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Pattern Recogniti(jn With Measurement Space and
Spatial Clustering for Multiple Images

R. M. HARALICK, STUDENT MEMBER,

Abstract—Remote sensor imaging technology makes it possible
to obtain multiple images of extensive land areas simultanegusly from
the radar, infrared, and visibie portions of the electromagnetic
spectrum. It would be useful to automatically obtain from such data
land-use maps indicating thse areas of similar types of land, that is,
similar as seen through the sensor's eyes.

This classification problem is approached from the perspective of
the structure inherent in the data. The classification categories or
clusters so constructed are the natural homogeneous groupings
within the data. Thera is high similarity within each cluster and high
dissimilarity between clusters.

Two clustering procedures are presented: the first partitions the
image sequence and the second partitions the measurement space. In
both, the partition is constructed by finding appropriate canter sets
and then chaining to them all similar enough points. The resulting
clusters are simply connected and not necessarily convex.

An example of the measurement space clustering procedure is
presented for a set of three multispectral images taken over Phoenix,
Ariz.

1. INTRODUCTION

HE pattern recognition problem can be considered as

the problem of constructing a classification decision

rule and then employing this rule in order to identify
a set of measurement N-tuples. In the remote sensing situa-
tion, the ith component of each N-tuple can be the measure-
ment made by the ith sensor. For example, in aerial photog-
raphy a camera with a red filter, a camera with a blue filter,
and a camera with a green filter would produce three dif-
ferent components of a measurement N-tuple. Various
frequency and polarization combinations can contribute
components in a measurement N-tuple for radar imagery.

The set of all possible measurement N-tuples which can
be produced from a given set of sensors 15 usually defined as
measurement space. Suppose we denote the N sensors by
Xy, X3, 0+, Xy and the range set for the ith sensor by
L.i=1,2, , N. Thus sensor X; produces a measurement
which can be any onc of the valuesin L,

Formully, measurcmrent space ¢ 1s delined as the Car-
tesian product of the sage sols: 0 Ly x Ly x o Ny,
To facilitate our introductory discussion, we witl tentatively
use this delinition of measurement space.

The classification phase of the pattern recognition prob-
lem consists of constructing a decision rufe which delines a
partition over measurement space, such that each cell of the
partition has belonging o it measurements which are simlar
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to each other. In order to do this, we must have a measure
of similarity between any two elements in measurement
space. :

Simrilarity is sometimes defined in terms -of a prioti
knowledge. The investigator chooses a set of categories,
and he calls similar all those measurements taken of objects
in the same category. The problem here is to compromise
on the inconsistencies with an appropriate decision rule;
such a rule is a Bayes rule {1], [2]. Sometimes similarity is
defined in terms of a posteriori knowlédge. Two measure-
ments are similar if the data structure indicates that they
are similar. -In this case the problem is to define a clustering
or clumping procedure which links together all those ele-
ments which are similar; such a procedure is the multiple
linkage clustering method employed in numerical tax-
onomy [3], [4]. '

In this paper we define similarity on the basis of the struc-
ture of the data themselves. We wish to find the natural
groupings or clusters within the data. These natural group-
ings are sometimes called similarity sets and are charac-
terized by being disjoint subsets of measurement space in
which there is high similarity for elementsin the same subset
and high dissimilarity for elements in different subsets.
Since the similarity sets are disjoint and cover measurement
space, the collection of similarity sets is a partition over
measurement space, each similarity set being a cell of the
partition.

Various clustering methods have been developed for con-
structing such partitions. QOne strategy analogous to the
muitiple linkage clustering method employed in numerical
taxonomy is as follows: define similarity as being inversely
proportional to Euclidean distance and evaluate the simi-
larity between each pair of elements in measurement space.
Then in a step-by-step fashion successively link or chain the
most similar elements together, However, i mcasurement
space is large, then the time needed o evaluate the simi-
larity for all pairs ol clements in measurement space be-
cOmMEes CXCCSSiVC,

A second strategy is an eigenvector technique [5], [6].
Clusters are construcled by determiming the dominant
cigenvector of the covariance matrix, then projecting the
data onto the space spannecd by this eigenvector, and split-
ting them when the projecled data have a multimodal dis-
tribution. Covariance matrices are found for each of the
subsets in the split data and the procedure is repeated until
all data subsets have unimodal distributions. The tech-
nique is easy Lo implement, but if the interdispersion of the
actual clusters is too large compared 1o the intradispersion,
then it fails.
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The 1ISODATA methoed iteratively improves the center
position of the clusters on the basis of a squared distance
criterion [7]. [8]. During every iteration, each point is put
into the cluster for which the squared distance between it
and the cluster center point is least. Then the center point
is updated. Although the ISODATA method is much faster
than the multiple linkage clustering method, ISODATA is
not fast enough for the large amount of points obtained
from image data in the remote sensing situation.

Sebestyen has proposed a technique somewhat similar to
the ISODATA method [9], [10]. However, the Sebestyen
technique is more oriented towards developing a nice repre-
sentation of the probability density function rather than
getting at the cluster structure of the data.

A more extensive survey of clustering techniques may be
found in Ball [11] and Friedman and Rubin [12].

The clustering method suggested in this paper is faster
than the ISODATA method and is less sensitive to the ratio
of cluster interdispersion to cluster intradispersion. It
achieves its speed by building one cluster at a time, thus
eliminating much of the computation connected with find-
ing the squared distance or similarity of a point with each of

the clusters. It is less sensitive 1o the ratio of interdispersion

to intradispersion because examination of the data is made
in the full dimensionality of measurement space and not in
some one-dimensional subspace. Finally, because cluster-
ing is done on the basis of chaining, the method works as
easily for long stringy serpentine clusters as {or spherical

clusters. The clusters formed are simply connected and not .

necessunly convex.

I1. IMAGE DaTA

Now let us examine in detail the cluster problem for
multiple-image data. Consider first a single image with
finite resolution. At first we might conceive of measurement
space as the set of all possibly observed 3-tuples (2 3-tuple is
an ordered triplet); the first two components are integers
specifying the spatiat coordinates of the resolution cell and
the third component specifies a particular grey density
whiich belongs 1o the range set of all densities between black
and white. However, for any given pair of spatial coordi-
nates there is one and only one measurement in the data set;
this is so from any imagery since each resolution cell can
have only one grey density. Therefore, we may describe a
single image as i two-dimensional seguence of resolution
cells, each resolation celt containing i unilorm density from
the range set as shown in Fig. 1. In this case, it is more usclul
o conceive ol measuraient space as ithe density range scl
instead of the set of all possibly observed 3-tuples.

Now suppose there are N sensors, each imaging the same
environment. The sensors can be cameras, infrared scan-
ners, or radar imagers. To make matters simple we bypass
geometric image distortion and congruencing problems
and suppose that the images from each sensor are in plani-
metric correspondence. Let L; be the range set for image /.
L; is the set of all possible densities which could appear on

image i. We may set up the isomorphic correspondence of

the lightest density of all the images with the number 0 and
the darkest density of all the images with the number | and

- Fig. 2.
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Fig. 1. Single image. Resolution cell (i, /} contains a number which
represents the particular grey density which fiils the resolution cell.
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—
call {l,]}
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Mulli_ple__ixﬂage. R_esolu(ion cell (7, /) contains the L-tuple density
gip giy={a%. g%, - - -, gf), where gi/ is the density in the (i, ) resolution
cell of the kth image.

all the various intermediate grey densities with the ap-
propriate number between 0 and 1. Thus each range set can
be considered as a set of numbers instead of a set of densities.
Then each range set is contained in the interval [0, 1].

A multiple image, like a single image, is a two-dimensional
sequence where each element in the multiple-image se-
quence is a N-tuple which is some member of measurement
space G, In this cuse, as mentioned previously, measure-
ment space G is the Carlesian product of the runge sets:
G—L, X Lyx -+ x Ly. Il we suppose that the multiple
rectangular with N, resolution cells horizontally
and M, resolution cells vertically, then we may represent
the multlple 1m.1,ge I as the sequencc I= (gU|IEZx, jeZ
where Z,={1,2,- " N}, Z,={1,2,- M.}, and g;€G for
every i and j, that is, each g, is an N-tuple whose kth com-
ponent is some number representing the power received by
the kth sensor {we assume power and density to be propor-
tional) when that sensor was looking at the (i, j) resolution
cell (see Fig. 2).

Clustering procedurcs, as we previously mentioned,
usually partition measurcment space. In the case of image
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data there arc two candidates which might be partitioned.
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{b) Classified image using a best partition of G.
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(c) Classificd image using a best partition of Z.xZ,
Fig. 3.

One candidate is the set & which we have called measure-
ment space, and the other is the set Z,xZ,, the set of
spatial coordinates. However, a partition of Z, x Z readily
leads to a more natural interpretation of image data as
illustrated in Fig. 3(a). Here we have a single image, Z,=Z,
={1,2,3,4,5}and G={gl0<g<1}.
Intuitively, a good partition of G based on measurement
space closeness with three cells is {H={I},_3, H =
4l0<g <025}, 1, ={yl025<y <05}, H,={g[05<g< 1},

This partition creates the partition A of Z,x 7 with three

cells, A= {4}, .7 Isce Fig. 3(b)|:

Ay, = {(5,1),(5,344,1),(4,2),(4,3),(3,1),(3,2),3,3)}

Ay =1{52.2,1.(2,2,(2 3,(2,4,(2,5).(1,1),(1,2),(1,3),
(1,4),(1,5)}

Ay = {(5,4),(5,5),4,4),(4,5),(3,4),(3, 9)}.

A, is the set of all spatial coordinates which have measure-

ment space coordinates less than 0.25. A, ts the set of all

spatial coordinates which have measurement space co-
ordinates between 0.25 and 0.5. 45 is the set of all spatial

.~
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coordinates which have measurement space coordinates
greater than 0.5,

A pood partition ol Z,x Z, based on spatial closeness
probably is B={B},_1 [sce Fig. 3c}]:

By = {(5,1).{5,2),(5,3), (4. 1).(4,2),{4,3),43, 1), (3,

B, ={(2,1),(2,2),(2,3),(2,4),(1,5,(1, 1),(1, ), (1,
1, 5}

By = {{5,4), (5,5, (4,4),(4,5),3,4), 3, 5)}.

2),(3,3))
3,(1,4),

This partition of Z, x Z_ does not create a partition of G
since the resolution cel (5, 2) in B, has the density 0.25 and
the cell (1, 3) in B, also has the density 0.25; hence it cannot

~ be uniquely determined whether 0.25 would go into the cell

of a partition of G associated with B, or the cell of a par-
tition of & associated with B,. We should also note that
the resolution cell {3, 2), containing the density 0.25, on the
basis of spatial proximity as well as density most likely
belongs with group 1, not group 2. It is because of this type
of phenomenon that a good partition of Z, x Z, leads to a
more natural interpretation than a good partition of G. In
this paper we suggest two clustering procedures: 1) spatial

" clustering, and 2) measurement space clustering, The first

method partitions Z, x Z, and the second partitions G.

IHI. SpaTiaL CLUSTERING

Our goal is to describe a clustering procedure which
partitions the two-dimensional image sequence I, ie., par-
titions the domain of 1, Z_ x Z,. For a given K, where K is
the number of clusters, we must find a pamtion H={H},_%
such that

X
vH=24,x2,

i=1

and H;nH; = for [#}j

From this partition H the classified image C can immedi-
ately be constructed. Let Z,={1, 2,---, K}. The classified
image C is that sequence -<C,-J-|fEZx, JEZ,»> where each
c;£Zx and H,,  is the cell of the partition H to which the
)] resolutlon cell belongs, The first step in achieving our
goal must be to understand the basis of clustering,

The basis of a clustering procedure s the grouping to-
gether of similar items, but what constitutes similarity and
why? To answer this question pragmatically we put forth
the following model for images of extensive land areas on
planctary surfaces: '

1) things which are very close together are probably the
same of similar type of thing

2) a sensor which is sensing the same or similar type of
object will record the same or similar numerical

measurement.

Under this model spatial closeness as measured by Euclid-
ean distance is a good measure of similarity, and we use it as
part of the foundation of our clustering method.

To sce the rest of the foundation we must examine further
the kind of struclure we can expect to find in image data.
First, relative to all else, the number of resolution cells per
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image s very high, This consideration implies that it is-out
of the question to cluster by comparing the spatial distance
and measurement space distance from each resolution ceil
to every other resolution cell and one by one grouping
together those cells closest together. There are too many

compurisons. The number of comparisons can be cut down

if center scts can be determined. We can cluster by grouping
together all those points which are similar enough to the
first center set and adding them to the center 'set. We con-
tinue to cluster by grouping together ail those points which
are similar enough to the now enlarged center set. This pro-
cedure can continue until there are no more points similar
enough to the first center set. Then we can cluster around
the second center set, ctc. At this stage all is well; but how do
we find the center set? To answer this question we continue
our description of the density and spatial distribution struc-
ture we can expect to find in image data.

Grossly simplifying, an image may or may not have some
sort of homogeneous backgroumn(s), and scattered in the
background(s) (if any) are various categories of land use or
objects. The scattered objects may or may not have a geo-
metric pattern. Each type of object occupies an approxi-
mately connected spatial region on the image. The measure-
ment recorded for each point or each resolution cell of each
object is not too dissimilar from the measurement recorded
at any other point or resolution cell of that same object. In
other words, the set of measurements recorded from each
‘object is a fairly homogeneous set. There can be any spatial
distribution of objects; one object may only occur once and
others hundreds of times or each object may occur.ap-
proximately the same number of times.

It would be intuitively rcasonable to form center sets
from those spatial localions which have fairly homogeneous
measurement space coordinates and which are representa-
tive measurements of a class of objects. However, since the
location and extent of objects are unknown to the clustering
procedure, it must try to induce this information from the
data structure. Since we assume that the set of measure-
ments recorded from any object form a homogeneous set,
and the Jocation of these measurements in the image se-
quence is in a small and more or less spatially connected
region, then perhaps by breaking up the image sequence into
a set of spatially connected subsequences and examining
the measurements in ¢ach subsequence we can obtain the
necessary information. Thus we make cach spatially con-
necled subscquence 1) Targe enough to include within it a
substantial proportion ol the measurements recorded {rom

at feast one object, and 2) small enough so that a substantial -

proportion of the measurements recorded from the object
make up a large proportion of the measurcments in the
subsequence. If we can form subsequences in this way, then
the empirically observed probability distribution of the
measurements in each sequence will be dominated by the
substantial proportion of measurements in the sequence
recorded from some particutar type of object. Thus, if a
particular object occurs only once, then there will be one
subsequence dominated by it. By picking out the kind of
measurements which typify that subscquence (i.e., those

9
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which have high probability in the subsequence), then the
set of all the spatial locations containing these measure-
ments is a pood center set. ‘

Sinee the clustering procedure we have proposed starts
with center sct one, builds on it until not more similar
mecasurements can be found, and then starts building on
center set two, etc., we must specify how the order is de-
termined for center sets. We should naturally start with the
most important center set and here importance can be corre-
lated with probability. That center set is most important
which has the highest probability of all center sets in the
subsequence from which it originates.

We now summarize our description. I ={g,|ieZ,, jeZ,>
is the image sequence where Z,={l, 2,---, N.},
Z,={1,2,--,M}; Z,x Z, is the domain of the sequence
and each g;; belongs to G, the measurement space. f can be
represented as a function from the domain Z,x Z, into G;
1:Z xZ —~G. Let §=15,}.-% be a set of spatially con-
nected subsequences of I. By a spatially connected sub-
sequence S, we mean that for every g, €S, there exists at
least one g,,€S, such that the spatial distance between g;;
and g, equals 1,i.e,

0Gis o) = S —RP T G —mP = 1

and there exists no subsequence §, of §, which has all of its
members more than distance 1 away from §,°, its comple-
ment subsequence in S,. S;° is the subsequence of §, which
contains all the elements of §, except for those in S,

We define the empirically observed probability Pi(g) on
S, as the proportion of clements in §; which have measure-
ment space coordinates g. Let # be the counting measure.
on Z, x Z, so that, for cxample, #5,) is the number of ele-
ments in the subsequence S;. The sequence [ is a function
from Z_x Z, into G; for cach (i, ) Z, x Z, there exists one
and only one g,;€G defined by I(i, ), i.e.,g;;=I{i, j} Since [ is
a function, for any geG, I~ '(g) is the inverse image of g;
17 Yg) is the set {(k, m)} of all spatial coordinates in Z, x Z,
such that I{k, m)=g. #(8;~I"g)) is then the number of
elements in the subsequence §; which have measurement
space coordinates g. P; is simply defined as '

S L7 g))
Plg) = —————foreverygeG.
s Yo
From thc collection of probability functions

EP{lge Gl we must construct the center sets as well as
define their importance. Let W be a function from G into
(0, 1), W:G—(0, 1), defincd by

W(g)=maxP1{g) j=l:23.“sQ

4
and let the sequence B={g;|g&G> be constructed such that
W(g.,)= W(g;) whencver i<j. The collection of center sets
is {I"Yg)};=9 where I7'(g;) is more important than
I~ Ygpifi<j.

There are two parameters which govern how the cluster-
ing proceeds. They are K, the maximum number of clusters
(i.e., similarity sets or cells in the partition) wanted, and ¢, a
probability cutoff parameter.
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We must now describe how the center ser is uscd to form
the similarity set. Our description proceeds inductively.
For convenience, let Hy=@. Suppose we have defined
H,. We now define A, | where »is less than K,

" Let

f"+l—n]lll{]|JJEG—1(ﬂ H)} Jj=L-, 0
i=0

t,+1 is the smallest index of those g;'s in the sequence B
which have not already been included in

gr.., 18 the most important not-yet-used measurement in
the set G. Let , be the set of spatial coordinates (i, j) for
which /¢, /)=g;;=g,,,,; that is, it is the set of spatial co-
ordinates on the image which have g, | for their measure-
ment space coordinates; V,=1"'(g, ). We construct the
stmilarity set H,, ; around its center set V.

First we need the following definitions. Let d be the
Euclidean distance metricon Z, x Z :

d((i, j), (k,m)) = J(i — k)* + (G — m)~.
Let p be the Euclidean distance meiric on G. For any subset
Aof Z, x Z . we define the distance between A and the ele-
ment(i,j}in Z, x Z as
dist; (/) 4) = min d((i, j), (n, m).

{n,m)ed

Similarly, for any subsct D of G we define the distance be-
tween D and the element g in G as

dist, (g, D) = min plg, g'}.
g'eld

At the first stage we start with ¥ as the center setof H,, 4
Then we build on ¥, successively forming Vi, Vs, -+, ¥, "~
until there is nothing more which can be added to the cur-
rent set. We describe how the F’s are constructed induc-
tively. Suppose we have defined ¥, ; we now define Vigs1-
Let -

U = {(i,j)ezx x Z,— N HJ0 < dist, (i, /), V) < 1
k=10

and 0 < disty (J ) IV ) < I}-

U is the set of all spatial [ocations (not alrcady included in
other similarity scts or in the present set V,,) which are
spatiallycloserto the set V, than {and whose corresponding
measurement space coordinates are closer in measurcment
space G to thecluster 1(V, ) than 1. If U # &, then the chain-
ing procedure is terminated and H,,, =V, . If not, then
let {(i./)} be the set of all spaual coordinates in U, {{i, )} = U,
such that

1} Plg,) = ¢h
2) Plg;) < E/"J
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where
iy = i, j), h= min Plgm)
(k,m)eV;,n
and
hh = max Pig,) -
tmeb s,

If 4, j)} is empty, H, .=V, If {{i, /}} is not empty, deﬁne'_' '
I/;CDJr L= V,m (i, )} After constructmg the disjoint subsets
H,i=1,- K we are not sure that :

U Hi=Z xZ,

i=t
Therefore we initiate a nearest-neighbor spatial search: For
every pair of spatial coordinates (7, j) in

K
Z.xZ,—- U H,
ciw ]l

we assign an index as follows, Let § be the smallest number
such that

K
A= {(n, mfn,m)e U H,d((i,j), (n, m)) < 5}
i=1 .

is-nonempty. A is the set of all spatial coordinates which
already have been classified and which are a distance less
than & away from (i, j). Let r be the smallest index which
maximizes #AnH,); we assign the index r to (z J). After
every pair of spatial coordinates in

M

Z.xZ,~ U H,

i=1
has been assigned an index r, they are put into the corre-
sponding subset H,. The union of the H,’s now covers
Z,xZyand {H;};_% is a partition of Z x Z .

IV, MEASUREMENT SPACE CLUSTERING

Our goal is to describe a clustering procedure which par-
titions measurement space G. We proceed in a manner
similar to the discussion in Section III. We wish to start with
center sets which are ordered. We build on the first center
set until no more measurements in & are similar enough to
it and then start with a second center set, etc. The difference
between the measurment space clustering and the spatial
clustering is that in the former, center sets are subsets of
Zx Z, whereas in the Tntter, center sets are subsets of G.

Let £ be the cmpirically observed probability distribu-
tionon G. P is defined by

#™ g
HI=NG)

for every ¢ in G, where [, I'Z % Z,—G, is the image se-
quence. The possible center sets will be singleton sets
{g} for.g in G. Perhaps one simple way to order the single
sets is by their empirically observed probabilities: the set
with the highest probability first and the set with the lowest
probability last. However, with such an ordering, some
center sets would rank too low—specifically those in small

Ply) =
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isoluted pockers having refmively high probability com-
pared to their surrounding neighberhoods, but low proba-
bility globally. Center sets of relatively high probability
tocally and low probubility globally should rank just below
center sets of relutively high probability locally and high

probability globally. Therefore, the ordering for the elements.

in measurement space G, obtained from the empirically
observed probability function P, must clearly be based on
more globul properties than the probability of {g}.

We propose that the ordering be based on the association
of the cylinder sets which characterize the singleton sets
{g} for g in G. Suppose the range sets L; are quantized so
that Ly={l;;, {5, -, liy,} i=1, 2,---, N. The cylinder set
E;; is defined by : :

Ej=1{g = (xy x5 xullxs = I}

{== 1)-..!N;j.= 1-9'-'yN'

For every geG, g=(x,, x,,- ", Xy), let 8(g) be the character-
istic function of g; 8(g)=(5,{g), d(g), -, dx(g)), where
d:g)=j if and only if x;=1;;. It can easily be shown that for
any geG,

N -
{g} = n Lis.iqr

Since each singleton subset {g} is equivalent to an ap-
propriate intersection of cylinder sets, and the cylinder sets
do reflect more global properties than {g}, it is nawral to
base the ordering on the association between the ap-
propriate cylinder sets.

We use the cocfficient V as a4 measure of association [13].
For any two subsets A und 8 of G, V is defined as follows:

P(A ~ B)P(A° 1 B) — P(4° A B)P(A n BY)
[PLAP(AYP(B)P(B)]' 2

Vi, B) =

where A° s the complement of A. It is quickly verificd that
¥ has the following propertics:

1) Vid, A)=1
2) V(A, By=V(B, A)

3) V(A, B)=0if and only if P{AB)= P(4)P(B)
4) V(A, B)= ~V(A, B).

Let f be the function which establishes the rank of each
g in the ordering: :

[ = max i =

N
Ly=- N V(Er'.h[rm _ﬂl EJ'J.r(m)'
i=

J#FI

The sequence B={y;|y,eG> is constructed such that f{g;)
= flg;) whenever i <j.

As in Section 1L, two parameters govern how the cluster-
ing proceeds: K, the maximum number of clusters (ie.,
similarity sets or cells in the partition) wanted, and ¢, 2
probability cutoff parameter.

We now may describe the clustering procedure induc-
tively. For convenience, we let the first ceil or cluster H, be
the empty set ¢b. Suppose we have defined cell H,. We define
"H,,, for nless than K.

05y

Fig. 4.

Geometric iflustration of how distance is used
‘ in the clusiering procedure.

Letr
ooy = min{j|gjeG - U Hi}-
i ) i=0 '

Thus t, ( is the smailest index of those g;'s in the sequence B
which have not already been included in

U H,-,
i=0

‘and {g, _} is the most important unused center set con-

tained in G. We construct the cluster H,, ; around its center
set Vo=1{g,, ,,}. We build on ¥, successively, forming ¥,
¥y, -, Vip ", until there is nothing more which can be
added 1o the current set. We describe how the Vs are
constructed inductively. Suppose ¥, has been defined. We
assume that there is a metric p on G; p:Gx G—»[O, oo].
Therefore, g [14] has the following properties:

1) for cvery g, 9.2G, ply,, 92)=0 with equality if and
onlyifg, =g,

2) for every gy, 426G, plg . g2)=plg 91)

3) for every gy, g2, 436G, plg 1, 42)<p(91, 92)+ 292, ¢3)-

In this paper we take g to be the standard Euclidean dis-
tance measure and assume that each of the values in the

range sets are integers. Let

S = {g,eG — U HJo < distig, V) < 1}
i=0

where

dist {g, V.,)) = min plg, ¢).

a6V,

S5 is the set of all the elements in G which are not already
included in other clusters

or the present set b, and which are a distance less than 1
away from V_, as illustrated in Fig. 4. If §=¢, then cluster-
ing procedure is terminated for the (n+ 1)th similarity set,
and we define H,, ; =V, . Il we find a geS which is similar
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Fig. 5. Geometric illustration of how probabitity is used in the clustering
procedure for a ene-dimensional measurement space.

Fig. 6. Lmage taken over Phoenix, Ariz.. with a bandwidth of
’ 400 to 500 millimicrons.
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Fig. 7. Image taken over Phoenix, Ariz., with a bandwidth of Fig. 8. Image taken over Phoenix, Ariz., with a bundwidth of
520 to 550 millim_icrons. 810 1o 900 millimicrons,
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(e} Category 5 identified. It is largely the bottom part of the turnpike.
Notice the house which is seen as similar to it. The roofing matetrial on this
house must have reflectance properties similar to this section of the

turnpike.
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{g) Category 7 identificd. Due to the crudencss of the quantizition,
" the grossness of the resolution, and inaccuracies of perhaps one resolution
cell in congruencing the images, not all the houses (which are only three or
four resolution cells) were seen as similar. However, Category 7 represents
a substantial portion of the houses.
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Fig. 12 (cont'd).

tin}

() Category & ideatified. The uppermost left field is seen as similar to
‘the right part of the triangular wedge-shaped field of dirt overgrown with
weeds at the bottom. Perhaps this part of the wedge-shaped field was
wetler or drier than the rest of it.

(h) Category 8 identified. It consists largely of the upper portion of
turnpike complex. It is interesting to note that there are probabiy three
different types of road materials used in the turnpike construction.
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enough Lo ¥, then we add that g into V. “Similar enough™
is determined by the following four conditions:

1) P(g) = Plg") Tor' every g'eS
2) Pg)=ePly,,. )
3) Plgy=¢ min P(y’)
9’V
0 .
- max P(g").

E .-
g'ele,

4 Plg)=

If there exists a geS§ satisfying these conditions, then we set
Vior 1= Vi, W 1ig}: if no such g exists, then the clustering
procedure is terminated and we set H,, ;= V. :

It is useful to discuss the interpretation of these condi-
tions. Condition 1) means that of the not-yei-clustered
elements within a distance 1 from V,, we wish to consider
only those of highest probability. Condition 2) means that
we wish to consider only those elements whose probablhty
1s pot too much smaller than the center element g, | in

H,. . This guarantees that there will not be too wide a

variance for the elements in H,, ,, and it prevents us from
considering background noise. Conditions 3) and 4) restrict
our attention to only those ¢lemenis which have proba-
bilities not too different from those already considered in
the cluster. Extreme differences usually indicate an outer
boundary for the cell H,,, ;. Fig. 5 illustrates these condltlons
geometrically for the case when ( is one-dimensional.

Clearly the subsets H,, i=1, - -, K, when constructed, are
disjoint subsets ol G, but it is not certain. whether

K
U H =0
i=1
To make sure the IH}-
nedrest-neighbor search procedure
For each

K
geG — U H;

i=1
we assign an index as follows: let r be such that

dist {g, H,) = dist (g, U H)

i=1

where we choose the smaller r if r is not unique. After all
the points in

X
- U n
i=1
have been assigned an index, they are included in the cor-

responding subset H,. We now have {H;};_%, a pdrlmon of
G with K cells. '

V. APPLICATION TO MULTISPECTRAL IMAGERY

Figs. 6, 7, and 8 illustrate three images taken on 70-mm
film from a nine-lens muitispectral camera. The images are
over a suburb of Phoenix, Ariz. Each image recorded the

is a partition of G we perform a

PROCUELDINGS OF THE IEEE. APRIL %04

cncrgy in a specific bandwidrth. These were 400 to 500
millimicrons, 52t to 550 millimicrons, and 810 10 900 milli-
microns, respectively, Each image was put on an 80 x 80
grid, and the average density for eaci resolution cell was
measured by hand with a microdensitometer. The densities
on each image were then quantized to ten levels; the reduced
quantized images are illustrated in Figs. 9, 10, and 11. )

The measurement space clustering classification method
described in Section 1V was programmed for a GE-625
computer and was tried out for the Phoenix imagery. The
maximum number of categories K was set equal to 8 while
the parameter ¢ was allowed to vary.

An identification of each resolution cell on the quantized
imagery was made with respect to the similarity sets or
clusters constructed. For small ¢, less than 0.01, the first -

" couple of similarity sets constructed were so'large that they

alone covered the entire image. For large ¢, greater than
0.6, the similarity sets found seemed to have no correspon-
dence to reality—turnpikes, roads, and fields composed the
same similarity set, for example. Variations of - 10 percent
in the final value of ¢ had no effect on the results. A value of
£ of0.13 gave the best balance with regard to size of similarity
set and correspondence with reality.

When X is too small, the clusters constructed tend to be
large, indicating only the most distinct and different simi-
larity sets. When K 1s too large, some clusters can be
empty or indicate unimportant noisy pockets. X should be
chosen to be the number of distinct homogeneous cate-
gories the investigator thinks it is reasonably possible to
obtain from the data. Fig. 12 illustrates the identification
resulting from a value ol 0.13 for ¢ and 8 for X, and indicates
an interpretation for each of the resulting similarity sets.

¥Y1. CoNCLUSIONS

We have presented two clustering algorithms for multiple
images: one which partitions measurement space and one
which partitions the image sequence itself. Both algorithms
terminate in a finite number of steps since there are only a
finite number of data points to be classified. However, the
exact number of steps is variable and depends on the nature
of the cluster and the number of resolution cells considered.

To the author’s knowledge, all clustering procedures
suffer because it is required to specify various parameiers.
The technique proposed here requires specification of K,
the maximum number of categories, and g, the probahility
cutolf parameter. For a good clustering, various combina-
tions of K and & must be tried. It would be useful if a good-
ness criierion were formulated so that the partition con-
structed could be evatuated for each (K, &) combination.
Then a search can be done on K and ¢ to find the values
which give the best result. However, this poses another
problem because average minimum distance or entropy-
type criteria are not necessarily the best criteria. More
fundamental work needs to be done regarding the nature
of clusters and exactly what constitutes a good criterien for
judging cluster classifications,
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Further research can be done in using this type of cluster-
ing as a possible coding scheme in transmitting remotely
sensed images of planets. Instead of transmuitting the mea-
surement space coordinates for each resolution cell, only a
code for the cluster in which the resolution cell or the mea-
surement space coordinates reside neced be transmitted.
This can offer a considerable reducuon in bandwidth when
used properly.
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