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Pose Estimation from Corresponding 
Point Data 

ROBERT M. HARALICK, FELLOW IEEE, HYONAM JOO, CHUNG-NAN LEE, 
XINHUA ZHUANG, VINAY G. VAIDYA, AND MAN BAE KIM 

Abstracr --Solutions for four different pose estimation problems are 
presented. Closed form least-squares solutions are given to the over 
constrained ZD-ZD and 3-D-3-D pose estimation problems. A globally 
convergent iterative technique is given for the 2-D perspective projec- 
tion-3-D pose estimation problem. A simplified linear solution and a 
robust solution to the 2-D perspective projection-ZD perspective projec- 
tion pose estimation problem are also given. Simulation experiments 
consisting of millions of hia ls  having varying numbers of pairs of corre- 
sponding points, varying signal to noise ratio (SNR) with either Gaussian 
or uniform noise provide data suggesting that accurate inference of rota- 
tion and translation with noisy data may require corresponding point data 
sets having hundreds of corresponding point pairs when the SNR is less 
than 40 dB. The experiment results also show that robust technique can 
suppress the effect of blunder data that come from outliers or mismatched 
points. 

I. INTRODUCTION 

OSE ESTIMATION is an essential step in many ma- P chine vision problems involving the estimation of ob- 
ject position and orientation relative to a model reference 
frame or relative to the object position and orientation at a 
previous time using a camera sensor or a range sensor. 
There are four pose estimation problems with point data. 
Each arises from two views taken of the same object that 
can be thought of as having undergone an unknown rigid 
body motion from the first view to the second view. In 
model-based vision, one “ view” provides three-dimen- 
sional (3-D) data relative to the model reference frame. 
The other is the 2-D perspective projection. In motion 
estimation and structure from motion problems there is a 
rigid body motion of the sensor, the object or both. Both 
views are 2-D perspective projections. In any case, in each 
problem corresponding point pairs from the two views are 
obtained from some kind of matching procedure. The pose 
estimation problem with corresponding point data begins 
with such a corresponding point data set. Its solution is a 
procedure that uses the corresponding point data set to 
estimate the translation and rotation that define the rela- 
tionship between the two coordinate frames. 
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In the simplest pose estimation problem, the data sets 
consist of two-dimensional data points in a two-dimen- 
sional space. Such data sets arise naturally when flat 3-D 
objects are viewed under perspective projection with the 
look angle being the same as the surface normal of the 
object viewed. In the next more difficult pose estimation 
problem, the data sets consist of three-dimensional data 
points in a three-dimensional space. Such data sets arise 
naturally when 3-D objects are viewed with a range finder 
sensor. In the most difficult pose estimation problems, one 
data set consists of the 2-D perspective projection of 3-D 
points and the other data set consists of either a 3-D point 
data set, in which case it is known as absolute orientation 
problem, or the other data set consists of a second 2-D 
perspective projection view of the same 3-D point data set, 
in which case, it is known as the relative orientation 
problem. The latter case occurs with time-varying imagery, 
uncontrolled stereo or multicamera imagery. 

This paper describes a solution to each of the four 
problems and characterizes the performance under varying 
conditions of noise. The simplest case is when the point 
positions are perturbed by independent additive Gaussian 
noise. Here when the signal-to-noise ratio (SNR) decreases 
below 40 dB, the mean error skyrockets in the more 
complex pose estimation problem unless there are hun- 
dreds of corresponding points pairs. Other than this phe- 
nomenon, the only interest in the additive Gaussian noise 
case is to establish a baseline reference against which more 
realistic and potentially devastating noise can be com- 
pared. 

The noise having a dominant effect in point correspon- 
dence is due to incorrect matches. An incorrect match 
makes a point in the first view correspond to an incorrect 
point in the second view. Noise that models the incorrect 
match may be described in a variety of ways. A pair of 
points in one view may be incorrectly matched to a pair of 
points in a second view by a simple interchange. A point in 
one view may be matched to a point chosen at random in 
the second view. Or the independent additive noise may be 
from a distribution having tails so broad that the distribu- 
tion does not have finite variance. One such distribution is 
the slash distribution that can be obtained as a Gaussian 
random variable with mean 0 and variance u2 divided by a 
uniform random variable over the unit interval [0,1]. the 
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slash density function has the form 

and it is often used in characterizing the performance of 
robust estimators. 

This paper argues that the estimators used by machine 
vision procedures must be robust since all machne vision 
feature extractors, recognizers, and matchers seem to make 
occasional errors which indeed are blunders. Blunders 
make typical estimators such as ordinary least squares 
estimators the estimators of least virtue. Thus it is impor- 
tant to pay attention to the reliability of estimators under 
conditions when the data has blunders. 

Least-squares estimation can be made robust under 
blunders by converting the estimation procedure to an 
iterative reweighted least squares where the weight for each 
observation depends on its residual error and its redun- 
dancy number. It is therefore meaningful to first find the 
form for the least-squares solution, establish their perfor- 
mance as a baseline reference, put the solution technique 
in an iterative reweighted form, and finally evaluate the 
performance using nonnormal noise such as slash noise. 
This paper represents some initial steps in this strategy. 

Section I1 derives a closed form least squares solution to 
the pure 2-D-2-D pose estimation problem. An subse- 
quently, we derive an iterative weighted least-squares solu- 
tion using a robust method. Section 111 derives a closed 
form least-squares solution to the pure 3-D-3-D pose 
estimation problem using a singular value decomposition 
technique. The least-squares solution for both the 2-D-2-D 
and 3-D-3-D pose estimation problems are constrained to 
produce rotation matrices that are guaranteed to be or- 
thonormal. Section IV discusses an iterative solution to the 
2-D perspective projection 3-D pose estimation problem. 
The technique appears to be globally convergent from any 
initial starting value. Section V discusses a solution to the 
2-D perspective projection-2-D perspective projection 
pose estimation problem. The robust algorithm is also 
presented. 

11. 2-D-2-D ESTIMATION 

There are a variety of model-based inspection tasks that 
require the coordinate system of an object model to be 
aligned with the coordinate system of a set of observations 
before the actual inspection judgements can be made. One 
example is surface mount device inspection on printed 
circuit boards. Here the image processing produces, among 
other measurements, the observed center position of each 
device. The model stores, in the printed circuit board 
coordinate system, the center positions, orientations, and 
sizes of all devices. To determine whether each device that 
should be present is present, and whether everything ob- 
served to be present is actually present and in its correct 
position and orientation first requires determining the 
relationship between the coordinate system of the observed 
image and the coordinate system of the model. Usually 

this relationship is given by a 2-D rotation and translation. 
As mentioned in Section I, in the matching process, the 

noise is a big factor that disturbs the pose estimation. The 
noise of a great concern is incorrect matching of the data 
points. The incorrect match makes a data point of the 
model to correspond to an incorrect point of the image. 
(These incorrect points will be called “outliers” through 
the paper.) The outliers may affect the accuracy and stabil- 
ity of the pose estimation. 

We have recognized that some data points, which arise 
from heavily tailed distributions or are simply bad sample 
data points due to errors, degrade the performance and 
accuracy of the least-squares approach. The estimated 
parameter values may be useless or unreliable in the pres- 
ence of such erroneous data points. Therefore we need a 
new method to weaken the effect of the outliers and then 
to improve the performance and reliability of the least- 
squares method. 

For the purpose of removing the outliers from the pose 
estimation, we make use of a robust method. The robust 
method has been developed to modify the least-squares 
method so that the outliers have much less influence on the 
final estimates. Since the outliers are eliminated or weak- 
ened, the estimation of the 2-D pose will be more accurate, 
reliable and stable. 

The section of 2-D-2-D pose estimation is organized as 
follows. Section 11-A gives a precise statement of this 
problem as a weighted least-squares problem. In Section 
11-B, we introduce a derivation of the solution using the 
least-squares method. In subsequent sections we introduce 
the robust method using an iterative weighted least-squares 
method. In Section 11-D, we present numerical results of 
the two methods and discuss the performances of them. 
From the numerical results we conclude that the robust 
method produces a better and more stable performance 
than the least-squares method in the 2-D-2-D pose esti- 
mation. 

A .  Statement of Problem 

In the simple two-dimensional pose detection problem, 
we are given N two-dimensional coordinate observations 
from the observed image: xl; . e ,  x N .  These could corre- 
spond, for example, to the observed center position of all 
observed objects. We are also given the corresponding or 
matchng N two-dimensional coordinate vectors from the 
model: y,; . ., y,. In the usual inspection situation, estab- 
lishing wluch observed vector corresponds to which model 
vector is simple because the object being observed is 
fixtured and its approximate position and orientation are 
known. The approximate rotational and translational rela- 
tionship between the image coordinate system and the 
object coordinate system permits the matching to be done 
just by matching a rotated and translated image position 
to an object position. The match is established if the 
rotated image position is close enough to the object 
position. 
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In the ideal case, the simple 2-D pose detection problem 
is to determine from the matched points a more precise 
estimate of a rotation matrix R and a translation t such 
that y, = Rx,  + t ,  n =1;. ., N .  Since there are likely to be 
small observational errors, the real problem must be posed 
as a minimization. Determine R and t that minimize the 
weighted sum of the residual errors c2  

N 

c 2 =  C WnIIyn-(fin+t)IIz- (1) 
n =1 

The weights w , ~ ,  n =1; ., N satisfy W, 2 0 and E ~ = l ~ ,  = 1. 
If there is no prior knowledge as to how the weights should 
be set, they can be defined to be equal: wn =l /N .  Other- 
wise they can be set to 1/6; if the variances of the 
observations are known. 

B. Least-Squares Method 

Upon expanding (1) out we have 
N 

c z  = c W , [ ( Y ,  - t > ‘ h  - t >  - ( Y ,  - t ) ’Rx,  
n = l  

- x:R’( y, - t )  + xAR’Rx,]. (2) 
Since R is a rotation matrix, it is orthonormal so that 

The counterclockwise rotation angle 8 is related to the 
rotation matrix by 

We want to take the partial derivative of c2  with respect to 
8. Now we need a notation in which the two components 
of x ,  and the two components of y, can be written 
explicitly. Letting 

N 
N 

c2  = C w,[ (  y, - t ) ’ (  y, - t ) - 2 ( y ,  - t ) ’Rx,  + x , ~ , x , ] .  
n = 1  o =  -2  w, l [ (y , , -y , ) ( - s in~) (x , l -~ l )  

I 1  = 1 (3) 
Taking the partial derivative of c z  with respect to the 
components of the translation t and setting the partial 
derivative to 0, we obtain 

+ ( y,, - Yl>(  -COS 8 ) ( X , , z  - 2 2 )  

+ (YI1Z - r z ) c o ~ ~ ( X f l 1 -  21) 

+ (Y,,, - Yz)(-sin8)(xflz - % > I ?  
N 

0 = W, [ - 2( y,, - t ) + 2 RX , ] . (4) (10) 
I 1  = 1 

Letting letting 
N N N 

x= W , X n  y =  c w,y, ( 5 )  A = w, [ ( yfl, - YJ x,1- ~ 1 )  + ( ynz  - jz 1 (x,Z - Q1 
n =1 n = 1  I7 =1 

there immediately results 
I ; = R F + t .  

\ ,  

n =1 
Substituting j - RF for t in the expression for the 

residual error we can do some simplifying Then 

0 = Asin8 + Bcos8. (11) 

Hence 

or 

The correct value for 8 will in general be unique and 
will be that 8 that minimizes E’. Thus the better of the two 
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choices can always be easily determined by simply substi- 
tuting each value for 6 into the original expression for c2. 

In this subsection, we assumed that w, is given. To 
remove or lessen the effect of the outliers and thereby 
improve the performance and stability of the pose estima- 
tion, the weights need to be determined based on the data. 
For this we need a method to assign a weight based on the 
residual error. The outliers are forced to have small or zero 
weights, lessening their effect on the pose estimation. It is 
also reasonable that the data points with small noise are 
assigned larger weights than those with large noise error. 
From this assumption, we may expect better performance 
and stability in the pose estimation. The method to assign 
appropriate weights to the data points is done by a robust 
method using an iterative weighted least-squares method, 
which is described in the next subsection. 

C. Robust Method 

In the previous subsection, we have presented the 
weighted least-squares method where the weights are given. 
In this subsection we will introduce an iterative weighted 
least-squares method where the weights are data depen- 
dent. The purpose is to make the outliers have zero or 
small weights and thus to eliminate the effects of them in 
the pose estimation. 

I )  M-Estimator: In M-estimator, the solution for 0 is 
given by a minimization problem of the following form 

or by an implicit equation 

N 

+(.;-e) = o  (15) 
i = O  

where N is the sample size. The p is an arbitrary nonnega- 
tive monotonically increasing function (called the object 
function) for positive argument and monotonically de- 
creasing for negative argument. The # ( x i  - e )  is a deriva- 
tive of p ( x i  - e )  with respect to e and is called an M- 
estimator shown as 

Equation (15) can be written equivalently as 

This gives a formal representation of 8 as a weighted mean 
N c wixi 
n (19) 6 -  i = l  

~I c wi 
i = I  

with weights depending on the data. 
Among many forms of functions p and + proposed in 

the literature, Tukey’s form is investigated in this experi- 
ment. The Tukey’s biweight + ( x )  is 

otherwise. 

The c is a tuning constant that typically lies in the range 
6-12. In the experiments we adopted 6 as a value of c. S is 
a scale estimator that is usually MAD (median of absolute 
deviation). The cS is called “rejection point.” 

The corresponding object function of the Tukey’s bi- 
weight, p ( x )  is 

otherwise. 

The weight function of the Tukey’s biweight is 

otherwise. 

Since it is difficult to find a closed form for the estimated 
parameter 8 ,  an iterative method is usually used. 

2) Iterative Weighted Least-Squares Method: The resid- 
ual error E l  for nth data sample is 

E ,  = y, - ( Rx,  + t ) 
where i = 1,. a ,  N .  N is a sample size. The robust estima- 
tion procedure is implemented as the following iterative 
method. Given the data sets x, and y,, where i = 1; * a ,  N .  

Select initial starting values for R and t .  
R and t give weights w, where i =1;. e, N .  To find 
weights, we use (22). x2 is replaced by the residual 
error, I l~ ,11~,  where c l  = y,  - x,R‘  - E,t and i = 
1; . ., N .  Thus, w, is expressed as 

otherwise. 
N 

w , ( x ,  - e )  = 0 (17) 
r = O  The new R and t are obtained from the new weights. 

If some degree of convergence in R and t are ob- 
tained, go to the next step. If not go back one step. 
From the final W, we normalize the weights and find 

+ ( x l  - 8 )  i = l ; . - ,  N .  (18) estimates for rotation angle and translation using the 

where 

w, = 
x i - e  solution derived in Section II-B. Stop. 
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SIGNAL - T O - N O  ISE RAT IO (SNR) 

Fig. 1. Mean absolute rotational error as function of SNR for 2-D-2-D 
pose estimation problem. M, N = 8 ;  +, N =  25; +, N =  50; x, 
N = 100; :, N = 200. 

D. Experimental Results 

For each trial, object data points were generated uni- 
formly in the square [ - 2,2] X [ - 2,2]. A rotation angle was 
chosen from the interval [ - 15,151 (in degrees) according 
to a uniform distribution and the translation vector was 
chosen from the square [ - 1,1] X [ - 1,1] also according to 
a uniform distribution. Independent Gaussian noise was 
added to the rotated and translated points and the SNR, 
defined as 20 log peak-to-peak signal/normalized in- 
terquartile range, was varied between 0 dB and 52 dB. The 
normalized interquartile range is defined as the interquar- 
tile range of the noise divided by the interquartile range of 
a Gaussian variate having variance 1. For noise that is 
Gaussian the normalized interquartile range is just the 
noise standard deviation. For distributions such as the 
slash distribution that does not have finite variance, the 
normalized interquartile range is a suitable estimate of 
dispersion. For each different combination of SNR and 
number of corresponding point pairs, one thousand trials 
were made. First we made experiments without generating 
any outliers and examined the performance of the least- 
squares method. The results are shown in Figs. 1 and 2. 
Fig. 1 shows the mean absolute error of the rotation angle 
as a function of SNR for number of corresponding point 
pairs varying between 8 and 200. For number of corre- 
sponding point pairs equal to 8, the SNR must exceed 
40 dB to guarantee mean absolute error of less than one 
degree while for 100 corresponding point pairs the SNR 
can go as low as 25 dB while maintaining a less than one 
degree mean absolute rotation error. The pattern for mean 
translational distance error is similar. This is shown in Fig. 
2. To maintain a mean translational distance error of 0.01, 
which is a relative error of about 0.25 percent, requires 100 
corresponding point pairs at a 32-dB SNR. Using only 8 
corresponding point pairs, even an SNR of 52 dB provides 
a mean translation distance error of about 0.03, or 0.75 
percent. 

In the next experiments, we examine the performance of 
the least-squares and robust methods with outliers present 

1.5 

1 

. 5  

0 
0 10 20 30 40 50 60 

SIGNAL-TO-NOSIE RATIO (SNR) 

Fig. 2. Mean translational distance error as function of SNR for 
2-D-2-D pose estimation problem. M, N = 8; +, N = 25; + , N = 50; 
X, N=100; *, N=200.  

0 40 80 120 160 200 

THE NUMBER OF DATA POINTS, N 

Fig. 3. Mean absolute rotational error of least-squares method and 
robust method as a function of SNR for 2-D-2-D pose estimation 
problem. Number of corresponding point pairs is 20. Percentage of 
outliers is changed. M, SNR = 50 dB; +, SNR = 40 dB; + , SNR = 35 
dB; X , SNR = 25 dB; 8 ,  SNR = 20 dB. 

in the image. To generate the outliers, we intentionally 
changed the positions of some data points by randomly 
selecting arbitrary positions in the image generated accord- 
ing to a uniform distribution. We applied the least-squares 
and robust methods to estimate the pose and observed the 
performance. The percentage of the ouliers was varied 
from 10 percent to 50 percent. Figs. 3 and 4 show the 
mean rotational and translational errors as a function of 
the SNR for the PO (percentage of the outliers) varying 
between 10 percent and 50 percent when the least-squares 
and robust methods are used. The number of correspond- 
ing point pairs is 20. As we increase the PO, .the perfor- 
mance is degraded. The robust method shows better per- 
formance than the least-squares method when the SNR is 
greater than 10 dB. If the SNR is less than 10 dB, the 
performances of the two methods are almost identical. 
This indicates that below 10 dB, there is not enough 
consistency within the data to enable a distinction between 
outliers and nonoutliers. 
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111. 3-D-3-D ESTIMATION 40 

A.  Statement of Problem 36 

Let y,; . e ,  y ,  be N points in Euclidean 3-space. Let R 
be a rotation matrix and t be a translation vector. Let 
x l ;  . -, x N  be the points in Euclidean 3-space that match 
y,; e ,  y,. Each x ,  is the same rigid body motion of y,. 
Hence each y,  is obtained as a rotation of x ,  plus a 
translation plus noise. 

20 

10 

E 

(24)  46 
y,, = R x ,  + t + 7,. 

The 3-D-3-D pose estimation problem is to infer R and t 
from x,;. *, x, and y,; . ., y,. 30 

28 B. Derivation 

To determine R and t we set up a constrained least- 10 

squares problem. We will minimize 
ct 

I I 
0 10 26 36 48 56 60 

N E 18 26 30 40 56 66 

(b) 
n = 1  

Fig. 4. Mean translational distance error of (a) least-squares method 
and (b) robust method as function of SNR for 2-D-2-D pose estima- 
tion problem. Number of corresponding point pairs is 20. Percentage 
of outliers is: is 10 percent. + is 20 percent. + is 30 percent. X is 
40 percent. * is 50 percent. 

subject to the constraint that R is a rotation 
is, R’ = ’ - ’ .  To be 
Lagrangian multipliers we let 

that 
to express these constraints using 

r; 
Setting these partials to zero results in 

R =  i:j) N 
~ , ( y , - R ~ , - t ) = 0 .  

where each r, is a 3 x 1 vector. n -1 
The constraint R’= R-’ ,  then amounts to the six con- By rearranging we obtain straint equations 

r;rl = 1 

rir2 = 1 

rlr3 = 1 

r;r2 = 0 

r;r3 = 0 

where 

t = j - R i  

rir3 = 0. (25)  

The least-squares problem with constraints given by (25) 

Thus once R is known, t is quickly determined from 
(27). Substituting X - R j  for t in the definition of c2,  there 
results can be written as minimizing c 2  where 

N - i  

n =1 k = 1  k =1 

+2X4r;r2 +2X,r[r3 +2X6r,’r3 
where 

x n =  (1.i) y,= 
t =  [ j : ) .  (26)  

+ 2X4r{r2 + 2X,r;r3 + 2X6r,’r3 (28)  

Taking the partial derivative of c 2  with respect to I,, Now we take partial derivatives of c z  with respect to the 
components of each y,. To write things more compactly, 
by dc2/dr, we mean a 3 x 1 vector whose components are 
the partial derivative of c 2  with respect to each of the 

there results 

a c 2  N 
- = 
d t k  n = 1  components of r,,. Then 2 wn( ynk - rixn - t k ) (  - I ) ,  k = 1 ,  2,3. 
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+ 2A1r1 + 2A4r2 + 2A5r3 (29)  4o ';JB a c 2  
- = C 2wn( ynl - j l -  r ; ( x ,  - x ) ) ( x , ,  - x)( - 1 )  
"1 n - 1  

a c 2  N 
- = C 2wn(ynz - j z  - r ; (x ,  - . ) ) (xu  - x)( - 1 )  
"2 n - 1  

30 i +2A2rz+2A4rl+2X6r3 (30 )  

a r 2  N - = 
"3 n = 1  

2wn( yn3 - j 3  - r;(x,, - x ) ) ( x "  - E)( - 1)  
2 0  1 

+2A3r3+2A5r1+2A6r2. (31)  -- I 
Setting these partial derivatives to zero and rearranging we 

10 
obtain 

A =  A, A 2  A 6  [ :: :: ::) 
and 

B =  ( b 1 b 2 b 3 )  

where 
N 

bk = c w n ( y n k - ~ k ) ( x n - X x ) .  
n = l  

Then (32), (33), and (34) can be simply rewritten as 

AR' + R'A = B .  (35)  

R A R ' + A = R B .  (36 )  

Multiplying both sides of (35) on the left by R we have 

Since A =  A', (RAR' ) '=  RAR'. Since both RAR' and 
A are symmetric, the left-hand side must be symmetric, 
Hence the right-hand side is also symmetric. This means 

RB= (RB)'. (37)  

0 10 20 30 CO 5C 60 71) 

SI GN AL- TG-N 01 SE R AT I 0 ( d b ) 
(32)  

Fig. 5. Mean rotation angle error versus SNR with Gaussian noise. 
Corresponding point data set sizes are - * 10, - * 25, - x 
100, - A 200. Each point on graph represents loo0 trials. 

(33)  The solution for R now comes quickly. Let the singular 
value decomposition of B be 

B = UDV 
where U and V are orthonormal and D is diagonal. Then 

RUDV= (UDVI'R' 

(34)  = V'DU'R'.  (38) 

R = V ' U ' .  (39)  

By observation, a solution for R is immediately ob- 
tained as 

Solutions to this problem can be found in the pho- 
togrammetry literature beginning with Thompson [18],  
Schut [14],  Tienstra [20], and Pope [ l l ] .  Blais [ l ]  gives a 
solution to the problem in the case where there may be a 
scale factor or magnification different than 1. Sand [13] 
gives a solution to the problem using quaternions. Arun 
et al. [2]  and Haralick et al. [25] have discussed the 
singular value decomposition approach to the problem. 

C. Experimental Results 

Over 144,000 simulation experiments were done in which 
3-D points were chosen at random. A random rotation and 
translation are chosen and a corresponding point data set 
was created by rotating and translating the initial set of 
points and adding noise as given in (24). The rotation and 
translation was then estimated using (27) and (39). 

The number of corresponding point pairs was varied 
between 10 and 200 in nine steps. The signal-to-noise ratio, 
which is defined as 20 log (dynamic range of 3-D 
points/normalized interquartile range of noise), was varied 
between Gaussian and Uniform. For each calculation one 
thousand trials were run. 
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Fig. 5 illustrates a typical experimental result. It shows 
the mean angle error of the rotation, in degrees, as a 
function of SNR with Gaussian noise. The plot indicates 
that when the number of 3-D points is 50, then the RMS 
error of the rotation angle will be less than 3 degrees when 
the SNR is greater than 55 dB. 

Fig. 6 shows rotation angle error plotted as a function of 
number of points in the corresponding point data sets for 
varying levels of Gaussian noise. This plot clearly shows 
that when the number of corresponding point data pairs is 
below 40, the estimated values are unreliable. When the 
number of corresponding point data pairs is above 40, the 
estimates improve for increasing-sized sets. 

The plot of the translation error angle as a function of 
the number of corresponding point data pairs for varying 
SNR and Gaussian noise is similar. 

Iv. 2-D PERSPECTIVE PROJECTION-3-D 
POSE ESTIMATION 

Let y,; . a ,  y ,  be the observed 3-D model points in 
Euclidean 3-space. Let R be a rotation matrix and t be a 
translation vector. Let ( unl, un2) ,  n =1; . e ,  N be the cor- 
responding 2-D perspective projection of the 3-D points. 
Then the relationship between the 3-D model points and 
the 2-D perspective projection points is given by 

r1Yn + ' 1  
un1= f ~ 

r3Yn + ' 3  

r2Yn + '2 
~ n 2 = f p  

r3Yn + ' 3  

A .  Iterative Least-Squares Solution 

This section describes iterative procedures for determin- 
ing a least-squares solution for R and t .  In the following 
subsections we use the superscript or subscript k to denote 
the values in the kth iteration step. Let 

Xn1 

x , =  (:;;I = R [ : : ] + t  (42) 

be the rotated and translated point of y,. Let d ,  be the 
estimated depth of each point x ,  relative to the camera 
coordinate system. 

1) Method 1: One iterative procedure for determining a 
least-squares solution for R and t is the following. 

Choose initial reasonable values for the depth d: of 
each point. The initial values could, for example, be 
the same constant for each point, the constant repre- 
senting an initial guess of how far the object is from 
the perspective center. 
Iterate. Suppose the depth values d,k, n =1;. e ,  N 
are given. Define the depth values for the ( k  +l)th 
iteration by: 

where f ,  the focal length, is the distance of the image plane 
in front of the origin that is the center of perspectivity. In 
the 3-D coordinate system of the camera, the perspective 
projections are given by 

and 

Find the rotation matrix R ,  and the translation 
vector t ,  that minimizes 

N 

(43) 
n = 1  

where the { wn I n = 1,. e ,  N } are nonnegative 
weights reflecting the goodness of the observa- 
tions. R ,  and tk constitute the solution to the 
3-D-3-D pose estimation problem. 
Define 

where unl = funl and un2 = fvn2. 
The problem of pose estimation is to determine the 

unknown rotation matrix R and the translation vector t 
given the 3-D model points and the corresponding 2-D 
perspective projection points on the image plane. This 
problem is known as the exterior orientation problem 
in the photogrammetry literature. The dissertation by 
Szczepanski [17] surveys nearly 80 different solutions be- 
ginning with one given by Schrieber of Karlsruhe in the 
year 1879. The first robust solution in the computer vision 
literature was Fischler and Bolles [4]. Wrobel and Klemm 
[22] discuss the fact that there are configurations of points 

where 
1 N  1 N  x=- E x n  y=F c y ,  
N n = l  n =1 

O x =  (Ix, - 
n = l  

A typical convergence characteristic of the com- 
puted depth values is shown in Fig. 7. This experi- 
ment is performed in a noise-free environment 
with N = 1 0 .  The depth values of the first five 
points are plotted against the iteration number. 
The correct depth values are 33.27, 34.98, 38.81, 
40.39, and 42.68. 

2) Method 2: Replace the Step 2b) of Method 1 with 
for which the solution is unstable. Step 1) of Method 2. 
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1) Define d,"+' by 

It can be shown that Q e; and 
N 

':+l= WnIIRk+lYn+ ' k + l -  d,"+l % / I 2  
n = 1  
N 

w " ( ( R k y n + f k - d , " + 1 u n 1 1 2  
n = l  

N 
= c wnll( x," - d,"un) + (d,"un - d,"+' 

n = l  

N 
= w, [I[( x," - diu,) 1 1 2 +  2( x," - d,"un)' 

. (d," - d,"+l) U, + (d,k - d,"+')211 U, 11'1 

~ [ 2 ( x , " - d ~ " ) ' u n + ( d , " - d , " + l ) ~ ~ u n ~ ~ 2 ]  

. [2x,"'v, -2d,"J( U J 2 +  (d," - d,"+')ll U, 11'1 

n =1 

N 
= E ; +  w, (d ,k -d ,"+ l )  

n -1 

N 
= e; + W,(d,k - d,"+') 

n = = l  

N 
= e; + W,(d ,"  - d,"+') 

n =1 

(45) 

(46) 

Consider the terms in the bracket as a function of d,"+'. 
The function reaches a minimum when 

(47) 

The resulting value of the terms in the bracket at the 
minimum is 

3 20 40 60 80 100 120 i 4 0  160 180 200 

NUMBER OF DAT.4 POINTS 

Fig. 6. Mean rotation angle error versus number of points with Gauss- 

dB. 
ian noise. - * SNR 27 dB, - * SNR 18 dB, - )( SNR 15 

E 2 4 6 8 l a ! ?  

ITER4TION NUMBER 

Fig. 7. Illustrates convergence characteristics of Method 1. Conver- 
point 1, + point 2, + gence is achieved in about ten iterations. 

point 3. X point 4, * point 5. 

This value cannot be positive. Since wnll U,, / I 2  > 0, when 

each term in the summation is not positive and from this 
we can infer 

€;+I Q 6 ; .  (50) 
A typical convergence characteristic of the computed 

depth values is shown in Fig. 8. This experiment is per- 
formed in a noise-free environment with N = 10. The depth 
values of the first five points are plotted against the 
iteration number. Notice how the convergence is mono- 
tonic. The correct depth values are 33.27, 34.98, 38.81, 
40.39, and 42.68. 
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Ae " 1 1 1  b112 b,13 b114 b115 b116 ' 
b121 b,22 ' 1 2 3  b124 b125 b126 A+ 

At, 
. . .  

b N I I  bN12 bN13 ' N I 4  bN15 bN,6 At2 
\ ' N 2 1  bN22 bN23 bN24 ' N 2 5  b N 2 6 ,  At3 

I T E P A T I O N  N W E R  

Fig. 8. Illustrates convergence characteristics of Method 2. Conver- ' n l s  = (2)' bn16 = (2)' 
gence has been observed to be monotonic and is achieved in few 
hundred iterations. 

for i = 1,2, where the superscript 0 implies that the func- 
tion values are computed with the approximations 
(+', eo, +', t:, r : ,  t ,"). Taking Fnl = Fn2 = 0, the linearized 
equation can be expressed as the matrix system 

B. Least-Squares Adjustment by Linearization 

rotation matrix R such that 
Let h 6 ,  and be the three angles that define the 

R = R*(+)R. , (e )RZ(+)  

cos e cos + cos f3 sin + - sin e 
-cos+sin+ + sin+sinBcos+ cos+cos+ + sin+sinesin+ sin+cose 
sin+sin+ + cos+sinecos+ -sin+cos+ + cos+sinBsin+ cos+cos8 

As there always exists random errors in the measurement 
of the image coordinates, let 

u , , = u : , + v , , , ,  i=1,2,  n = l ; . . , N  ( 5 1 )  

where (u , "~ ,  U,",) are the measured image points and 
(vnl, vn2) are the corrections needed to account for the 
random error in the measured coordinates. Similarly, let 

+=+'+At$ 

e = e o  + ae 
+ = + o +  A+ 

t , = t p + A t , ,  i=1,2,3 (52) 

where +', e', +', t:, t ; ,  and t: are some approximations, 
and A+, be, A#, At,, At,, and At3 are their corresponding 
corrections. We assume that the corrections A's are small 
and the collinearity equations are linear over the small 
intervals between the true values of these parameters and 
their corresponding approximation. 

Let 

(53) 

(54) 

These equations can be linearized by Newton's first order 

or simply 
( 5 5 )  BA= F - U .  

This equation can be solved using the singular value de- 
composition method. The computed corrections A = 

(A+, he, A+, At,, At,, At3)' from one iteration are used to 
update the parameters A = (+', eo, +', t:, t:, t,")' and then 
these updated parameters are used as approximations in 
the next iteration. The whole iteration process is repeated 
until the corrections become negligibly small. 

C. Robust M-Estimation 

This section repeats some robust techniques used in 
nonlinear regression problems as mentioned in Section 11. 
In particular it can be used to solve robustly the equation 
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BA = F - U that results from the linearization of the origi- 
nal pose estimation problem. Any estimate Tk defined by a 
minimization problem of the form 

n c p ( x z - T k )  (56) 
'k r = l  

or by an implicit equation 
n 

# ( x i - T k ) = o  (57) 
r = O  

where p is an arbitrary function (called object function), 
a 

# ( - Tk = -p ( - T k )  (58) a Tk 

is called an M-estimate. This last equation can be written 
equivalently as 

n c w i ( x , - T k ) = o  (59) 
1=0  

where 

This gives a formal representation of Tk as a weighted 
mean 

n c WIXi  

(61) Tk = & 

i WI 
I =1 

with weights depending on the sample (Huber [9]). It is 
known that M-estimators minimize objective functions 
more general than the familiar sum of squared residuals 
associated with the sample mean. Among many forms of 
functions p and proposed in the literature, Huber's and 
Tukey's form is investigated in this experiment. Huber 
derived the following robust p and J,. 

if 1x1 < a ;  

p ( x )  = ( :i::0.5a2, otherwise. 

- a ,  if x < - a ;  
# ( x )  = x ,  if I x l < a ;  i a ,  if x > a .  

Tukey's J ,  function can be expressed as 

(62) { x ( 1- ( x / a )2)2 , if I x I < a ;  

0, if 1x1 > a .  
J,W = 

where a is a tuning constant, 1.5 for Huber's and 6 for 
Tukey's. 

The nonlinear regression problem can be formulated as 
follows. Let f i :  E" + E, i =1;.-, n be functions that 
map m-dimensional space into a real line. Let 8 =  
(e, ,  e,, -, 8,)' E E m  be the rn-dimensional unknown vec- 
tor to be estimated. The solution to the set of n equations 

h ( 8 )  = y I ,  i = l ; . .  , n  (63) 

that minimizes 

can be found in several different ways. To create a scale 
invariant version of the M-estimator, the robust estimate 
of scale such as the following is introduced. 

(65) 
median,l~i-h(@) I S =  

0.6745 
where 0.6745 is one half of the interquantile range of the 
Gaussian normal distribution N(0,l). Here we take the 
median of the nonzero deviations only because, with large 
m, too many residuals can equal zero (Hogg [8]). 

In robust estimation, the estimates are obtained only 
after an iterative process because the estimates do not have 
closed forms. Two such iterative methods are presented 
here that can solve the minimization problem stated previ- 
ously (Huber [9]).  

1) Modified Residual Method: In this method the residu- 
als are modified by a proper J ,  function before the least- 
squares problem is solved. The iterative procedure to de- 
termine 8 is as follows. 

1) Choose an initial approximation do. 
2) Iterate. Given the estimation d k  in step k, compute 

the solution in the (k + 1)th step as follows. 
a) Compute the modified residuals r,* for i = 1,. . ., n 

as 

r;*= J ,  ( 2 ; k ) ' *  

where 

rI = Yi - ( e k )  

Sk = median I ri p0.6745. 
r , + O  

b) Solve the least-squares problem X6 = r*, where 
X =  [ x i j ]  is the gradient matrix as 

a 
aej x . .  = - f . ( @ k )  

The solution for this equation can be found using 
the standard least-squares method. If the singular 
value decomposition of th? matrix X is X =  
UZV',  then the solution is 6 = VZ-'U'r*. 

2) Modified Weights Method: Taking the derivative of 
the objective function p with respect to B and set it to 
zero, we get 

C) Set e k + l = e k + 8 .  

In the standard weighted form 
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Fig. 9. Illustrates performance characteristics for initial approximation solution (Method 2). (a) SNR = 20 dB. Outliers in 
percentare H = 0 , + = 5 ,  + =loo, X =15, * =2O.(b)SNR=40dB. B, N = 1 0 ;  +, N = 2 0 ;  +, N=30:  X, N = 4 0 ;  *, 
N = 50. (c) Outlier = 10 percent. ., N = 10; +, N = 20; + , N = 30; x , N = 40; * , N = 50. 

where 

+( ;) 
(;) . 

w, = - 

Therefore the iterative procedure to determine 8 is as 
follows. 

1) Choose an initial approximation 8'. 
2) Iterate. Given O k  at kth step, compute Ok+'  as 

follows. 
a) Solve 

where 
PX6 = Pr 

b) If 8 is the solution in Step 2a), then set 
p + l =  ( j k  + 8, 

D. Experimental Results 

To measure the performance of the pose estimation 
algorithms, several hundred thousand controlled experi- 
ments were performed. This section describes how the 
controlled experiments are constructed and shows the re- 
sults from those experiments. The result is presented as a 
graph where the sum of errors of the three rotation angles, 
+, 8 ,  +, is plotted against various control parameters such 
as the SNR, the number of matched points, or the number 
of outliers, which will be defined later. 

1)  Data Set Generation: A set of 3-D model points, 
y, = ( y l l ,  yj2, yj3)', i =1; . -, N ,  are generated within a box 
defined by 

That is the three coordinates are independent random 
variables each of them uniformly distributed between 0 
and 10. Next three rotation angles are selected from an 

interval [20,70] and the translation vector t = (t,, t,, r , )  is 
also generated such that t ,  and t ,  are uniformly dis- 
tributed withm an interval [5,15] and t ,  is within [20,50]. 
Having these transformation parameters, the 3-D model 
points are rotated and translated in the 3-D space forming 
a set of 3-D points x , ,  i = 1,. . . , N .  At this stage indepen- 
dent identically distributed Gaussian noise N(0,  U )  is added 
to all three coordinates of the transformed points x , .  To 
test the robustness of the algorithms, some fraction of the 
3-D points, x , ,  are replaced with randomly generated 3-D 
points, z, = (zll, z,,, z,,)', i =1; . ., M .  M is the number 
of the replaced 3-D points and 

z,1= tl + VI1 

ZJ2 = t ,  + VI2  

Z i3  = x i 3  

where vil, vi,, i = 1,. . , M are independent random vari- 
ables uniformly distributed within an interval [ - 5,5]. 
These random points, zi, are called outliers in our experi- 
ments. To get the matching set of 2-D points, x j ,  i =  
1; . -, N are perspectively projected onto the image plane. 
Given the 3-D model points and the corresponding 2-D 
points on the image plane, each algorithm is applied to 
find the three rotation angles and the translation vector. 

One can notice from the above description that there are 
three parameters we can control in each experiment. They 
are the number of 3-D model points N, the standard 
deviation U of the Gaussian noise, and the number of 
outliers M. In the experimental result, we use SNR and the 
percent of outliers PO, in place of U and M respectively, 
where 

10 
SNR = 20 log - dB, (70) 

U 

M 
N 

PO = - x 100 percent. (71) 

2) Results: For each parameter setting (N, SNR, PO) 
1000 experiments are performed to get a reasonable esti- 
mate of the performance of the algorithms. For each 
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Fig. 10. Illustrates performance characteristics of least-squares adjust by linearization. Legend same as in Fig. 9. 
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Fig. 11. Illustrates performance characteristics of robust M-estimate algorithm. Legend is same as in Fig. 9 

algorithm we performed three different sets of experiments 
(E l ,  E2,  and E3), as follows. 

El: Set N = 20. Estimate the sum of three rotation 
angle error against SNR (20 dB-80 dB in 10 dB 
step) for different PO (0 percent to 20 percent in 5 
percent step). 

E2: Set SNR = 40 dB. Estimate the sum of three rota- 
tion angle error against PO (0 percent-20 percent 
in 5 percent step) for different N (10 to 50 by 
steps of 10). 
Set PO =10 percent. Estimate the sum of three 
rotation angle error against SNR (20 dB-80 dB in 
1OdB step) for different N (10 to 50 by steps of 

E3: 

10). 

Fig. 9 shows the results of El, E2, and E3  performed 
for the initial approximation algorithm using iterative 
least-squares solution ( Al), Method 2 of Section IV-A-1. 
Initial estimate for the approximate distance is set to 10 in 
all experiments. For the linearized algorithms, the initial 
estimate of the three rotation angles are selected randomly 
within 15 degrees of the true angles. The initial approxi- 
mate of the translation vector is selected randomly within 
+ l o  of the true translation vector. Figs. 10 and 11 show 
the result of the least-squares adjustment by linearization 
algorithm (A2) ,  algorithm in Section IV-A-1, and the 
robust M-estimate algorithm (A3), modified weights algo- 

rithm in Section IV-A-2, respectively. Fig. 12 compares the 
three algorithms Al,  A2, and A3 in the experiment set El.  
Figs. 13 and 14 compare the three algorithms in the 
experiment set E2  and E3 respectively. One more experi- 
ment is performed to compare the algorithms A2 and A3. 
With N = 20 and PO = 10 percent, algorithms A2 and A3  
are applied for SNR from 20 dB-40 dB in a step of 
10 dB, and the algorithm A2 is applied for N = 18, PO = 
0 percent and SNR from 20 dB to 40 dB in a step of 
10 dB. This compares the efficiency of the robust tech- 
nique against the nonrobust technique in the case where 
the nonrobust technique uses only the nonoutlier points 
given to the robust technique. Fig. 15 shows the result of 
this experiment. 

v. 2-D PERSPECTIVE-2-D PERSPECTIVE 
PROJECTION POSE ESTIMATION 

The estimation of three-dimensional motion parameters 
of a rigid body is an important problem in motion analy- 
sis. Its applications include scene analysis, motion predic- 
tion, robotic vision, and on line dynamic industrial pro- 
cessing. There has been much literature contributed to 3-D 
parameter estimation, but few of these contributions sys- 
tematically discuss the effect of noise. Thompson [19] 
developed the nonlinear equations using the form resulting 
from the correspondence of 2-D perspective projection 
points on one image with 2-D perspective projection points 
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Fig. 12. Illustrates performance characteristics of angle error as function of SNR for initial approximation method, 
nonrobust linearized least-squares adjustment, and robust M-estimate. Legend same as in Fig. 9. Outlier, SNR = 40 dB. 
.=lo: +=20; + =30; X =40; 

* =50. 

Fig. 13. Illustrates performance characteristics of angle error versus fraction of outliers for initial approximation method, 
linearized least-squares adjustment, and robust M-estimate. Refer to Fig. 12 for legend. 
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(C)  

i8 

Fig. 14. Illustrates performance characteristics of angle error versus fraction of outliers for initial approximation method, 
linearized least-squares adjustment, and robust M-estimate. Outlier is 10 percent. Refer to Fig. 12 for legend. 

on another image. He gave a solution that determines a 
rotation matrix guaranteed to orthonormal. His method 
was to linearize the nonlinear equations and iterate. Roach 
and Aggarwal [12] developed a nonlinear algorithm and 
dealt with noisy data. Their results show that accuracy can 
be improved by increasing the number of corresponding 
point pairs; but the number of corresponding point pairs 
in their experiments is too few (15 corresponding point 

pairs). The linear motion parameters estimation algorithm 
was developed by Longuet-Higgins [lo], extended by Tsai 
and Huang [21], unified by X. Zhuang, T. S. Huang, and 
R. M. Haralick [23], and simplified by X. Zhuang and R. 
M. Haralick. The linear algorithm has an advantage of 
being simple and fast over the nonlinear algorithm. Fur- 
thermore it can always find a unique solution except in 
degenerate cases. The linear algorithm works very well 
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Fig. 16. Imaging Geometry. 
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Fig. 15. Illustrates efficiency of robust technique operating on data set 
of 20 points, 18 points having Gaussian noise and 2 outliers, against 
nonrobust technique operating on data set having 18 points having 
Gaussian noise. = nonrobust (20), + = robust (20), + = nonrobust 
(18). Outlier =10 percent. 

when there is limited noise and no corresponding point 
matching errors. However the algorithm is highly sensitive 
to noise and matching errors. Experiments show that when 
combined with real world image corresponding point data 
produced by a vision systems, a disaster occurs. Increasing 
the number of corresponding point pairs can to some 
extent suppress the noise effect. The main problem in 
linear algorithm is the least-squares estimation. 

The method of least-squares is based on an evaluation of 
the magnitude of residuals and is sensitive to gross errors, 
matching errors and outliers. Unlike the least-squares esti- 
mator the robust estimator has good resistance and robust- 
ness to gross matching error and outliers. In this section 
a simplified linear algorithm presented by Zhuang [24] is 
used to get the baseline noise behavior of the linear algo- 
rithm. The principle of robust computation is presented. 
The experimental design is discussed and the results shows 
that robust algorithm has better performance and stability. 

A. Simplified Linear Algorithm 

As shown in Fig. 16, we assume that the coordinate 
system is the camera reference frame, the origin being the 
center of the lens. A rigid body is in motion in the 
half-space z < 0. Let P = (x, y ,  z)‘  represent the object 
point coordinates before motion and P’ = (x’, y ’ ,  z’)‘  
represent the same object point coordinates after motion. 
Let ( X ,  Y ) ,  ( X ’ ,  Y ’) represent the perspective coordinate 
of P and P’ onto the image plane z =l .  These give 

x = x / z  

Y =  y / z  

X‘ = x‘ /z  ‘ 
Y ‘ =  y ’ /z ’ .  

The rigid body motion equation is given as 
P ’ = R,P + To (73) 

where R ,  is an 3 x 3 rotation matrix (orthonormal); To is 
3 x 1 translation vector. 

The problem is to estimate rotation matrix R ,  and 
translation matrix To. 

1 )  The Two View Motion Equation: Choosing any 
nonzero vector T which is collinear with To and taking its 
cross-product with both sides of (73) we obtaiin 

Z’ 
- T  x ( X ’ ,  Y ’ , l ) ‘  = T X [ R,( X ,  Y , l ) ‘ ] .  (74) 

Taking inner product of both sides of (74) with ( X ’ ,  Y ’ , l )  
yields 

( X ’ , Y ’ , l ) ( T x  R o ) ( X , Y , l ) ‘ = O  (75) 
where T x R ,  = [T x rl, T X r,, T X r3], and r,, r,, r3 are 
the columns of R,. Define the motion parameter matrix E 
by 

E = T X R , .  (76) 

For any image corresponding pair [( X,  Y ) , (  X’ ,  Y ’ ) ]  the 
matrix E satisfies the following linear homogeneous equa- 
tions With respect to (wrt) nine elements of E 

( X ’ ,  Y ’ , l )  E ( X ,  Y , l ) ‘  = 0. (77) 

Relation (77) was originally shown by Thompson [19]. 
Suppose that we have N corespondences. Then E can be 
estimated from the following equation. Let 

/ x;x, x;Y, x; yx, y Y 1  Y; x, r, l \  

. . . .  . . . .  A = (  : 
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Then (77) can be transformed into the overconstraint 
linear equation for h 

Ah = 0. (78) 
Solving (78) in the least-squares sense we seek an estimator 
h that minimizes IIAh1I2. The nine component vector h is 
found to be the right eigenvector of A having smallest 
singular value. Any T X R ,  with T X To = 0 satisfies (77). 
Moreover such a colinear vector T has one degree of 
freedom when T,#O or three degrees of freedom when 
To = 0. Thus the general solution of the two-view motion 
(77) has at least one degree of freedom when To # 0 or 
three degrees of freedom when To = 0. 

When To # 0, the nine elements of E must have a rank 
8, and To = 0 the nine elements of E must have rank 6. 
Under the surface assumption (Zhuang, Haralick, and 
Huang, [23]) the number of image corresponding point 
pairs must be at least 8 when To # 0, or greater than or 
equal to 6 when T,=O. The geometry interpretation we 
use assumes that the object is stationary and the camera is 
moving. Let the origin of the camera system be 0 and 0' 
respectively before and after motion. Then the surface 
assumption holds if and only if the 3-D points correspond- 
ing to the observed image points do not lie on a quadratic 
surface passing through 0 and 0' when To # 0 or a cone 
with its apex at 0 when To = 0. 

2) Decomposing E: E has two decompositions; T X R ,  
and (- T )  X R ,  with R ,  being an orthonormal matrix of 
the first kind. In order to determine the correct decomposi- 
tion we note that E = [T X r l ,  T X r2, T X r3].  Hence its 
three columns span a 2-D space and also 11 E 11 = fi 11 T 11. 
Therefore we can get three constraints as follows: 

rank( E )  = 2 

II E II = 211 T II 
E'T = 0. (79) 

We can use the least-squares method to solve (79) for T 
and obtain the value of the T vector from the other two 
constraints. Since T is colinear with T,  T should have the 
same orientation as Tor - T. Taking a cross-product with 
both sides of (73) by ( X ' ,  Y', 1)' we obtain 

z ( ~ { ,  Y ' , ~ ) ' x  [ R ( x ,  Y J ) ~ ]  +(XI, Y I , ~ ) '  x T =  0. 

(80) 

Since z < 0, it implies that To has the same orientation as 
T or ( -  T )  if and only if (X', Y',l)'  X[R,( X ,  Y,l)'] has 
the same orientation as ( X ' ,  Y ', 1)' X T or [ - ( X I ,  Y ', 1)' 
x TI .  This implies that it has the same orientation if and 
onlv if 

5 (X , ' ,  Y,',l)' X [ Ro( X I ,  y , l ) ' ] (  X / ,  Y,',l)' X T 

where 

E = [ E , ,  E,, 41. 

B. The Robust Algorithm 

As mentioned in the previous section (78) can be solved 
by least-squares estimator. However it is sensitive to gross 
errors. In this section the robust algorithm is presented. 
The robust algorithm is an iterative reweighted least- 
squares estimation procedure where the weights are recom- 
puted each iteration and are computed as a biweight. The 
difference between the biweight estimator and the least- 
squares estimator is briefly discussed. 

I )  Biweight Estimator: Let x ,  be the ith observation and 
2 be estimated mean value of the observations. The least- 
squares method minimizes the residual error 

n 

€ * =  ( X I - $ ) ,  

p (  X I ;  a )  = ( x ,  - a )  . 

r = l  

and the object function, p ,  is expressed as follows 

(83) 
2 

To find the solution of problem we differentiate p wrt a. 
The derivative J ,  satisfies 

n n 
a )  = c ( X I  - a )  = 0. (84) 

1 - 1  1 =1 

As discussed in Hoaglin the least-squares estimator is 
linear and unbound. 

The J ,  function of the biweight estimator can be repre- 
sented as follows: 

(85) u(1 -  U,),, [U] <l ,  
otherwise, 

444 = { 
0, 

where 

U ,  = - A ( € )  
cs, 

A ( € ) :  residual error function 
s,: median value of f, (e )  
c:  tuning constant. 
Unlike the least-squares estimator, the #-function of the 

biweight estimator is bounded, When the value of tuning 
constant is small it will delete a lot of useful data. On the 
other hand, when the value is large the outliers cannot be 
removed from the images. Hence the tuning constant de- 
pends on the value of gross errors. A reasonable value 
range for tuning constant is from 4 to 12. In here we let 
c = 4. Let #(U) = w(u)u. Thus the weight function w ( u )  
can be represented by 

(86) u']', if lul=zl; 
otherwise. 

I = 1  
2) Robust Estimation of E: From the previous equation 

we can see that the biweight estimator is a weighted 
least-square estimator. With the weight matrix we rewrite 
(78) as 

(81) 
Once the correct T is determined, the true R o  could be 
uniquely determined through E = T X R ,  as follows: 

>Oar GO. 

R ,  = [ E ,  X E,, E, X E,, E, x E 2 ]  - T X E (82) WAh = 0. (87) 
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Fig. 17. Mean error between estimated rotation angles and true rota- 
tion angles versus Gaussian noise level for four corresponding point 
data set sizes of 8-110 pairs. Each point on the graph represents lo00 

SNRCDB) 

trials. - D  N=110, - 0 N=50,  - I N=20,  - X N = O .  

To find the value of h that minimizes 11 WAh / I 2  the singular 
value decomposition can be used 

WA = U c  V' (88) 

where 

0 

s 2  

0 

0' 

y,,= [ u 1 , u 2 , * - - , u , ]  

Umxm = [ U l ,  U 2 , '  * * ,  4. 
The index n is 9 and m is the number of corresponding 

point pairs. The eigenvector of V that corresponds to the 
smallest nonzero eigenvalue in C is the solution of weighted 
least squares. Here it will be denoted by u9. Multiplying 
the current solution for h by A to get the new residual. 
Gross errors are not necessarily accompanied large residu- 
als as explained in Huber [9]. Hence the residual errors 
need to be adjusted according to the following 

' i  fib) = m. (89) 

where hii is the diagonal element of the projection ma- 
trix H 

H =  (wA)((wA)~(wA))-'(wA)'. (90) 

We can simplify this equation by substituting VCV' for 
WA. After some linear algebra manipulation (90) becomes 

H = UJJ; (91) 

where Uamx9 = [ul, u2, .  - e ,  U,]. 

Fig. 18. Mean angle error between calculated translation vector and 
true translation vector versus Gaussian noise level for four correspond- 
ing point data set sizes of 8-110 pairs. Each point on graph represents 
lo00 trials. Legend same as in Fig. 17. 

TABLE I 
SNR (dB) FOR MEAN ABSOLUTE ERROR IN 1 DEGREE 

Rotation Angles Translation Vector 

No.ofpointpairs 8 20 50 110 8 20 50 110 
Gaussian 75 57 52 50 105 78 73 68 
Uniform 74 56 52 49 106 78 72 68 

It is trivial then to obtain 
9 

h i i =  u : ~ .  

Once hii are obtained, then they can be substituted into 
(89) to get the new residual error function and to update 
the weight matrix. The initial weight matrix is identity 
matrix. The iterations continue until some criteria are 
satisfied. In our experiments when the error c2  is less than 
0 . 0 0 1 ~ ~  of first iteration or the iteration number is larger 
than 25, then the iteration process stops. Usually it will 
converge after a few iterations. The value of u9 at the last 
iteration is the robust fitting solution. 

k =1 

C. Simulation Result and Discussion 

In this section we discuss the experimental results of a 
large number of controlled experiments using the linear 
algorithm and the robust algorithm under a varying amount 
of noise, gross errors and corresponding point pairs. As 
shown in Fig. 16, the image frame is located at z = 1. By 
mapping 3-D spatial coordinates into image frame, and 
then adding noise to the points before and after motion, 
we obtain 

(92) 
Signal is related to object image size, and noise may come 
from camera error, digitization, or corresponding point 
extraction error. Define SNR = 20log(signal/a) dB, where 
U is the standard deviation. In the simulation experiments, 
the 3-D spatial coordinates before motion (x, y ,  z), true 
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Fig. 19. Compares $,+,e angle error and translation angle error between linear algorithm and robust algorithm for 

different percent of outliers. Noise is uniform with 100 dB SNR. The number of points is 50. Each point on the graph 
represents lo00 trials. (a) Rotation angle $ error mean. (b) Rotation angle J, error mean. (c) Rotation angle 0 error mean. 
(d) Translation vector error mean. is linear algorithm, + is robust algorithm. 
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(C)  (d) 

Fig. 20. Compares +,+,e angle error and translation angle error between linear algorithm and robust algorithm for 
different number of points. Noise is uniform with 100 dB SNR. The percent of outliers is 10 percent. Each point on the 
graph represents lo00 trials. See Fig. 19 for legend. 
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Fig. 21. Compares +,+,e angle error and translation angle error between linear algorithm and robust algorithm for 

different number of points. Noise is uniform with 100 dB SNR and is added six points of mismatch. Each point on the 
graph represents loo0 trials. (a) Rotation angle + error mean. (b) Rotation angle + error mean. (c) Rotation angle 0 error 
mean. (d) Translation vector error mean. 

matrix R,, and true translation vector To are generated by 
a random number generator. The 3-D data are generated 
within the ( - 2, - 2, - 2) to (2,2,2) cube. The rotation 
angles +,e,  J /  are generated within the range of [ - 15,151 
degree and translation vectors are chosen within the range 
(-0.5, -0.5,-0.5) to (0.5,0.5,0.5) cube. Then the 3-D 
spatial coordinates after motion (x’, y’, z’) can be calcu- 
lated in the natural way. Projecting the 3-D spatial coordi- 
nates into the image frame we get perspective coordinates. 
Noisy image data is obtained by adding Gaussian noise 
with zero mean to the image coordinates. Outliers are 
generated by randomly moving some corresponding points 
position in image frame after motion. The number of 
outliers are chosen as a percent of corresponding point 
pairs. Following the linear algorithm or the robust algo- 
rithm as described above we can get the calculated rotation 
matrix and translation vector. From the calculated rotation 
matrix the calculated +, 8, J /  are obtained. We compare the 
difference between the calculated +,e,# and the true 
+, 8, J /  in terms of mean absolute error. For each experi- 
mental condition a thousand trials are done. Mismatching 
noise is simulated by randomly swapping one component 
from a pair of corresponding points. The percent of mis- 
match is the ratio of mismatching points to number of 
corresponding points. 

The number of corresponding point pairs varies from 
the 8-point pairs to 110-point pairs in four steps. When 
noise-free, the linear algorithm has excellent performance 

with zero error for all cases. Figs. 17 and 18 show the 
translation error and rotation degree error, which can 
define an average of mean absolute error of three Euler 
angles, versus the SNR for different numbers of corre- 
sponding point pairs for Gaussian noise. It shows that the 
error increases as the noise level increases. Furthermore 
depending on the number of corresponding point pairs, the 
error increases very rapidly when the SNR gets below a 
knee value. Table I shows the minimum SNR to guarantee 
a less than 1 degree error as a function of numbers of 
corresponding point pairs and kind of noise distribution. 

The robust experiments show that the robust estimators 
can protect from outliers almost up to a fraction of 50 
percent. The linear algorithm breaks down when only a 
small percent of outliers is present. Similar results occur in 
the mismatch experiments. Figs. 19(a)-(d) show the effect 
of outliers to both the linear and robust algorithm. The 
error of the linear algorithm almost increases linearly, but 
the robust algorithm shows much better performance and 
stability. The error of J /  is approximately twice less than 
the error for 8 and +. The azimuth and tilt angle are more 
vulnerable to noise than swing angle. In Figs. 20(a)-(d) we 
fix the percent of outliers and increase the number of 
corresponding points. Because the outlier percentage is 
constant, the mean error is approximately constant as the 
number of corresponding points increase. The mismatch 
error results are shown in Figs. 21(a)-(d). They show 
results similar to the outlier results. 
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D. Summary of Robust Algorithm 
Step 0) Use the identity matrix for initial weight matrix. 
Step 1) Use singular value decomposition to solve (87). 
Step 2) Update the weight matrix by (86). 

Repeat Steps 1) and 2) until the criteria is 
satisfied. 

Step 3) Determine the translation vector from (79) and 

Step 4) Obtain true R,]  from (82). 
(81). 

VI. CONCLUSION 

We have presented solutions to four pose estimation 
problems and have characterized the performance of these 
algorithms in simulation experiments with the noise model 
being additive Gaussian noise, uniform noise, outliers 
noise, or mismatch noise. We have observed in these 
experiments a knee phenomenon. When the signal to noise 
ratio gets to be below a knee, the RMS error skyrockets. 
When the number of corresponding point pairs gets to be 
below a knee value, the RMS error also skyrockets. The 
iterative weighted least-squares technique is proved robust 
to the blunder data. 
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