteristics, does not make
use of it.

In this paper, we describe a procedure by which the relative elevation
model can be inferred from a LANDSAT scene of mountainous and hilly
terrain. To a first-order effect, the cause of the intensity value at any pixel is
due to whether it is only diffusely lit or directly lit. If it is directly illuminat-
ed there are additional effects due to the angle at which the sun illuminates
the ground patch corresponding to the pixel and the reflectance of the sur-
face material on the ground patch. To make sense of the spatial pattern first
requires separation of these effects. For this purpose, we use a clustering
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technique on ratio images to determine similar reflectance classes and then
do a subclustering on these classes to determine directly lit from indirectly
lit pixels. This subclustering creates a shadow image. Then we modify Eliason
et al.’s (1981) technique to create two images from the one LANDSAT image
(Haralick and Wang, 1983). The first image is a “reflectance” image; the
second is a topographic modulation image portraying information related to
surface slope and sun illumination. The details of this technique are given in
Section 2,

As discussed in Section 8, the sun azimuth and the shadow image con-
stitute sufficient information for the identification of the ridges and the
valleys. With the valleys identified, each valley pixel may be assigned a
relative elevation which increases as the valley path from the pixel to the
river it empties in increases. Ridges must be assigned elevations higher than
their neighboring valleys and each ridge pixel can be assigned a relative eleva-
tion which decreases on the ridge path from the pixel to the saddle point
where the ridge crosses a valley. In order to do this, local slopes must be
known. Some estimated local slopes are assigned initially to generate the
first version of elevation model. Then the topographic modulation image is
used to calculate more accurate local slopes to generate better elevation
models. Finally, LANDSAT imagery is reconstructed to evaluate our illumina-
tion model and elevation reconstruction algorithm.

1.1. Study area

This research examines an area in southeastern West Virginia, shown in
Fig. 1.1. This region is a portion of the Appalachian Plateau’s physiographic
province, within the ‘““unglaciated Allegheny plateau” described by Thorn-
bury (1967). In general, this region is a thoroughly dissected plateau-like
surface. It receives about 1 m of precipitation each year and, as depicted on
topographic maps, has a moderate drainage network density. Drainage is
through tributaries of the New (Kanawha) River, which flows west into the
Ohio River drainage system.

The overall drainage pattern within this region is that of a relatively large
sinuous channel (the Gauley River) superimposed over the finer texture of a
dentritic pattern formed by first, second, and third order streams. A number
of the small first or second order streams flow directly into the large
channel. Thus the overall pattern is composed of a mixture of many very
small stream segments, many with very steep gradients, a prominent major
channel with a relatively low gradient, and relatively few stream segments of
intermediate length and gradient.

Throughout the area, flood plains (when present) are narrow and tend to
closely follow the course of the stream channel. Valleys are narrow, with
steep sides; the Gauley River, for example, follows a valley that is typically
150 m deep but only 100 m wide. Uplands often consist only of ridge crests,
although plateau-like upland regions are present, they are not continuous or
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extensive. The area is forested with a dense cover of deciduous trees (Kuch-
ler’s “‘mixed mesophytic forest’’, 1964). Cleared areas for agriculture (chiefly
pasture) tend to follow the valleys of intermediate-sized streams. Settlements
are small and dispersed, usually positioned in valleys.
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Fig. 1.1. Original LANDSAT subscene of 80 pixels by 80 pixels.

This region appears on the Charleston, West Virginia/Ohio USGS 1:250,000
quadrangle (NJ 17-5). Our investigations include areas in Nicholas County,
W. VA and neighboring counties. This area was imaged by the LANDSAT-1
MSS on April 13, 1976 (scene id: 5360-14502; path 18, row 34). This date
reflects important qualities of the scene. First, at this date the atmosphere
was unusually clear — there is no evidence of atmospheric (Mie) scattering or
degradation of the data. Also, at this spring date most of the forested areas
are without leaves, especially at higher elevations. Lower elevations have a
cover of newly emerged leaves and grasses. Within a few weeks leaves will
have emerged in vegetation throughout the entire region, but at this time in
April, there is a sharp spectral contrast between the vegetation cover of the
higher elevations and that of some of the valleys.

2. THE PROBLEM OF MIXED INFORMATION

Four kinds of information are mixed in LANDSAT imagery: surface reflec-
tance, topography, diffuse light and haze. Assuming the ground surface is
flat, vegetated areas have high reflectance for some spectral regions and ap-
pear as bright areas to the LANDSAT sensor. On the contrary, water areas
have low reflectance and appear as dark areas to the LANDSAT sensor. If
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topography is then considered, there is a pattern of directly illuminated and
shadowed slopes due to varied heights and orientations of the slopes. How-
ever, graytones for image pixels corresponding to shadowed locations are not
zero because of diffuse light coming indirectly from the sun. Finally, when
light is reflected from the ground back to the sensor, there is additive haze
due to atmospheric scattering. The difficulty of interpreting LANDSAT scenes
of mountainous areas is due to the mixing of topographic data with reflec-
tance data. To begin to separate these individual components we need to be-
gin with an illumination model.

2.1. Separating the information

The basic data model for a Lambertian surface illuminated by a point
source is:

G(x, y) =r(x,y) I cos 6 (x, ¥) (2.1)

where G is brightness value of a pixel within the image,
x, ¥ are pixel coordinates,
r is surface reflectance,
I is the illumination flux from the sun, and
¢ is the angle between sun incidence direction and surface normal (Fig. 2.1).
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Fig. 2.1. ¢ is the angle between sun incidence direction and surface normal.

Adding band number, diffuse light, and haze into this model, one has the
general model for LANDSAT data as:
(I) For directly illuminated pixels:

G(x,y, b) = r(x, y, b) I(b) cos 0 (x, y) +r(x, v, b)D(b) + H(b)
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(I1) For shadowed pixels:
G(x,y, b) =r(x, y, b) D(b) + H(b) (2.2)

where b is the spectral band number,

D is diffuse light, and

H is the haze due to atmospheric scattering.

Because haze is an additive constant independent of pixel locations, we
use Switzer et al.’s (1981) technique for haze removal. The haze corrected
image G — H is defined as G .

After haze is removed, it can be seen that resolution of the remaining
components amounts to extracting diffuse light Df containing the informa-
tion of r(x, y, b)D(b), reflectance data R which contains the information of
r(x, y, b)(b), and topographic modulation data Tp which contains the in-
formation of cosf (x, y):

(I) For directly illuminated pixels:

G'(x, y, b) = R(x, , b) Tp(x, y) + Df(x, y, b)
(II) For shadowed pixels:
G'(x, y, b) = Df(x, 5, b) (2.3)

The first problem to be solved to accomplish this unmixing is the determi-
nation of which pixels are directly lit from which pixels are in shadow. Once
this is accomplished the unraveling can begin. For example, for the diffuse
light image, pixels which are in shadow take their value as the dehazed data
value. Pixels which are directly lit take their value as the average dehazed
data value taken over all shadowed pixels which are likely to be from the
same material as they are.

To separate the shadow pixels from the directly lit pixels, we seek to
transform the images in a way in which the only effect is reflectance, Then
within groups of pixels with similar reflectance, we can separate the bright
appearing ones from the dark appearing ones. This two step technique is
more accurate than a simple thresholding technique (Campbell et al., 1981;
Wang et al., 1983).

One way to transform the data so that the only remaining effect is reflec-
tance is to take ratios of one band to another. The ratio image has been
widely used by remote sensing researchers to subdue surface topographic
effects (Vincent, 1973; Raines et al., 1978). An alternative rationing proce-
dure is to calculate a ratio of each pixel value in band to the total brightness
for that pixel, summed over all bands, as suggested by Mulder (1982). For
our procedure either approach is computationally feasible, provided the
denominator in the ratio is composed of a linear combination of values.
For this study, we prefer to use the ratios of individual pairs of bands, as
ratios of band pairs are known to be effective in distinguishing reflectance of
surface materials (Eliason et al., 1981). From eq. 2.2, the ratio image of two
bands with band number b, and b, for directly illuminated pixels after haze
is removed is:
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G'(x, ¥, by) _r(x, v, by) [I(by) cost (x, y) + D(b,)]
G'(x, ¥, b2) (%, ¥, bs) [1(b,) cos(x, y) + D(b,)]
If one assumes illumination and diffuse light, bands b, and b, are related by:
I(by) = a I(b,),

D(b,) = aD(b,), then:

G'(x, ¥, b1) _r(x, v, by) a [I(by) cosb (x, y) + D(b3)] _ r(x, y, by)

: a (2.4.1)
G'(x, y, by)  r(x, ¥, by) [I(b,) cosb(x, y) + D(b,)] r(x, v, b2)
Similarly, the ratio image for shadowed pixels is:

G'(x,y, b r(x,y, b
(x, ¥, by) _ (x, ¥, b1) (2.4.2)

2 a
G (xv Y, bl) r(x! Y, bZ)

Thus, whether shadowed or directly illuminated, the ratio image is in-
dependent of cos 6. Three independent ratio images taken from the 4-band
imagery in Fig. 1.1 are shown in Fig. 2.2. It can be clearly seen that the
effects of shadows have been removed.

Fig. 2.2, Ratio images 5/4, 6/5, 7/6.

2.2, Clustering

Because the three ratio images depend upon material reflectance only,
regions of the same material reflectance can be identified by grouping to-
gether pixels of similar spectral characteristics. Because we desire to conduct



199

the analysis using a minimum of prior information, unsupervised classifica-
tion is favored over the supervised approach, which would require detail
knowledge of the number, identify, and characteristics of groups. Unsuper-
vised classification permits identification of the natural structure of the
image with a minimum of prior information.

In the noisy ratio images of Fig. 2.2, there are three major clusters: water
area, vegetated area, and non-vegetated area. The size of water area is much
smaller than that of the other two. For this reason, the mode approach
(Goldberg and Shlien, 1978) which uses a fixed threshold to get cluster
centers does not work. AMOEBA (Bryant, 1979) works better, but fails to
obtain unbroken river segments. Despite its simplicity, it was found that
ISODATA modified in such a way that class sizes are also taken into con-
sideration works best.

The algorithm of basic ISODATA is given in the textbook by Duda and
Hart (1973):

(1) Choose some initial values for the means u,, u,, ..., Ug, where ¢ is the
total number of classes.

(2) Classify the samples by assigning them to the class of the closest mean.

(3) Recompute the means as the average of the samples in their class.

(4) If any mean changed value, go to 2; otherwise, stop.

The modified ISODATA algorithm is 1. Choose some initial values for the
means Uy, ..., Ue, and sizes 24, ..., 2;, where ¢ is the total number of classes.

Set ACTIVE (i) = 1, 1 <=i<=c. 2. Classify the samples by assigning them
to the class of closest mean. 3. Recompute the means as the average of the
samples in their class. Also compute the size of each class. 4. Set ACTIVE (i)
= 0 if size of class i is greater than zi. If no mean changed value or ACTIVE (i)
= 0 for all i, stop. 6. For samples which are in class i with ACTIVE (i) = 1,
classify them by assigning them to the class j of the closest mean, ACTIVE (j)
= 1.

Go to 3.

Now the crucial point is how to select the initial mean and size for each
class. One simple yet powerful method is developed by the inspiration of
looking at the pseudocolor image (Moik, 1980) which is created by assigning
a color to a pixel (x, y) according to the quantized value of G(x, y, b,), the
quantized value of G(x, vy, b,), and the quantized value of G(x, vy, b;) fora
three-band graytone imagery. The result even can be considered to be a
reasonable cluster image. Thus, the following recursive algorithm was develop-
ed to compute the total number of classes as well as initial class means and
S1Zes.

(1) For an n-band imagery, find the minimum graytone value MIN and
maximum graytone value MAX for each band i and quantisize the graytones
G(x, y, b;) into g + 1 values:

Q(1, b;)=MIN, ..., Q(g +1, b;) = MAX

Calculate the total number of pixels in sets:
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S(al’ bl) = {(x-r y) | Q(ah b1)<= G(.’X:, Y, bi) <= Q(al + 19 bl)s and
Q(a2s b2) <= G(x’ Y, b'Z) <= Q(a2 + 1, b2)}

Also calculate the graytone means for each set.

Mark all the sets as active.

(2) Find the set with highest number of pixels among the active sets. This
is a cluster center. Its mean can be used as initial class mean in ISODATA. An
estimated size of this class is the sum of its number of pixels and the num-
bers of pixels of its neighbors.

(3) If no peak can be found, stop; otherwise mark this peak set and its
neighbors as inactive and go to 2. Using these initial class means and sizes in
the modified ISODATA, one gets material cluster image mc of Fig. 2.3.

Each material cluster ¢; can be defined as a set of pixels (x, y) in which
Me(x, y)=cy:

Clcy) = {(x, ¥) | Me(x, y) = ¢}

Fig. 2.3. Material cluster image. For each cluster, a binary image is shown.
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Once the material clusters are defined on the basis of the ratio images,
one can find directly illuminated and shadowed pixels and define a binary
shadow image. To do this, we collect together all dehazed 4-band pixel val-
ues belonging to a single material cluster and subcluster these 4-tuples into
dark and bright subcluster classes. The next few paragraphs describe this in
detail.

If one overlays the material cluster image Mc over any band of the de-
hazed image, one can see, within each material cluster, some pixels are
bright and the others are dark. These differences are due to topographic
variations; the bright pixels are directly illuminated pixels, and the dark
pixels are in shadow. To separate the shadow pixels from the directly lit
pixel, for each material cluster ¢,, one performs a subclustering on the
dehazed pixel values in the set:

{G,(x: Y, b) IMC(x, y) = Cl}

which is the set of all dehazed values for pixels whose material cluster index
is ¢;. This subclustering on cluster ¢; separates the directly illuminated
pixels Cy(c,) from the indirectly illuminated pixels C,(c,):

Coler) = {(x, ¥) I (x, v) is directly illuminated on the basis of the subclustering}
Ci(ey)={(x, y) | (x, y) isindirectly illuminated on the basis of the subclustering}

The subclustering of getting C,, C; uses only the basic ISODATA program.
In this case, the initial class mean for C, includes all the minimum graytones

Fig. 2.4. Binary shadow image.
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for four bands, and the initial mean for C, includes all the maximum gray-
tones for four bands,
A shadow image Sw can be defined as:

Sw: XX Y- {0,1}
Sw: (x,y)=0if (x, ¥) € Co(Mc(x, v))
1if (x, y) € Ci(Mc(x, y)) (2.5)

The shadow image for Fig. 1.1 is shown in Fig. 2.4. The correspondence
between this and a topographic map is quite good. Now that directly lit and
shadowed pixels have been identified, it is possible to use the dehazed image
to get the diffuse light image Df, the reflectance image R, and the topo-
graphic modulation image Tp.

2.3. Diffuse light data, reflectance data, and topographic modulation data

From eq. 2.3, shadowed pixels contain only the information of diffuse
light, but directly illuminated pixels contain the information of both diffuse
light and direct sun illumination. By the method of clustering, each pixel in
the image belongs to a material cluster. Each material cluster has a bright and
a dark subcluster. For pixels in the dark subcluster, one can simply use their
dehazed values as their values in the diffuse light image Df. On the other
hand, for pixels in the bright subcluster, one can define their value in the
diffuse light image to be the average value of all the pixels from the dark sub-
cluster associated with the material cluster to which these pixels belong.

With this definition, the diffuse light image Df is:

(I) For directly illuminated pixels:

G'(u, v, b)

(u,v)eC,(c,) #Ciler)
¢, = Mec(x, y)

Df(x,y, b) =

where, for a set S, #S means the size of this set.
(II) For shadowed pixels:
Dy, by=G'(x, 3, b)

If there were no variations in reflectance for pixels from the same material,
we have:

Assumption 1: r(x, y, b) is a constant r'(c,, b) for all pixels (x, ¥) in C(c,),
where ¢; = Me(x, ).

Under this assumption, for directly illuminated pixels:

Df(x, y, b)=r'(cy, BD(B) -
T v (u, v)E Cylc,) #C1(cy)

=r'(cy, b) D(b) (2.6)
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From egs. 2.2 and 2.6 and Assumption 1, G' — Df is:
(I) For directly illuminated pixels:

G'(x, vy, b) — Df(x, y, b) = r(x, v, b) I(b) cosb (x, ¥) + r(x, v, b) D(b)
—r'(cy, b) D(b)

=r(x, v, b)I(b) cosb(x, y) [e: = Me(x, y)]
(II) For shadowed pixels:
G'(x,y, b) — Df(x,y, b) =0 (2.7)

The Df image for Fig. 1.1 is shown in Fig. 2.5.
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Fig. 2.5. Diffuse light image.

An initial or raw estimated reflectance image R’ can be calculated by
assigning each pixel’s value to be the average G' — Df value of all the pixels
from the bright subcluster associated with the material cluster to which the
pixel belongs.

.y b O NI ) B

(u, V)€ Cyc,) #Colcy)
¢, =Mc(x, y)

3 r(u, v, b) I(b) cosd (1, v)

(1, v)e Cyle,) #Col(cy)

¥ cosf(u, v)

=r'(ey, b) I(b)
' (u, v)eCyle,) #Colc1)
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. cosf(u, v)

Define: Xe(e,) = ———

(1, v)€ Cylc,) H#Coley)

Xc(e,) is the spatial average of cosf for pixels in the bright subcluster. Then:
R'(x,y, b) =r'(cy, b) I(b) Xc(cy) (2.8)

We use the raw estimated reflectance images to produce raw estimates of
the topographic modulation image. By egs. 2.3, 2.7 and 2.8, the raw estimat-
ed topographic modulation image Tp' for band b is:

(I) For directly illuminated pixels:

G'(x, y, b) — Df(x, y, b) _r(x, 5, b) I(b) cosb (x, ¥) _

Tp(x 5. 5) = R'(x, 3, b) (e b) 1(b) Xele,)
cosd (x, y)
= Xole) [e1 = Me(x, y)]
(II) For shadowed pixels:
Tp'(x,y,b)=0 (2.9)

We use the following assumption to convert the raw topographic images
to our final estimated topographic modulation image.

Assumption 2: Xc(c;) is the same for all material clusters, 1 <= ¢, <= Ne.

With this assumption, the principal component image generated from Tp’
corresponding to the largest eigenvalue becomes our final single-band esti-
mated Tp image.

At this point, we have a four band image Tp each band of which is esti-
mate of cosf(x, y). The first principal component of this four band image
provides an estimate which is close to the minimum variance estimate of Tp.

(I) For directly illuminated pixels:

Tp(x, y) =k cosf(x, y) for a constant k (2.10)
(II) For shadowed pixels:
Tp(x,y)=0

Having the topographic modulation image, the final estimated reflectance
image is easily computed using eq. 2.3.
(I) For directly illuminated pixels:

G'(x, y, b) — Df(x, y, b) _rlx, y, b) I(b) cosb (x, y) _
Tp(x, v) k cosé(x, y)
_rix, ¥, b)I(b)
k
(II) For shadowed pixels:

R(x,y,b)=

(2.11)
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> R(u, v, b) _I(b) » r(u, v, b)

(u, V) Cyle,) #Colcy) B (u,v)ec,c,) #Colci)
¢, = Mc(x, y)

R(x,y,b)=

The Tp image is shown in Fig. 2.6, and R image is shown in Fig. 2.7.
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Fig. 2.7. Reflectance image.
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3. ELEVATION ESTIMATION
3.1. Identification of ridges and valleys

In the last section, the problem of confounded data is handled in such a
way that the material information is contained in the reflectance image and
the diffuse light image. The topographic information is contained in the
shadow image and the topographic modulation image. In this section, we
will show how to detect ridge segments, valley segments, and peak junctions
from the shadow image. In the next section, we will perform an elevation
growing to obtain initial raw estimates of elevations for all pixels on the
basis of these ridge and valley segments. We then obtain a refined estimate
by making the elevation model have slopes consistent with the information
on the topographic modulation image.

Sides of hillsides facing the sun must be directly lit. Sides of hillsides
facing away from the sun must be indirectly lit. A directly lit to indirectly
lit transition in a direction moving away from the sun is a ridge. An in-
directly lit to directly lit transition in a direction moving away from the sun
is a valley. Thus, valleys and ridges exist on the borders between shadowed
and directly lit areas. To find these areas we use the binary shadow image.
First, a connected components operation determines regions on the shadow
image. Then small, noisy regions are eliminated.

Next, the perimeters of these bright and shadowed regions are segmented
into border segments according to their left regions, right regions, and
orientations. A border segment is a maximally long sequence of connected
pixels which are on the border between two given regions. Because the
detection of ridges and valleys is highly orientation-dependent and the sun
illumination comes from east in Fig. 1.1, each border segment is further
broken into several pieces according to orientation; all the east—west parts
are separated from the north—south parts. The binary result is shown in
Fig. 3.1.

As the sun illumination is from the east in LANDSAT imagery, those
border segments which are valley segments or ridge segments can be identified
according to the brightness of the regions adjacent on the left and on the
right. Because most of the trees in this area in April are unfoliated, the
strongest region boundaries are shadow boundaries rather than reflectance
boundaries, and the strongest boundaries are those at the extremes of steep
slopes oriented normal to the sun direction. Because the sun illumination is
predominantly east—west, a boundary that is dark on the left and bright on
the right will correspond to a ridge, and the reverse will correspond to a
valley.

East—west region boundaries are classified according to the labeling of
neighboring north—south boundaries as well as their orientation relative to
the east—west boundaries. As shown in Fig. 8.2, each east—west boundary
B, has a left intersecting north—south boundary B, and a right intersecting
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Fig. 3.1. Border segments.
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Fig. 3.3a. Valley map consisting of the border segments which are identified as valleys.
Fig. 3.3b. Ridge map consisting of the border segments which are identified as ridges.
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north—south boundary B;. If the angle between B; and B, is smaller than
the angle between B, to B;, then we assign the labeling of boundary B, to
B,; otherwise, we assign the labeling of boundary B; to B,. The results of
ridge-valley finding are shown in Fig. 3.3.

3.2. Elevation growing

The detection of the ridge and valley segments as discussed in the last
section only assigns a ridge or valley label to them and does not assign
relative elevations to them. This section describes how to estimate their
relative elevations. First, a model called elevation growing is used to assign
initial estimated elevations for all ridge and valley pixels. Next, interpolation
is used to assign elevations for non-ridge and non-valley pixels. After this,
the topographic modulation image is used to improve the result.

The cross-sections of valleys are V-shaped, and the cross-sections of ridges
are A-shaped. If one looks at topographic maps, the elevation contours of
valleys such as those shown in Fig. 3.4 can be frequently found. Thus, if one
draws a line ab perpendicular to the valley Va, the elevations are increasing
from point 0 to point @, and also from point 0 to point b. If the end point of
a valley segment of smaller order is encountered during the growing, it is
deduced that this end point is the lower end of this smaller valley segment.
However, if a ridge point is encountered during the process, the increasing
has to stop because the elevation starts to decrease. Based on this knowledge,
an ‘“‘elevation growing” model can be created.

[

Va 16C0 1800 “20C0

Fig. 3.4. The elevation pattern of valleys and its relation to elevation growing.

Three different local slopes are assigned to three classes of non-ridge and
non-valley pixels: pixels which are close to ridges, pixels which are close to
valleys, and other pixels. A large local slope 0.4 m is assigned to pixels
within 5 pixel distances to ridges so that one has steep hillsides; a small local
slope 0.02 m is assigned to the four-neighbors of valley pixels so that one has
a wider valley bottom, and a medium local slope 0.1 m is assigned to the rest
pixels.
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For a valley pixel, if it is within 10 pixel distances to a peak junction, then
it is assigned a large local slope 0.4 m; otherwise, it is assigned a small local
slope 0.02 m.

Using estimates of local slopes and assuming the elevations of visible rivers
which can be detected by the Alfoldi and Munday technique (1978), are
lowest in a small area, the elevation growing algorithm can be defined as
follows:

(1) Trace the border segments of visible rivers and give all the pixels eleva-
tion E,. E, can be an arbitrary constant or a datum read from the map.

(2) Repeat until all the pixels are elevation labeled.

(2.1) Growing. If a pixel p has elevation E,(p), give its unassigned
neighbors elevations E,(p) + DELTA(p) (DELTA(p) is the assigned local
slope) unless: (a) an image boundary is encountered; or (b) a ridge is en-
countered.

(2.2) Including new valley segments. If any elevation-unlabeled valley
segment is touched by an elevation-labeled pixel pe resulting from the
growing, assign elevations to all the pixels of this segment. The end
touching pe will have the same elevation as pe. Then, starting from this
end, trace the whole segment and give every pixel linearly increasing
elevation with some constant slope.

(8) For a ridge pixel, take the maximum elevation value from its 4-neigh-
bors’ as its elevation.

The relative heights of valley segments created by the elevation growing
model are indicated by arrows in Fig. 3.5a, and the ground truth is shown
in Fig. 3.5b. Because realistic shape of the hillsides from valleys to ridges were
not taken into account in the raw elevation growing, only the relative eleva-
tions of the ridges and valleys are held to be accurate. Haralick et al. (1982)
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2

Fig. 3.5a. Relative elevations of valley segments. The arrows are from high ends to low
ends.
Fig. 3.5b. Stream map created from ground truth.
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describe a few interpolation procedures which permit more realistic eleva-
tion assignment to non-valley and non-ridge pixels. The interpolation makes
all non-ridge or valley pixels be the average of their north, south, east, and
west neighbors and makes ridge or valley pixels keep the values produced by
the elevation growing model. This interpolation is shown in Fig. 3.6.

Fig. 3.6. Elevation model by using Laplacian mask.

3.3. Use of topographic modulation image to improve the result

It is impossible to obtain first-order partial derivatives fy, fy of the eleva-
tion model f(x, y) from the topographic modulation image because the in-
formation of slope and aspect angle is mixed in the topographic modulation
image. The relationship between f,, fy, and cosf is contained in the follow-
ing equation:
cosp = 1555t IySy— s (3.1)

SQRT (fx fx +fyfy +1)
where (Sy, Sy, Sz) is the known unit vector of sun illumination direction.

However, once a raw estimated elevation model 7' is computed by the
elevation growing, the estimated partial derivatives fy, fy can be calculated
from f' using first differences. Then from the initial estimated fx and fy and
the observed value cosf' in the topographic modulation image, an a-posteriori
estimate fy, fy can be determined so that f; and f, maximize:
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P(cos8’ | fxfy) P(fxly)
—/" P(cos8’ | fxfy) P(fxfy)

Because one wants cosf in eq. 4.1 to be as close as possible to the observed
value cosf’, P(cosf’ | fxfy) can be written as:

kieki cos*(8-6") (3.3)

(3.2)

P(fsfy | cos6’) =

Assuming that the true derivative fy, fy minus the estimated derivatives fy,
fy are independent normals with mean zero, and standard deviation d, then
fx, fy calculated from the estimated elevation model, then:

P(fxfy) = kye 1/ W fx-T)1d1? g-121(fy ~Fy) 1d)? (3.4)

where d is the standard deviation of the normal distribution.
Putting egs. 8.2, 3.3, and 3.4 together, one wants to find fyx and fy which
maximize:

f ks 05T (6-6") o 12 U fx-Fr)id1? g-12(fy-F3)rd1? (3.5)

under condition (4.1) and & =k kj.

The maximizing fx, fy can be determined by exhaustive search over the
range [—2m, 2m] X [—2m, 2m] of (fx — fx, fy — [y) using an interval of
0.1 m. The resulting f, and fy is then fed back to the elevation growing proce-
dure to start another iteration of estimating the elevation model. This pro-
cessing can be repeated until the difference between the elevation averages
of two consecutive iterations is small. The resulting elevation image as well
as surface plot are shown in Fig. 3.7.

Fig. 3.7. Optimal elevation image.
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In the initial elevation growing process, valleys are assigned small con-
stant derivatives. However, if the end of a valley segment is located close to
a ridge segment, then the initial estimated f; or f{, will be high. When this
high value is fed back to eq. 3.5, the final computed derivatives f, and
fy will be much higher than the old small constant derivatives used in
the elevation growing process. As can be seen in Fig. 3.7, the reconstructed
surface obtained after feedback is more consistent at locations where valleys
are close to ridges.

The image and surface plot of the elevation data read from Digital Terrain
Tape (INCIC, 1980) for the area of Fig. 1.1 are shown in Fig. 3.8. The com-
parison of the minimum, maximum, and mean elevation values between the
reconstructed elevation model and tape data for three test areas is listed in
Table 3.1.

Fig. 3.8. Elevation data from digital terrain tape.

A pixel by pixel comparison between the reconstructed elevation model
after scaling and the tape data are also listed in this table. The means of the
absolute difference and the root mean square differences of elevation, and
slope, are computed.

In Assumption 2 of Section 2, the spatial average of cosé is assumed to be
the same for all material clusters. After the elevation model is reconstruct-
ed, all Xe values for the test area are calculated and listed in Table 3.2.
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TABLE 3.1

Comparison of reconstructed elevation model and tape data

Low High Mean
Tape data 950 2125 1350
Reconstruction 950 2033 1320
Means of RMS
absolute difference
difference
Elevation (ft) 115 143.76
Slope (ft) 0.117 0.154

TABLE 3.2
Listing of Xe values

Test Imagery 1

Cluster 1 2 3 4 5
Xe 0.7193 0.37356 0.7495 0.7734 0.7042

3.4. Reconstruction of the LANDSAT imagery

From eq. 2.6, the LANDSAT imagery can be reconstructed by the follow-
ing steps:

(1) INluminate the elevation model of Fig. 3.7 by an artificial sun at
specified azimuth and elevation angles.

(2) Multiply the image of Step 1 by the reflectance image of Fig. 2.9.

(3) Add diffuse light image of Fig. 2.5 to the image of Step 2.

The resulting imagery is shown in Fig. 3.9.

For evaluation, the original and reconstructed imagery are scaled to the
same graytone range [1, 64] and the difference image between them is com-
puted. The means and variances of the difference imagery for three test
areas are listed in Table 3.3.

4. CONCLUSION

Two problems are addressed in this paper: definition of an illumination
model and computation of an elevation model. First, an illumination model
was defined and a series of steps was used to extract the shadow image, the
diffuse light imagery, the reflectance imagery, and the topographic modula-
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Fig. 3.9. Reconstructed LANDSAT imagery.

TABLE 3.3

Mean and variance of the difference imagery between original and reconstructed
LANDSAT imagery

Test Image 1

Mean Variance
Band 4 4.1 18.9
Band 5 3.62 16.2
Band 6 5.13 32.2
Band 7 8.27 43.3

tion image. The success of the process depends largely on clustering.

Next, knowing the sun azimuths and shadow image the ridges and valleys
were found. An elevation growing process from valleys to ridges was found
to be efficient in reconstructing the elevation model. Then an iterative
method improved the elevation model by making it as consistent as possible
with the topographic modulation image.

The techniques of this research work best for areas having big shadow
areas. If water areas cannot be found to help identify the lowest valley loca-
tions, the elevation understanding problem will be more complicated. Other
applications of this technique include the refinement of a given coarse digital
elevation model using higher resolution multispectral imagery. In this kind of
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application, the given digital elevation model essentially calibrates the eleva-
tion growing process so that the resulting refinement constitutes a smart
interpolation process.
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