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Abstract—A relational model for describing three-dimensional objects has been designed and implemented.
The model, which provides a rough description to be used at the top level of a hierarchy for describing objects
was designed for initial matching attempts on an unknown object, Each description is in terms of the set oi’
simple parts of an object. Simple parts can be sticks (long, thin parts), plates (flat, wide parts) and blobs (parts
that have three significant dimensions). The relations include an attribute-value table for global properties of
the object, the properties of the simple parts, binary connection and support relationships, ternary
connection relationships, parallel relationships, perpendicular relationships and binary constraints.

An important use of the model is to characterize the similarity and differences between three-dimensional
objects. Toward thisend, we have defined a measure of relational similarity between three-dimensional object
models and a measure of feature similarity, based only on Euclidean distance between attribute-value tables.
In a series of computer tests, we compare the results of using the two different similarity measures and
conclude that the relational similarity is much more powerful than the feature similarity and should be used

when grouping the objects in the database for fast access.

Matching Relational models

I. INTRODUCTION

In scene analysis, we are given one or more views of a
three-dimensional scene. As part of the analysis, we
must identify the three-dimensional objects using only
the two-dimensional views. The data are arrays of
numbers representing light intensities or distances or
other measurable quantities, depending on the sensor.
Noise, distortion and sampling error are common.
Segmentations of the data into objects or surfaces or
cylinders are far from perfect.

In this kind of environment, it seems reasonable that
the first attempts at matching should involve only very
rough three-dimensional object models. Exact dimen-
sions and exact geometric specification will not be
useful until the analysis procedure has narrowed down
the choice of models. Instead, rough models that
characterize the structure of the object can be used.

In Section 111, we motivate and define our relational
model for three-dimensional objects. The object mo-
dels are intended for use in a scene analysis system. A
database of such models has been set up, as described
in Section V. However, our first experiments with these
models are not concerned with scene analysis. Instead,
we look at the more fundamental question, “what
makes two three-dimensional objects similar?” Surely,
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if we cannot answer this question, we cannot hope to
answer the harder question, “to which three-
dimensional objects is this two-dimensional projection
most similar?” In Section IV, we define a new kind of
two-way relational matching to be used to compare
two relational descriptions. In Section VI we describe
several kinds of experiments comparing two three-
dimensional models using (1) only their global features
and (2) the entire relational structure.

II. RELATED LITERATURE

We have divided the relevant literature into two
categories: three-dimensional object representation
and matching.

I1.1. Three-dimensional object representation

We have chosen to use relational models to repre-
sent three-dimensional objects. In this section, we
survey these and other 3D object representations.
There are several categories of applications that re-
quire modeling of three-dimensional objects. These
include mechanical design and manufacturing, com-
puter graphics and computer vision. We will restrict
our discussion to the representations used in computer
vision. Other representations can be found in Badler
and Bajcsy'!? and the proceedings of the Workshop on
the Representation of Three-Dimensional Objects.*)

Surface-edge-vertex models. All of the early work in
vision and much of the present work used
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surface—edge-vertex models of three-dimensional ob-
jects. Roberts™® model included points, lines and
planar surfaces in three-space implemented as a ring
structure. The object of his work was to find junction
points in a given line drawing that fit a transformation
of some stored model. Huffman, Clowes,”®) and
Waltz'® labeled the line segments of a line drawing as
corresponding to concave, convex, boundary and, in
Waltz’s work, crack or shadow edges in three-space.
Regions delimited by line segments could be labeled as
background or as a surface of one of the objects in the
scene. There are no stored object models; what is
stored is knowledge, in the form of all two-dimensional
junction labelings that can correspond to trihedral
blocks world objects.

Analysis by line labeling has been extended to
curved surfaces, as in Shapira and Freeman,!” Tur-
ner'® and Chakravarty.® The model that Shapira and
Freeman employ allows either quadratic or planar
surfaces, edges which are all or part of the intersection
of two surfaces and vertices which are the intersection
of three or more edges. In their model a boundary is a
closed chain of edges, a face is a bounded portion of a
surface and a body is a closed connected part of three-
space, delimited by a finite number of faces. They used
multiple views of objects in their analyses and were
able to validate junctions that correspond to real
vertices, connect some pairs of junctions by empty lines
where no line appeared in the line drawing and create
synthetic junctions where the real junction was hidden.
Their program finds the faces of each body and the
corresponding region in each view.

Chakravarty worked with planar-faced or curved-
surface solid bodies having vertices formed by at most
three surfaces. Junctions are labeled with respect to the
number of regions at the junction, the junction type
(based on the arrangement of the lines) and the
number of regions associated with the line leaving the
junction. Lines are labeled as limb, non-occluding,
occluding, partial limb, partial non-occluding, partial
occluding and concave. He developed a junction
transition graph where a cycle having consistent line
labels represents the traversal of a region’s boundaries.

Another extension is to the “origami world” where
objects are created by folding paper. Origami world
objects can have surfaces that are not part of a solid.
Kanade™ extends line labeling to the origami objects
where he will usually get several legal labelings per
drawing. He then maps geometric properties of the line
drawing, such as parallel lines and skewed symmetry,
into gradient space where a gradient represents how a
plane is slanted relative to the line of view. His problem
is to uniquely determine the gradients of the surface of
each object and he has succeeded with several simple
objects.

Surface-edge-vertex models have also been used by
Nagao et al.' " whose method was to estimate defects
in the two-dimensional description, produce imperfect
models from the perfect models and match to the

imperfect models, McKee and Aggarwal*® who per-
formed recognition on partial views of known objects,
Richard and Hemami*® who used Fourier descrip-
tors of the silhouettes of objects stored as wire-frame
models and numerous others.

Relational models. Relational or graph models have
become very popular since it was discovered®'® that
the relational matching problem (described by Barrow
et al*?") can be greatly reduced by using relaxation
processes. Two recent studies are of particular interest
to our work. Chien and Selander* ® use object models
that include networks of surface, edge and vertex
atoms, each having several properties and connected
by surface—edge and edge—vertex arcs. The surfaces in
their models may be planar, cylindrical or spherical. A
complete object model consists of several networks
representing several views. Matching is from an image
graph, extracted from the input image into a library of
object models. The network matching utilizes a cost
function and tries to find a low-cost association that
pairs image parts with object parts.

Schneier’” represents objects by primitives and
relations, but with the special feature that common
primitives and relations are shared across models and
within models. His program produces a scene graph
from several views of range data of an object. It tries to
find an isomorphism between the scene graph and a
structure derived from the graph of models where all
three-dimensional models are represented. The match-
ing process utilizes fast indexing: (a) primitives and
relation schemata index all models in which they
occur ; (b) models index all primitives and relation
schemata within them. The main advantage is the
elimination of the need to match against every one of a
library of stored models.

Generalized cylinders. The second major type of
three-dimensional model used for computer vision is
the generalized cylinder model suggested by Bin-
ford® and first used with laser range data to produce
descriptions of curved objects (Agin and Binford*®). A
generalized cylinder is a volume defined by a space
curve axis and the cross section function at each point
of the axis. In Nevatia’s work,?? the three-
dimensional models consist of generalized cylinders
with normal cross sections for primitives, plus con-
nectivity relations and global properties. Cylinders are
described by length of axis, average cross-section
width, ratio of the two and cone angle. Global
properties of an object include number of pieces,
number of elongated pieces and symmetry of the
connections. In the matching phase, an indexing
scheme is used to access objects that are likely to match
an unknown. Each object has a three bit code describ-
ing each of its distinguished pieces. Encoded are (1)
connectivity (one end or both), (2) type (long or wide)
and (3) conical (true or false). Objects with the same
code are grouped together and the correct group is
found before full matching is started.

Marr and Nishihara®®®) think of objects as stick
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figures, where each stick is the axis in one or more
generalized cylinders. They advocate hierarchical mo-
dels; at the top level a hand may be represented by a
single cylinder which is broken down further at
subsequent levels. In order to describe the connections
between cylinders they employ two vectors: $SAXIS,
which can be placed along the axis of a cylinder whose
connection is to be described, and $SPASAR, which
can be used to describe the rotation of a second
cylinder about the first. The relationship of two
touching cylinders is described by a triple (p, i, g),
where p is the position at which $SPASAR attaches to
$AXIS, i is the inclination of 3SPASAR to $AXIS and
g is the girdle angle describing the rotation of
$SPASAR about $AXIS. If the cylinders do not touch
directly, then the description uses the pair (d, e), where
d is the perpendicular distance from $AXIS to the
beginning of $SPASAR and e is the girdle angle.

Marr and Nishihara also believe in the use of
indexing in recognition. They distinguish between
indexing clues that can be used before there is a guess
at the three-dimensional configuration (for example,
connectivity and some length comparisons) and those
that cannot. Their matching scheme uses relaxation to
rotate the model into the appropriate view to match
the description obtained from the two-dimensional
image.

Hollerbach®?' used generalized cylinders in his
hierarchical models of pottery vases. His model of a
vase is 2 main cylinder segmented into possible parts:
foot, body, neck and lip. Parts can be described by a
general shape (i.e. ovoid) plus modifiers (ie. pro-
trusions, size, position). Soroka** used generalized
cylinders with elliptical cross sections to model three-
dimensional biological data obtained from tomo-
graphic data. In other recent work, Agin®® has
developed a new system where objects are modeled by
generalized cylinders and arbitrary spatial relation-
ships. Relationships include snakes (several cylinders
grouped along a single axis), attachment points and
arbitrary transforms. Users can code S-expression
descriptions such as (CUBE2 (ATTACH CUBE2
TOP) CUBE 1) to describe objects to the system.

General knowledge models. The models discussed so
far have specific primitives (surface, edge, vertex or
generalized cylinder), some description of the proper-
ties of those primitives and often some kind of
connection relation. Several more general models have
been proposed. Minsky®>® has defined a “frame” as a
data-structure for representing a stereotyped situation.
A frame is like a network of nodes and relations where
the top levels are fixed and represent things that are
always fixed about the situation and the lower levels
have slots that must be filled with specific information.
For a stereotyped scene of three-dimensional objects,
Minsky’s model is a set of frames describing the scene
from different viewpoints plus the transformations
between pairs of these frames representing the effect of
moving the camera. A related model has been pro-
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posed by Ballard et al*® Their model is a semantic
network, where nodes represent primitive and complex
objects and concepts such as assertions or procedures.
Given this model, an image and a query pertainingtoa
particular object, their system would construct a
sketch map (an instantiation of part of the model that
matches the scene) and use it to answer the query.

11.2. Matching and constraint satisfaction

Our three-dimensional models are relational struc-
tures. Relational matching, the process of finding
relational homomorphisms between two structures is
an NP-complete problem; in the worst case, its
behavior is expected to be exponential. However, it has
been shown that the use of look-ahead or relaxation
operators can speed up the tree search used for finding
a match. Since our relational matching will require
some form of relaxation, we will survey some of the
recent work in this important area.

Discrete relaxation. In Haralick and Shapiro®” we
defined a generalnetwork constraint analysis problem,
called the consistent labeling problem, which was a
generalization of specific problems {rom several dif-
ferent specialty areas. In the general problem, we are
given a compatibility model (U, L, T, R) where U = {1,
..., M} is a set of M objects called units, L is a set of
names for the units called labels, T = U** N specifies N-
tuples of units that constrain one another and
R < (U x LY**N specifies N-tuples of unit-label pairs
((ul, I1), (12, 12), ..., (uN, IN)), where unit ul can have
label I1, unit »2 can have label {2, ..., and unit uN can
have label IN, all at the same time. A labeling of Uisa
mapping f : U — L that assigns a label to each unit.
The consistent labeling problem s to find all labelings f
that satisfy (u1, ..., uN)e T implies (ul, f(ul), ..., uN,
f(uN))e R. We have shown that the relational homo-
morphism problem is a consistent labeling problem.

Consistent labeling problems have traditionally
been attacked by a depth first search where the search
procedure assigns labels to units as longasitcan find a
label for each new unit that is compatible according to
R with the labels already fixed to previous units.
Whenever the procedure cannot find a label for a new
unit, it backtracks. Such a procedure suffers from
thrashing; a poor choice of labels for one of the first
units can cause failure of all paths stemming from that
choice.

Ullman®*# first tried to avert this thrashing behavior
in a matching application. Waltz'® popularized dis-
crete relaxation by using it in a program to label the
edges of a line drawing as concave, convex, boundary,
shadow or crack. His ‘filtering’ program was applied
prior to the tree search and it removed so many
possible labelings that frequently the tree search
became unnecessary. Rosenfeld et al.®*® formalized the
relaxation operator used by Waltz. Using our con-
sistent labeling notation, U is the set of edges, L is the
set of edge labels, T = {(line 1, line 2)| line 1 connects
to line 2} and R = {((line 1, label 1), (line 2, label 2)|
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(line 1, line 2) € T and there is some physically possible
labeling of the junction where line 1 and line 2 meet in
which line 1 can take label 1 while line 2 takes label 2}.

In the Rosenfeld et al.'*® formalism a labeling is an
N-tuple of sets Lk = (£{1,k),..., L(M, k)), where £(i, k)
is a set of labels that are still allowed for line i at
iteration k. £{i, 0) is the set {label | ((line i, label), (line j,
label j)) € R for some j}. Lk + 1)is obtained from L(k)
by discarding from each L(j, k) any label [ such that
there exists a j with {((line i, I), (line j, ) € r|lj e L(j, k)}
= . The relaxation procedure obtains L(1) from L{0),
L(2) from L(1), ..., until some L(k + 1) = L{k),
whereupon it halts. If L(k) = (©, @, ..., @), there is no
legal labeling; if L(k) is single-valued, the single
consistent labeling has been found; and otherwise a
tree search in a reduced tree is necessary.

Discrete relaxation operators have also been pro-
posed in Haralick and Shapiro?” and by Ullman,*)
Montanari,?® Haralick and Kartus,®? Mack-
worth,*® Freuder,®® Gaschnig,** Davis,** and
others. In a recent paper, Haralick and Elliot3®
compared several discrete relaxation operators by
constructing random binary compatibility models on
which to test the operators. It was found that a very
simple operator that they call forward checking per-
formed best, ie. it had fewer operations and smaller
execution time. The more powerful operators searched
less nodes of the tree than forward checking, but took
many more operations to do so. Haralick and Elliot
also found that a strategy of ordering the units, by
always taking the next unit having fewest possible
labels left, tended to cause less backtracking to occur
and thus reduced search time.

Inexact discrete relaxation. In our past work we
developed a structural model for describing two-
dimensional shapes and a corresponding procedure
for matching an unknown shape to a stored model.®™
Since the unknown shapes could be distorted or noisy,
their decompositions into simple pieces and intrusions
and the corresponding relational descriptions were
generally not identical to the stored models. To deal
with this problem, we define an inexact match or an ¢-
consistent labeling as a functionf : U — L that satisfies

Y ow)<e
teT
SgR
where w is a function assigning a weight to each N-
tuple t in T. In subsequent work,*® we further
generalized the concept of an inexact match and
developed relaxation operators for inexact matching
corresponding to the forward checking and
lookahead-by-one operators used in exact matching.
We found again that the forward checking operator
used less operations and less time than the lookahead-
by-one or the backtracking tree search.
Continuous relaxation. Rosenfeld et al*® proposed
a continuous version of the binary consistent labeling
problem. In the continuous version, each possible label
! for unit i has an attached weight (pi(l) indicating the
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certainty with which label [ is attached to unit i). The
weights for each label are between 0 and 1 and the sum
of the weights of all labels of a given unit must be 1. The
constraint relation R also has a weight attached to
each tuple. In their notation this amounts to a set of
coefficients {rij, i, j, € U} where rij(l, L') denotes the
compatibility of label ! on unit i with label /' on unit j.
The rij’s range from —1 to 1. The job of the relaxation
operator is (a) to increase pi(l), if other units’ labels
that have high weights are highly compatible with I at
unit i, and (b) to decrease pi(l), if other highly weighted
labels are incompatible with I at unit i. The relaxation
operator thatupdates the pi’s atiteration k + 1is given
by

pick + 13() = picky (N1 + qicky(1)]
;pi<k>(0[1 + gick>(D)]

where
gi<ky(D) = 3 dij ¥ rij(l, 1)picky(l)
J 1:

and the dij’s are coefficients that weight the total
interaction between units i and j.

Continuous relaxation has been used by Hanson
and Riseman'3* for edge enhancement, by Barrow and
Tenebaum™® for scene analysis, by Zucker and Hum-
mel*" for clustering, and by others. Current work in
the area deals with theoretical analyses of the con-
tinuous relaxation process to determine exactly what
problem it is actually solving. To this end, Zucker et
al***3 have shown that under certain restrictions,
continuous relaxation is equivalent to local maxima
selection. Haralick et al** have derived necessary
conditions for a fixed point, Faugeras et al.*3*% have
also been active in both theory and practice in the area
of continuous relaxation. Haralick®” has shown
under what conditions probabilistic relaxation results
in probabilities which can be given a Bayesian
interpretation.

III. A RELATIONAL MODEL

In this section we first describe a relational model
that provides a rough description of the structure of
three-dimensional objects. This model is to be used at
the top level of a hierarchy for describing objects.
Lower levels will be more precise descriptions, includ-
ing finer details. The rough descriptions will be used
for initial matching attempts and as input to a
clustering procedure that will group similar objects
together.

The parts of an object : sticks, plates and blobs. The
objects that we work with are complex man-made
objects, such as office furniture and industrial manu-
facturing parts. These objects are physically built from
parts. The parts can have flat or curved surfaces and
they exist in a large variety. Instead of trying to
describe each of these many parts, at the top level we
classify each part as either a stick, a plate or a blob.
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Fig. 1. Illustrates several example each of sticks, plates and blobs.

Sticks are long, thin parts that have only one signi-
ficant dimension. Plates are flatish, wide parts with two
nearly flat surfaces connected by a thin edge between
them. Plates have two significant dimensions. Blobs
are parts that have all three significant dimensions. All
three kinds of parts are “near-convex”, ie. a stick
cannot bend very much, the surfaces of a plate cannot
fold very much and a blob can be bumpy, but cannot
have large concavities. Figure 1 shows several exam-
ples of sticks, plates, and blobs.

Because we wish to analyze the structure of objects,
we need to define sticks, plates and blobs more
precisely. Formally, a stick is a 4-tuple ST = (En, I,
Cm, L), where En is the set of two end points of the
stick, I is the set of interior points of the stick, Cm isits
center of mass and L is its length. Since straight line
segments have each of the components of a stick, we
will be able to informally represent all sticks by
straight line segments to simplify our thinking about
them.

A plate is a 4-tuple PL = (Eg, S, Cm, A), where Eg is
the set of edge points, § = {S1, S2} is the set of surface
points of the plate, partitioned into the two surfaces,
Cm is the center of mass and A is the area. Again, to
simplify analyses, we can informally represent all
plates by circles.

A blob is a triple BL = (S, Cm, V), where § is the set
of surface points, Cm is the center of mass and V is the
volume of the blob. We can informally represent all

FRk 17/4~B

blobs as spheres. We choose line segments, circles and
spheres because they have no corners that we might be
tempted to use in our descriptions. At the top level, the
descriptions are to be as general and as rough as
possible.

Constraints on assembling the parts. Our three-
dimensional models must describe how the sticks,
plates and blobs are put together. These descriptions
will also be rough; they cannot specify the physical
points where two parts join. The stick has two logical
end points, a logical set of interior points and a logical
center of mass that can be specified as connection
points. The plate has a set of edge points, a set of
surface points and a center of mass. The blob has a set
of surface points and a center of mass. We will now
discuss how to use such minimal information in the
models.

Binary connections. Clearly the connections between
pairs of parts are an integral part of any three-
dimensional relational model. We specify a connection
between two parts by specifying (1) the type of
connection and (2) the constrained angles of the
connection. The type of connection describes which
distinguished entity of the first part touches which
distinguished entity of the second part. Thus possible
connection types are end-end, end-interior,
end—center, end-edge and so on. For each type of
connection, there is a corresponding set of angles
which, when specified as single values or as ranges,
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TYPE ANGLE
CONSTRAINT
End-End 90° < 8 < 180°
TYPE ANGLE
CONSTRAINT
Interior-
Center of Mass | 0° < & < 90°
ANGLE
THEE CONSTRAINT
Interior- 0° < o, B < 180°
Interior 0° < & < 90°

o: angle between projection of
C2P on plane of C1 and C2P

B: angle between projection of
C2P on plane of C1 and CIP

§: angle between N1 and N2

Fig. 2. Illustrates three examples of the constrained connections of two simple parts.

constrain the binary connection further. For example,
when two sticks join end—-end or interior—center (as
illustrated in Fig. 2), a single angle constrains their
connection. Figure 2 specifies the full range of this
angle. If the angle is restricted to a single value, the
connection is restricted to an exact form. If the angle is
specified as an allowable range of values, then the form
of connection is more flexible. At most, three angle
ranges are required to uniquely describe a binary
connection between two arbitrary parts.

Ternary connections. The binary connections are
not sufficient to entirely describe a three-dimensional
model, since they do not place any global constraints
on the resulting object. For example, two sticks each
connected end—end to the same third stick might be at
the same or opposite ends and, if at the same end,
might coincide in space or not coincide, but might still
be at the same angle with respect to the third stick. If
we were trying to describe the object very precisely, we
might need to specify N-ary connections for arbitrary
N. However, we have determined that we can add
powerful constraints to the model by considering
triples of simple parts. Since at this level, our de-
scriptions are rough anyway, we will only go as far as
ternary relations to describe connections.

Let (s1, 52, s3) be a triple of simple parts satisfying
that s1 and s3 both touch s2. The description of the

spatial relationship between sl and s3 with respect to
52 has two components. The first component specifies
whether s1 and s3 meet s2 on the same end (or surface).
The second component constrains the angle subtended
by the centers of mass of s1 and s3 at the center of mass
of s2. This angle constraint can also be a single value or
an allowable range. Figure 3 illustrates several con-
nections between the parts and the full range of the
angles to be specified.

Support structure. Another important aspect of a
multi-part three-dimensional object is its support
structure. The legs of a chair not only touch the seat,
but they also support the seat. The support structure is
related to the function of the object and its parts. For
example, objects that have four upright sticks sup-
ported by the ground and supporting a horizontally-
oriented plate tend to be stationary objects and tend to
be used to set another object (book, vase, person) on.
In addition to its importance in the three-dimensional
description, the support structure can be useful in
helping to identify two-dimensional perspective pro-
jections of an object, since much of the support
structure of an object is often evident in a right-side-up
two-dimensional view. Thus the support structure
seems to be an essential component in a three-
dimensional object model.

Additional constraints. The binary and ternary con-
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b3
PARTS SIDE ANGLE
b2 4 CONSTRAINT
[ |
e (b1,b2,63) | OPPOSITE | 90° < o < 180°
b1
b2
[ = A -
A PARTS SIDE | ANGLE
g CONSTRAINT
. b3 | (b1,b2,b3) | OPPOSITE 0° < 8 < 90°
PARTS STOE ANGLE
CONSTRAINT
(b1,b2,b3) SAME 0° < 8 < 90°
(b3,b2,b¢) | OPPOSITE | 90° < & < 180°

Fig. 3. Illustrates three examples of constrained connections among three simple parts.

nection relations plus the support structure provide a
basic description of the structure of an object. Ad-
ditional constraints on groups of parts that do not
touch each other may also be necessary to completely
characterize some objects. Consider the typical table
shown in Fig. 4. The four sticks are all the same length,
all parallel and their centers of mass are equidistant
from the center of mass of the plate. Furthermore,
there are constraints on the angles between adjacent
pairs of line segments from stick centers of mass to
plate center of mass. These constraints rule out certain
three-dimensional objects that are not typical tables,
although they may have four sticks connected to a
plate. The constraints are illustrated in Fig. 4. For a
given class of objects and a given application, there will
be a set of relations that are important additional
constraints.

The relational data structure. In Shapiro and Ha-
ralick*® we discussed a general relational data struc-
ture. The structure, which has also been called a spatial
data structure or a structural description, can be
formally defined as follows. A relational data structure

Dis aset D = {Rl, ..., RK} of relations. For each
relation Rk, k = 1,..., K, there is a positive integer Nk
and a sequence of domain sets S(1, k), .. ., S(Nk, k) such
that Rk = S(1,k) x ... x S(Nk, k). The elements of the
domain sets may themselves be atoms (nondecompos-
able) or relational data structures. In most relational
data structures, one of the relations is an attribute-
value table (A/V) and contains the values of global
properties of the object being represented by the
structure.

The relational data structure for a three-
dimensional object will consist of an attribute-value
table plus nine other relations. The unary SIMPLE
PARTS relation is a list of the parts of the object. Each
part is represented by a relational data structure
consisting of an attribute-value table. The attributes of
a simple part consist of TYPE (stick, plate or blob),
RELATIVE LENGTH, RELATIVE AREA and RE-
LATIVE VOLUME. The length, area and volume
values may be real numbers or may be marked “don’t-
care” when they are unimportant or inappropriate.

The CONNECTS/SUPPORTS relation contains
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L 54

Caonstraints 52
parallel (51,52,53,54)
equi-length (51,52,53,54)
equi-length (L7,L2,L3,L4)
equi-angle (a,a')
equi-angle (g,8')

Fig. 4. Illustrates a standard table made of 4 sticks and a plate
and some of the constraints on how the parts fit together.

Three-dimensional Object

some of the most important information on the
structure of the object. It consists of 10-tuples of the
form (s1, s2, SUPPORTS, HOW, ¢oll, vhl, vl2, vh2,
vl3, vh3). The components sl and 52 are simple parts,
SUPPORTS is true if s1 supports s2 and false other-
wise and HOW describes the connection type of s1 and
s2. The values in the HOW field are elements of the set
{end-end, end-interior, end-center, end-edge,
interior—center, center—center} where ‘end’ refers to an
end of a stick, ‘interior’ refers to the interior of a stick or
surface of a plate or blob, ‘edge’ refers to the edge of a
plate and ‘center’ refers to the center of mass of any
part. The field pairs (vl1, vhl), (vI2, vh2), and (vi3, vh3)
hold the low and high values for the allowed angle
ranges for the (at most) three angles that can be
specified for a binary connection.

The other eight relations express constraints. The
TRIPLE CONSTRAINT relation has 6-tuples of the
form (s, s2, s3, SAME, ul, vh) where simple part s2
touches both s1 and s3, SAME is true if s1 and 53 touch
52 on the same end (or surface) of s2 and false otherwise
and ol and vh specify the permissible low and high
values for the constrained angle as shown in Fig. 3. The
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# BASE SUPPORTS

TOP PART TYPE

CONNECTS/SUPPORTS

# STICKS
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BINARY ANGLE CONSTRAINT

AREA CONSTRAINT T
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L

(sl IsZ s3 SAMEIV] vh
I
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Fig. 5. Illustrates the logical structure of a relational data structure for a three-dimensional object model.
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PARALLEL relation and the PERPENDICULAR
relation have pairs of the form (s1, s2) where simple
parts s1 and s2 are parallel (or perpendicular) in the
model. The LENGTH CONSTRAINT relation has
triples of the form (11, I2, o) where I1 and I2 refer to
specific line segments or part lengths and 0 € {>, =,
<, <, =, #}. The components [1 and (2 of this
relation must be powerful enough to express such
concepts as the line segment joining the centers of mass
of two parts or the length of a stick. The BINARY
ANGLE CONSTRAINT relation has triples of the
form (d1, d2, o) where d1 and d2 specify angles and
againoe{>, =, <, <, =, #}. Finally, the AREA and
VOLUME relations have triples of the form (al, a2, o)
and (v, ©2, o), respectively, where al and a2 refer to
areas, vl and v2 refer tovolumesandoe {>, =, <, <,
=, #}.

Note that specification of areas and volumes in the
constraint relations may be redundant due to the fact
that each part has a RELATIVE AREA and REL-
ATIVE VOLUME attribute. The constraint rela-
tions will only be used when the constraint is meant
to be emphasized as important to the object. It is
expected that the inexact matching process to be used
will be quite lenient about relative area and volume
requirements in general. (See Shapiro and Haralick!®®
for the definition of inexact matching and for some fast
algorithms to do it.) When a few constraints on area or
volume need to be more severe, the thresholds that the
constraint relations have to satisfy can be increased.
Similarly, the PERPENDICULAR relation is re-
dundant and will only be used for emphasis or severe
constraints.

The attribute-value table of a three-dimensional
object contains its global properties. Our intention is
to include as many properties as possible while
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keeping the description at a gross level. The set of
attributes currently planned are number of base
supports, type of topmost part, number of sticks,
number of plates, number of blobs, number of upright
parts, number of horizontal parts and number of
slanted parts, number of support levels and position of
topmost part. The logical structure of a three-
dimensional object is illustrated in Fig. 5. Notice that
most of the information in the relational structure is
invariant with respect to orientation of the object.
Only the SUPPORTS field of the CONNECTS/SUP-
PORTS relation and the attributes that mention
position (upright, horizontal, slanted) or support are
related to orientation. These were included in the
model because we expect to analyze scenes where
objects are usually in their normal upright position.
When thisisnot the case, these attributes can simply be
ignored.

IV. RELATIONAL MATCHING

Going from relational descriptions to three-
dimensional objects is essentially a matching problem:
matching the relational description from the image to
the relational description of the object. Doing this
matching in a database of one hundred or one
thousand separate objects would be computationally
expensive. Given an unknown object (three-
dimensional object or two-dimensional view), we do
not want to compare its description with every object
in the database. A solution to this problem which has
been used by Salton®® in an information storage and
retrieval system is to cluster the objects in the database,
represent each cluster by a profile description and
compare the description of an unknown object only to
each profile description. If the unknown object is

R' = B), (B,C), (B’D)9
E), (B,F), {C.6),
6), (E,H), (F,H)

H

(A
(B
(D

2
3

Fig. 6. Illustrates two similar chairs and their binary connection relations. Two shapes match when their
structural error is sufficiently low.
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Fig. 7. Illustrates our 57 objects whose attribute-value tables are in the database.
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Fig. 7 continued

judged sufficiently close to one or more clusters, thenit  I,..., K, Rk = S(1,k) x ... x S(Nk,k)and Rk = §'(1,
is compared only to objects in those groups. k) x ... x S'(Nk, k). Intuitively, description D is

Comparing relational descriptions. Suppose we are  similar to description D’ if relation Rk is similar to
given two relational descriptions D = {R1, R2, ..., relation Rk for k = 1, ..., K. Thus to measure the
RK}and D' = {R1,R2,...,RK"}, where foreach k = distance between two relational descriptions, we must
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first be able to measure the distance between two
relations.

LetR = S¥and R’ = TVbetwo N-aryrelations and
let fbe a binary relation f = § x T that associates an
element of S with an element of T. We will define a
measure of the error of the association /. We define the
composition R o f of N-ary relation R with binary
relation f by

R af= il
with (sn, tn) € fforn = 1, ..

tN) e T"| there exists (s1,..., sN)e R
a Nk

There are four sets of N-tuple that can be used to
describe the error of the association f.

(1) Rof— R'. This set consists of N-tuples that arise
when an N-tuple of relation R is transformed by fto an
N-tuple of 7", but this new N-tuple is not a part of R".
(2) R"of ~* — R. This set consists of N-tuples that
arise when an N-tuple of relation R’ is transformed by
S~ ! to an N-tuple of S¥, but this new N-tuple is not a
part of the relation R. This set is the symmetric
equivalent of set (1) and is used here because we are
interested in two-way matching,

(3)R — R’ of ~'. This set consists of N-tuples of R that
are not included in the group of N-tuples obtained by
applying f ~* to each N-tuple of R'.

(4) R’ — R of. This set consists of N-tuples of R’ that
are not included in the group of N-tuples obtained by
applying f to each N-tuple of R.

Example. Consider the two chairs C and C’' shown in
Fig. 6 and the corresponding simplified binary con-
nection relations

R={(1,2),(23)(24),25)(206)}
and
R = {(4, B), (B, C), (B, D), (B, E), (B, F),
(C, G), (D, G), (E, H), (F, H)}.

Suppose we wish to measure the error of the asso-
ciation f given by

[ =11, 4), (2 B),(3,C) @4 G), (6 F)}.
Then the two compositions are given by
Rof={(4, B), (B, C), (B, G), (B, F)}
and
Rof~' ={(1,2),(23) (2 6), (3 4)}

and the four sets of interest are

Number

Set elements
Rof—R' = {(B, G)} 1
Rof7* —R= {3 4)} 1
R—PRof™'= {(24),(25) 2
R —Rof= {(B, D), (B, E), (C, G), 6

(D! G)’{EsH):(F,H)}

One method of defining the error of a mapping fisby a
weighted sum of the number of elements in each of the
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four sets. In particular, we define the structural error to

be

E(f)=|Rof— R|+ R'of ' R
the completeness error to be

E(f)=|R =R of ']+ |R - Rof|,
and the total error to be

Eg rlf) = ¢ E(f) + c:ELf)

where ¢, and c, are non-negative constants,

The total error will be 0 when R’ is an isomorphic
image of R and fis the isomorphism ; and if normalized
by dividing by a factor proportional to |R| + |R’| it
will be 1 in the worst possible case when R of "R’
= R'of "' nR = O. It has the advantage of simplicity
and the disadvantage of counting all N-tuples of a
relation equally when some relationships may be more
important than others.

Once such a mapping error has been defined, we can
define the general distance GD(D, D') of two relational
descriptions D and D’ by

[]

K
GD(D, D) =min Y, wkE g g {f)
I k=1
where wk is the weight assigned to relation Rk and the
minimization is taken over all binary relations f
associating elements of S with elements of T.

Use of global attributes. The global attributes of a
three-dimensional object are stored in the attribute-
value table A/V = {(a, v)\a is an attribute and v is its
value}. The attribute-value table is essentially a feature
vector and by itself cannot fully describe an object. Yet
it is an important aspect of the total description. A
human, when asked to describe a chair might answer,
“it is an object having four legs, a back and a seat. The
legs are long, thin and vertically oriented, the seat is
flat, wide and horizontally oriented. The legs connect
to and support the seat which connects to and
supports the back.” Note that in this description, it is
very natural to mention the parts and their features
before coming to the relational structure. Similarly, the
human, when asked the difference between a chair and
a table, might say, “the table has no back.” Here the
presence or absence of a part is important. This all
suggests that when comparing two objects, we should
first compare their attribute-value tables and only if
these are judged similar enough should we continue
with the full relational matching.

V. THE EXPERIMENTAL DATABASE SYSTEM

Organization. Each object model is accessed by a
unique integer. An object model consists of an
attribute-value table plus five relations: SIMPLE
PARTS, CONNECTS/SUPPORTS, TRIPLES,
PARALLEL and PERPENDICULAR. The relations
contain the fields described in Section 111, but the angle
and size data has been omitted at this stapge of
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Cluster tbjects

1 1, 2, 3, 4, 5 6, 7, 8 23, 24, 25, 26,
28, 3@, 34, 35, 36, 38, 39, 40, 42, 45,
48, 52

2 9, 16, 11, 13, 14, 21, 22, 33, 42, 44,
46, 47, 49, 51, 53

3 12, 15, 16, 17, 18

4 19

5 20, 37, 47

6 23, 24, 25, 26, 27, 29, 31, 48, 41, 52,
54, 55, 56, 57

7 32

8 43

9 50

Fig. 8. Gives the clusters of the 57 objects of Fig. 7.

i

7 71 7F U1

P ¢

—

1z B 14

i

Fig. 9. Ilustrates the 14 objects whose full relational models are in the database.
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experimentation and the supports component for a
pair of parts (i, j) is true if i supports j or j supports i and
false if no support is involved. Thus, in the objects on
which the experiments were performed, we have five
relations R1, R2, R3, R4 and R5 where

R1 = SIMPLE-PARTS < parts
x {stick, plate, blob},

R2 = CONNECTS-SUPPORTS < parts
x parts x {(supports, how)|
supports € {true false} and
how e {end to end, end to edge,
end to interior, edge to
interior, interior to
interior},

R3 = TRIPLES < parts x parts x parts

x {same, opposite},
R4 = PARALLEL < parts x parts, and
R5 = PERPENDICULAR < parts x parts.

The attribute-value tables of 57 objects have been
entered into the database so far. The full 5-relation
structure has only been entered for 14 objects, due to
the difficulty of constructing the models by hand. The
57 objects are illustrated in Fig. 7.

The database is organized as a set of possibly
overlapping clusters of similar objects. In the current
set-up, only the attribute-value tables of each pair of
objects were used in judging their similarity. With the
attributes “number of upright pieces”, “number of
horizontal pieces” and “number of slanted pieces”
weighted by 1 and the other seven attributes weighted
by 10, the Euclidean distance between each pair of
attribute-value tables was determined. A binary re-
lation, including each pair of objects whose Euclidean
distance was below a given threshold, was constructed.
The relation was the input to the graph-theoretic
clustering procedure which has been described in
Shapiro and Haralick.®®” The set of resulting clusters
currently being used in the database are shown in
Fig. 8.

In the standard mode of operation, an unknown
object may be entered into the database or merely
compared to some of the models without being
entered. For object entry, the attribute-value table and
five relations are input by the user, the attribute-value
table is compared to the centroid attribute-value tables
of each cluster and the object is added to those clusters
that it is most similar to. For matching, instead of
being added, the unknown object is compared to cach
object in the best clusters and the results displayed to
the experimenter.

Matching. The relational matching is performed
using a treesearch with lookahead. Let U = {S,, S,, S,
S84, 85} be the unknown object, represented by its five
relationsand M = {T|, T,, T'5, T, Ts} be the model.
For a given association f, the total structural error is
given by

LinDa G. SHAPIRO et al.

5
E(f)=Y (#(Siof — Ti)+ #(Tiof ™! — Si)
i=1
(1)

and the total completeness error is given by

5

E(f)= Y (#(Ti—Siof) + #(Si — Tiof 1)
i=]
@

where # denotes cardinality. In our matching experi-
ments, we used a combined, weighted measure of total
error

E(f) =4+E(f) + E(f), (3)

which stems from our intuitive feelings that structural
error is more important than completeness error. The
goal of a matching experiment between two objects U
and M with parts P(U) and P(M), respectively, is to
find that association f < P(U) x P(M)with minimum
total error. In the experiments reported in this paper,
we restricted the mapping f'to being single-valued and
one—one, to reduce search time.

Find the best association is achieved with the help of
two tree searches. Treesearch 1, the “super-quick”
search, follows only one path from the root of the tree
to the bottom. At each level, it chooses that pair (p, p'),
pe P(U),p’' € P(M), with least accumulated error in the
lookahead tables and performs forward check-
ing¢-3® with respect to the new pair and the so-far-
uninstantiated parts. The forward checking operation
updates the lookahead tables and determines if this
pair can be instantiated. If so, it is added to the
association being constructed.

The association f obtained from Treesearch I falls
into one of three categories:

(1) exact match: E(f) =0 and E(f) = 0:
(2) subset match: E(f) = 0 and E(f) # 0;
(3) approximate match: E(f) # 0.

In case (1), clearly the best association has already
been found. In case (2), one object is contained in the
other and the similarity of their attribute-value tables
guarantees that not too many parts are missing. In case
(3), there is no guarantee that fhas minimal error and
Treesearch II is called.

Treesearch II is similar to a branch and bound
search using forward checking, Its job is to find an
association g such that:

(1) Elg) = E(f)
[g’s total error is not greater than f’s];

(2) #projy(g) = t* (#P(U))
#Projy(g) = t* (#P(M))
[The projection of g onto its first (second, re-
spectively) coordinate gives a set whose cardinality
is at least the percentage specified by parameter ¢ of

the number 5of parts in U (respectively, M %ls
(3) E(¢) <k=} (#Si+ #Ti), g <g.

i=1
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Table 1. Distance matrix for the objects of Fig. 9

1 2 3 4 5 6 7 8 9 10 11 12 13 14

A + + + + + 4 + +
118 3. 46I 5. 2@1 5. 57| 5. 57I 7 21| 6. 24| 9. 64| 5. 66I 9. 'Mlm 49111 56|1@ 15| 8.66]
ZT I 8 | 6. 24| 6. 56I 6. 55| 8 I 7. Sll 8. 72| 6. 32|1IZI 3ﬁI11 25|11 31| 9. 75I a. 334Ir
3+I | I+m | % 48| 7. 4S| 8. 66| T ?1|m sa| 4. 35!1@ 72|11.66|ll 7m11 22| 8. 94|
4+| I | I a | @ I 4. SBI % 83I 9. @11 i 94I 9. 11| 9. 17I12 ﬁ4|lﬂ ssl 6. 53|
5 I I I E | 8 I 4.58] 2.83I 9.lll e 94| 9. 11I_9 17|12 anm sai 6. 63J|r
6; | I | I Iﬁ | 52@I781|917|787I'794|11 14|954!866I
71‘| | I I I I | 8 | 9.27| 9 | 9. 22I 9. 17|12 2111@ le 7. 21|
8 | | I I I I I I 8 Ill.lBI 4. SSLG 4BI 7. 94| 5. 66I11 22|
QI | I I | I | | | o |11 22|12 12Il2 17|11 62| 8. 19|
VL i S R T T T A D I 4,581 9.171 5. 74111, 27I
117 I I I l | I I I | I 2 lm 25I 7. 35|11 31[
N I TR )
e e e
a1 1 4 1 1t 0 q4 15 11 I 2 |

+ + 4 + + + + + + + t + : +

At each stage of Treesearch II, the partial asso-
ciation g’ must satisfy the requirement that its total
error is not greater than the percentage specified
by parameter k of the sum of the number of N-
tuple in all of the relations involved. The parameter
k allows the user to control the size of the tree
searched at the risk of not finding a best mapping
whose error isvery high near the top of the tree and
very low near the bottom.

V1. EXPERIMENTS

We have run several kinds of experiments using the
database of relational models. The purpose of these
experiments was to study the relationship between the
Euclidean distance between a pair of objects obtained
only from their attribute-value tables and the total
relational error obtained from the tree search. Figure 9
illustrates the fourteen objects whose relational de-
scriptions and attribute-value tables were used in these
experiments.

Table 1 gives the Euclidean distances for each pair of
the fourteen objects of Fig, 9. Notice that, as far as the
grouping in the database which was obtained using a
distance threshold of 8, objects 1-7 and 9 fell into
cluster 1, objects 8, 10, 11 and 13 fell into cluster 2,
object 12 fell into cluster 3 and object 14 [ell into
cluster 4.

Table 2 gives the structural and completeness errors
for each pair of the same fourteen objects as obtained
from the full matching process—Treesearch I, fol-
lowed by Treesearch II if necessary. Table 2 also gives
the k-parameter used in Treesearch II for those
matches where Treesearch 11 was required. An asterisk
(*) next to the k-parameter indicates that Treesearch II

ran out of time after 3 min and the best mapping found
so far is reported rather then the true best mapping.
The t-parameter used in these experiments was 75%,
Again, notice that the matrix is not symmetric, al-
though it ideally should be. Thix is due to our
restriction on Treesearch [, which forces it to find a
single-valued function from one object to another,
instead of an unrestricted binary association. In the
cases where they differ, the smaller of the two total
errors may be used to estimate the relational distance
between the two objects.

In Fig. 10, we graphed the Euclidean distance
between attribute-value tables versus total error (3) as
determined by TREESEARCH II. As can be seen from
the figure, there is some correlation, but the graph is far
from a straight line. Part of the reason for thisis thatin
the normal mode of operation of the database system,
an object would only be matched against those objects
that are in clusters whose centroid is deemed similar to
the object. However, in these experiments, we allowed
every object to be matched against every other.
Comparing two objects that are extremely different
can result in meaningless mappings. On the other
hand, we did not expect the graph to be a straight line,
since this would have indicated that structural de-
scriptions are unnecessary and feature vectors are
sufficient to distinguish between objects!

To analyze the situation further, we again con-
structed a binary relation consisting of those pairs of
the fourteen objects whose total error was less than a
threshold. The threshold (59) was chosen so that this
binary relation had the same number of pairs as the
binary relation previously derived from the Euclidean
distances with distance threshold 8. Clustering the
relational distance binary relation, using the same
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Cluster
using Euclidean distance, did not group with any

(1) Object 3, which grouped with 1,2, 4, 5,6, 7 and 9

The main differences are:

—+
*These errors are estimates, because the search exceeded its time limit.

|Completeness Error |
Objects
1,2,4,56,7,09, 14

3
1,8, 10:11,12: 13

|Structural Error
|KVAL/100

.
e

1
2

3
Recall that the clusters obtained from the Euclidean

distance binary relation were as follows.

parameters as used previously, gave the following
Cluster

graph-theoretic clustering procedure with the same
results.
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Fig. 10. Illustrates the graph of total error after TREE_SEARCHII versus distance from Table 1.
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100 150 200

Total error

Chject 1

ATTRIBUTE VALUE TABLE
6 khkdhkhkhhhkhdkhhkhhhhkhddk
BASE SUPPORTS 4
TOP TYPE 2
5 NO. STICKS 4
NO. PLATES g
NO. BLOBS 8
NO. UPRIGHTS 5
HORIZNTALS 1
3 a’ SLANTEDS a
NO. IEVELS 3
TOP BCS. FOS. 2
1 3
SIMPLE PARTS RELATION CONNECTS-SUPPORTS REIATION
SIMFT TYPE LENGTH AREA VOLWE SP1 SP2 SUPPORTS HOW
1 1 1.60 6.0 0.9 1 5 TRUE 12
2 1 1.00 8.0 2.8 2 5 TRUE 12
3 1 1.00 8.0 6.0 3 5 TRUE 12
4 1 1.00 8.0 ¢.8 4 5 TRUE 12
5 2 1.00 1.00 0.0 5 6 TRUE 23
6 2 1.00 1.00 0.0

TRIPLES RELATION

SAME

SP1 SP2 SP3
1 5 2
1 5 3
1 5 4
1 5 6
2 & 3
2 5 4
2 5 6
3 5 4
3 5 6
4 5 6

Fig. 11. Illustrates the full relational structures of objects 1 and 3 of Fig. 9. {Continued over.)
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Chject 3

SIMPLE PARTS RELATION

ATTRIBUTE VALUE TABLE
KkkkRkEkkkkkkhkkkkhhhE
BASE SUPPORTS
TOP TYPE

NO. STICKS
NO. PLATES
NO. BIOBS
NO. UPRIGHTS
HORIZCNTALS
SLIANTEDS

NO. [EVELS
TOP PCS. FOS.

NbE A HDSNUN S

CONNECTS-SUPPORTS RELATION

SIMPT  TYPE LENGTH AREA  VOLIME SP1 SP2 SUPPORTS HOW
i 2 6. 00 28.26 6.8 1 2 TRUE 23
2 2 6.08 28.26 6.0 2 3 TRUE 21
3 1 2.08 ‘8.8 0.8 3 4 TRUE 11
4 1 4.00 6.0 B.d 3 5 TRUE 11
5 1 4.00 0.0 0.8 3 6 TRUE 11
6 1 4.00 2.@ 2.0 3 7 TRUE 11
#F 1 4.00 0.9 8.0 4 5 TRUE 11

4 6 TRUE 11
4 7 TRUE 11
5 6 TRUE 11
5 7 TRUE 11
6 7 TRUE 11

TRIPLES RELATION

PARALLEL RELATION

PERPENDICULAR RELATION

SP1 SP2 SP3 SAME SPl1  SP2 5Pl SP2
1 2 3 FAISE 1 3 1 2
2 3 4 FAISE 2 3
2 3 S FAILSE
2 3 6 FAISE
2 3 7 FAISE
4 3 5 TRUE
4 3 6 TRLE
4 3 7 TRUE
B 3 6 TRUE
9 3 7 TRUE
6 3 7 TRUWE

Fig. 11 continued.

objects using relational distance.

(2) Objects 12 and 14, which did not group with any of
the other twelve objects using Euclidean distance,
each found a (different) group using relational
distance.

(3) Object 1 falls into two different clusters using
relational distance, but only one using Euclidean
distance.

What caused the differences? Consider object 1 and

object 3 whose relational models are shown in Fig. 11.

As far as the attribute value tables, they differ in

number of sticks, number of uprights, number of

slanted pieces and number of levels. In the highly-
weighted attributes (number of sticks and number of
levels) they differ only by one. In the low-weighted
attributes (number of uprights and number of slanted
pieces) they differ by 3 and 4, respectively. Thus the
total difference was relatively small.

The mapping used in Table 2 from object 1 to object

3 had a structural error of 6 and completeness error of

57. It was a reasonable mapping that sent parts 1, 2, 3
and 6 of object 1 to parts 4, 5, 6 and 1, respectively, of
object 3. The structural error of 6 stemmed from 3
connects/supports errors and 3 parallel errors. The
completeness error was due to parts 4 and 5 of object 1
and parts 2, 3 and 7 of object 3 mapping to no part at
all. The main problems are the lack of connectivity
between the legs and seat of object 3 and its slanted
legs. The information in the attribute-value table is
insufficient to detect all the structural differences.

In the attribute-value table comparisons, object 12
had several more plates than the other objects and
object 14 had several more sticks than the others. Thus
they were too dissimilar in heavily weighted attributes
to the other objects to cluster with them. In relational
matching, however, object 14 shares with objects 1,2, 4,
5, 7 and 9 a seat and four legs in the same connection
and triples relationships. In this case, the relational
matching is more powerful than the attribute-value
table matching. Object 12 was considered similar to
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objects 8, 10 and 13 in the relational matching. This is
really the case of a subset of object 12 having structure
similar to objects 8, 10 and 13, since partial matches
were allowed.

As far as object 1, it was deemed relationally similar
to objects 2,4, 5, 6,7,8,9,10, 13 and 14. Again we find
that a subset of object 1 (the seat and back) has the
same simple parts and same structure as a subset of
objects 8, 10 and 13. Another subset of object 1 (the
seat and four legs) has the same simple parts and same
structure as a subset of all of objects 2, 4, 5, 6, 7,9 and
14. This accounts for object 1 clustering with two
different groups and makes intuitive sense also.

One criticism of these results might be that the total
relational error, as used, was dependent on the number
of N-tuples in the relations of an object. Objects with
more N-tuples would necessarily generate more errors.
To study the effects of this problem, we ‘normalized’
the total errors by dividing the error for object i vs
object j by the total number of N-tuples in object i plus
the total number of N-tuples in object j

The results were, again, three clusters.

Cluster Objects
1 1,2,4,5,6,7,9, 14
2 3
31,2,8,10,11, 13
4 12

This as opposed to the former relationally obtained
clusters.

Cluster Objects
1 1,2,4,56,7,9,14
2 3

3 1,810,11,12,13.

These results are, of course, somewhat dependent on
the threshold that produced the binary relation to be
clustered. The threshold was again chosen so that the
binary relation would include the same number of
pairs as the previous two binary relations. Object 12
was still deemed similar to objects 8, 10 and 13, but the
addition of object 2 to cluster 3 forced object 12 out.

VII. CONCLUSIONS

We have defined a relational model to be used as a
rough description of three-dimensional objects, such
as furniture. A database of such models has been
constructed and used in a preliminary set of matching
experiments. The database is currently organized into
clusters of objects with similar features, based on
the Euclidean distance between their attribute-value
tables. When an unknown object is analyzed, its
attribute-value table is compared with the centroid of
each such cluster and relational matching takes place
against the objects in those clusters deemed similar
enough. The relational matching produces a mapping
from the unknown object to the model, plus a measure
of their relational distance.
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Qur experiments comparing relational distance to
Euclidean ‘feature’ distance showed that they are
related, but not similar enough to trust the attribute
value clusters. Clustering is a viable alternative, but it
should be based on relational clusters. This relational
grouping introduces some important new problems to
study. In particular, how can we define the centroid of
arelational cluster and how do we match an unknown

object against the centroid description? These and
other methods of reducing the number of models that
participate in full relational matching are crucial to the
use of a large object database. Thus, the results of the
experiments reported here serve to define important
new work for the future.
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