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This paper presents a performance metric for the document structure extraction
algorithms by finding the correspondences between detected entities and ground
truth. We describe a method for determining an algorithm’s optimal tuning param-
eters. We evaluate a group of document layout analysis algorithms on 1600 images
from the UW-III Document Image Database, and the quantitative performance mea-
sures in terms of the rates of correct, miss, false, merging, splitting, and spurious
detections are reported. c© 2001 Elsevier Science (USA)

1. INTRODUCTION

The well-defined and unambiguous performance measures, combined with reproducible
experiments, are necessary in every area of science and technology. However, it is clear
that many of the early works on document analysis systems provided illustrative results
and hardly any had their techniques tested on significant-sized data sets and gave quan-
titative performance measures [1]. The main reasons are the lack of precise and concise
mathematical document model, the lack of accurate document ground truth data to train
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and test the algorithms, and the lack of appropriate and quantitative performance metrics
and evaluation protocol. Since document analysis techniques are moving to the consumer
market, they must perform nearly perfectly. This means that they must be proved out on
significant-sized data sets and that there must be suitable performance metrics for each
kind of information a document analysis technique infers. From the user’s point of view,
the appropriate measure of a document recognition system is the total cost of document
conversion, typically dominated by the cost of correcting residual errors in the output. How-
ever, such a measure is not necessarily appropriate for a researcher who seeks to measure
progress in developing an algorithm [2]. A developer might use a number of metrics at
an early stage of development, and an overall cost to evaluate the final system. Different
performance metrics may be important at different stages of system development.

Currently, no standard testing procedures exist for measuring and comparing algorithms
within a document structure analysis system. Randriamasy and Vincent [3] proposed a
pixel-level and region-based approach to compare segmentation results and manually gen-
erated regions. An overlap matching technique is used to associate each region of one of
the two sets to the regions in the other set that it has a nonempty intersection. Since the
black pixels contained in the regions are counted rather than the regions themselves, this
method is independent of a representation scheme of regions. Quantitative evaluation of
segmentation is derived from the cost of incorrect splittings and merging. Working on the
bit-map level, their technique involves extensive computation. They assume there is only
one text orientation for the whole page. Kanai et al. [2] proposed a text-based method to
evaluate the zone segmentation performance. They compute an edit distance that is based
on the number of edit operations (text insertions, deletions, and block moves) required to
transform an OCR (Optical Character Recognition) output to the correct text. The cost of
segmentation itself is derived by comparing the costs corresponding to manually and au-
tomatically zoned pages. This metric can be used to test “black-box” commercial systems,
but is not able to help users categorize the segmentation errors. This method only deals with
text regions. They assume the OCR performance is independent of the segmentation per-
formance. Garris [4] proposed a scoring method that computes the coverage and efficiency
of the zone segmentation algorithm. The box distance and box similarity between zones
are computed to find the matching pairs. This technique provides some numbers (scores),
which are not able to help users analyze errors.

This paper introduces quantitative performance metrics for each kind of information a
document structure analysis technique infers. A large quantity of ground truth data, varying
in quality, is required in order to give an accurate measurement of the performance of an
algorithm under different conditions. In the University of Washington Document Image
Database series [8, 10], there are 1600 English document images that come with manually
edited ground truth of entity bounding boxes. These bounding boxes enclose text and
nontext zones, text lines, and words. We do the performance evaluation by determining
the correspondence between the ground truth document structure and the automatically
computed document structure, making the comparison between two structures, and reporting
the performance measures.

In this paper, we first give a formal definition of the hierarchical document structure in
Section 2. In Section 3, a set of quantitative metrics are presented to evaluate the perfor-
mance of the document analysis algorithms. We also describe a method for automatically
selecting an algorithm’s parameters. Finally, the performance evaluation results of a group
of document layout analysis algorithms on the UW-III database are presented in Section 4.
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2. HIERARCHICAL DOCUMENT STRUCTURE

Document structure is a hierarchical structure, which includes a set of entities at different
levels of the hierarchy. Each entity is represented by a polygonal area on the image and is
associated with a list of attributes, and there is a certain reading order among entities on the
same hierarchical level. In this section, we present a formal definition of the hierarchical
document structure.

A polygonal area on a document page is given by a pair (θ, I ), where θ ∈ � speci-
fies the label that designates the physical type of content, i.e., text block, text line, word,
table, equation, drawing, half-tone, etc., and I is the area enclosed by boundary of the
polygon. A polygon is homogeneous if all of its area is of one physical type and there
is a standard reading order for the content within the area. Two polygons are physically
adjacent if each has a significant length of a side that near parallels and are separated by a
divider.

A set A of nonoverlapping homogeneous polygonal areas and the properties associated
withA is called a polygonal structure. A polygonal structure is associated with the following
properties:

1. Content Type. � is the set of physical types (text block, text line, word, table,
equation, drawing, etc.). C : A → � associates polygonal areas with their physical types of
content. � is the set of functional types (paragraph, section, word, title, heading, caption,
abstract, author, footnote, page number, etc.). M : A → � associates polygonal areas with
their functional types of content.

2. Content. � is the alphabet consisting of symbols. Let �∗ be the set of all sequences
of symbols from �. Let At ⊆ A be the set of text polygonal areas. O: At → �∗ associates
text polygonal areas with their contents.

3. Format Attribute. We denote by F the set of format attributes (font type, font size,
font style, justification, indentation, etc.). S: � → F specifies the format attributes for each
functional type of content.

4. Location. We denote by L the set of qualitative locations (top left, bottom, middle,
etc.). P ⊆ � × L specifies the permitted locations of different types of content.

5. Spatial Relation. D is the set of dividers (white space, ruling, etc.). T : � × � → D
specifies the divider used between different types of content (interline spacing, intercolumn
spacing, spacing between figure and caption, etc.).

6. Reading Order. Let A = {A1, . . . , AK } be a set of polygonal areas. The reading
order R of A is a tuple (r1, . . . , rK ), which is a permutation of (1, . . . , K ).

V : ℘(A) → 	 specifies measurement made on subset of A, where 	 is the measurement
space.

The document structure is a hierarchical structure. Let 
 be the set of all polygonal
structures on a given document page. We define the relation ⊆
 in 
 as x ⊆
 y if and only
if x ⊆ y and x, y ∈ 
. We denote by � = {θ1, θ2, . . . , θk} the set of content types on the
document page. Let {
1, . . . , 
k} be a partition of 
, where each 
i is a set of mutually
disjoint polygonal structures


i = {φ | φ ∈ 
, C(φ) = θi }, (1)

and if there exists 
 j and j > i , then ∀ φp ∈ 
i , either φp ⊆
 
 j , or φp and 
 j are disjoint.
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FIG. 1. A document hierarchy, where 
i represents a subset of physical document entities on a certain level.

An example of the document hierarchy, where each level consists of a set of physical
entities, is shown in Fig. 1. Figure 2 illustrates a document hierarchy where each entity is
associated with a logical label. Given a document image, the goal of document structure anal-
ysis is to extract a most likely hierarchical structure based on observations from the image.

Document structure analysis usually contains the following subproblems:

� Layout analysis extracts a set A of homogeneous polygonal areas from a document
page.

� Logical analysis (M,R) involves assigning functional labels to each entity of the
page, and ordering the entities according to their read order.

FIG. 2. A document hierarchy, where 
i represents a subset of logical document entities on a certain level.
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� Content recognition O associates entities with their contents.
� Page style (S, T,P) describes the typographical properties for entities with different

content types.

3. PERFORMANCE EVALUATION OF DOCUMENT STRUCTURE ANALYSIS

Let g designate the ground truth structure, d the detected structure, and u(g, d) the utility
of (g, d). The expected performance of an algorithm is then

f =
∑

g

∑
d

u(g, d)P(g, d), (2)

where P(g, d) is the joint probability of the algorithm, output is d, while the ground truth
is g [5].

For each structure that we use to describe a document, there is an associated metric that
measures the difference between a structure that is automatically produced and the ground
truth structure. We present the utility function and performance measure for the document
analysis algorithms in this section. Given the ground-truthed and detected structures, the
steps of performance evaluation are as follows:

1. Match entities from two structures based on their area overlap.
2. Evaluate segmentation (correct, misdetection, false alarm, splitting, and merging)

of entities.
3. For matched entities, evaluate detection of their properties.

Because the assessment tests only observe a finite sample, there is of necessity a difference
between the observed performance on the test sample and the long-term performance on
the total population. The issue of making the comparison between the specification and the
observed performance is addressed by Haralick [6].

3.1. Matching of Detected Structure with the Ground Truth

There are two problems in making the evaluation. The first is one of correspondence:
which entities of the ground truth set correspond to which entities of the automatically
produced set. Once this correspondence is determined, then a comparison of detected entities
with the ground truth entities can proceed.

Suppose we are given two sets, G = {G1, G2, . . . , G M} for ground-truthed entities and
D = {D1, D2, . . . , DN } for detected entities. The comparison of G and D can be made in
terms of the following two kinds of measures,

σi j = Area(Gi ∩ D j )

Area(Gi )
and τi j = Area(Gi ∩ D j )

Area(D j )
, (3)

where 1 ≤ i ≤ M , 1 ≤ j ≤ N , and Area(A) represents the area of A. The measures in the
above equation constitute two matrices � = (σi j ) and T = (τi j ). Note that σi j indicates
how much portion of Gi is occupied by D j , and τi j indicates how much portion of D j

is occupied by Gi . Our strategy of performance evaluation is to analyze these matrices to
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FIG. 3. Correspondence between ground truth and detected structures.

determine the correspondence between two sets of entity areas:

� one-to-one match (σi j ≈ 1 and τi j ≈ 1);
� one-to-zero match (σi j ≈ 0 for all 1 ≤ j ≤ N );
� zero-to-one match (τi j ≈ 0 for all 1 ≤ i ≤ M);
� one-to-many match (σi j < 1 for all j , and

∑N
j=1 σi j ≈ 1);

� many-to-one match (τi j < 1 for all i , and
∑M

i=1 τi j ≈ 1);
� many-to-many match (others).

An example of matching between a set of ground truth entities and the detected entities is
illustrated in Fig. 3. By computing their area overlap, we construct two matrices, � = (σi j )
and T = (τi j ), shown in Table 1. In this example, we find a one-to-one match (G1 to D1),
a one-to-many match (G2 to D2 and D3), a one-to-zero match (G3 to nothing), and a
many-to-many match (G4, G5 and G6 to D4 and D5).

3.2. Performance Measure of Layout Analysis

Once the matching between detected structures and ground truth structures is established,
a performance measure can be computed. A one-to-one match means an object Gi is
correctly identified by the segmentation process as D j . A one-to-zero match is the case
when a certain object Gi is not detected by the segmentation (misdetection), and vise versa
for the zero-to-one match (false alarm). If an entity Gi matches to a number of detected

TABLE 1

The Area Overlap Matrices Computed from the Example in Fig. 3

D1 D2 D3 D4 D5 D1 D2 D3 D4 D5

G1 0.95 G1 0.9
G2 0.45 0.51 G2 0.85 0.91
G3 G3

G4 0.7 G4 0.4
G5 0.37 0.29 G5 0.25 0.3
G6 0.8 G6 0.45

� = (σi j ) T = (τi j )
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TABLE 2

Weights Used for Computing the Performance

Measure of Layout Analysis

Correct Merge Split Miss False Spurious

0.0 0.5 0.5 1.0 1.0 1.0

entities, we call it a splitting detection. It is a merging detection when two or more objects in
G are identified as an object D j . The many-to-many matches are called spurious detections.

Let us denote the probability of a matching (Gm ⊂ G is identified as Dm ⊂ D in the
sample) as

Pm(G, D) = |Gm | + |Dm |
|G| + |D| , (4)

where |A| denotes the size of the set A. Then the performance measure of a layout analysis
process is defined as

flayout =
∑
m∈M

W m Pm(G, D), (5)

where M = {correct, miss, false, merging, splitting, spurious} is the set of possible match-
ing, and W m is the weight assigned to each type of matching.

For the example shown in Fig. 3, we determine that G1 is correctly detected; G2 is split
into D2 and D3; G3 is missed; and G4, G5, and G6 are merged and split into D4 and D5. In
the experiment, we choose the weights as in Table 2. Therefore, the performance measure
for the example is

flayout = 0.0 × (1 + 1) + 0.5 × (1 + 2) + 1.0 × 1 + 1.0 × (3 + 2)

6 + 5
= 0.68.

Each kind of matching can be further divided into different categories. For example,
merging text across columns apparently should be given more penalty than merging two
adjacent text blocks within the same column. A many-to-one matching between ground
truth zones and detected zones can be divided into the following possible detection errors:

� merge text and nontext,
� merge text across columns,
� merge text zones with different reading directions, and
� merge adjacent homogeneous text.

3.3. Performance Measure of Classification

A classification module classifies each extracted structure into one of the predefined
categories. Labeling of the physical and functional types, detection of format attributes,
and isolated character recognition are typical classification problems. The output of the
classification process is compared with the labels from the ground truth in order to evaluate
the performance of the algorithm. Let P(t, a) be the probability of observing a unit, in
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TABLE 3

An example of a Contingency Table Showing the

Classification Results of Text and Nontext Zones

Text Nontext

Text P (t, t) P (t, n)
Nontext P (n, t) P (n, n)

Note. Rows represent the true categories and columns rep-
resent the assigned categories.

the sample, whose true category is t , and whose assigned category is a. The expected
performance is

flabel =
∑
t∈�

∑
a∈�

W (t, a)P(t, a), (6)

where � is the set of categories, and W (t, a) is the weight associated with different assign-
ment. A contingency table is computed to indicate the number of entities of a particular class
label that are identified as members of another class. The misclassification rate is defined
as

fclassification =
∑
t∈�

∑
a∈�, a �=t

P(t, a). (7)

An example of a contingency table showing the classification results of text and nontext
zones is shown in Table 3. We denote by P(n, t) the fractions of entities in the sample that
are truly nontext but are assigned text, and so on.

The misclassification rate is the sum of P(t, n) and P(n, t),

fclassification = P(n, t) + P(t, n).

The misdetection rate of text entity is computed as

P(n | t) = P(t, n)

P(t, t) + P(t, n)
,

and the false-alarm rate of text entity is computed as

P(t | n) = P(n, t)

P(n, t) + P(n, n)
.

3.4. Performance Measure of Reading Order Detection

Let A = {A1, . . . , AK } be the set of entities that have been correctly identified. The
detected reading order R̂ is a tuple (r̂1, . . . , r̂K ), which is a permutation of true reading order
R = (r1, . . . , rK ). The problem of evaluating a reading order determination algorithm can
be reduced to computing the minimum number of moves required to obtain R̂ from R. The
problem can be modeled as a sorting problem where a string of K integers ordered in a
random manner must be sorted in ascending (or descending) order [7].
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3.5. Systematic Parameter Selection of Algorithms

Performance evaluation serves two purposes. One is comparing the ground truth and
algorithm output and producing a quantitative overall measure of the algorithm. Another is
to help the developers analyze the results and their algorithms. In this section, we describe a
method for determining the optimal algorithm tuning parameters given the training data. A
model-checking method for algorithms based on parametric document models is presented
in [14, 19].

In document analysis algorithms, tuning parameters (thresholds) are often used. These
parameters have been traditionally chosen by trial-and-error. In this section, we describe
a systematic parameter estimation method by optimizing the algorithm performance over
the training data. The parameter estimation problem can be stated as follows: Given an
algorithm with parameter X = (X1, X1, . . . , X N )T, search for the parameter vector X that
optimizes expected performance f (X ). This process is equivalent to fitting the algorithm’s
underlying model to the data. Here we describe an engineering method based on the given
criterion function, instead of the traditional trial-and-error approach.

When a representative sample set of a domain is available, and a quantitative perfor-
mance metric is defined, we can tune the parameter values of an algorithm and select a set
that produces the optimal performance on the input population. Suppose the performance
measure f is the cost, then the best tuning parameter vector is X∗ after

X∗ = arg min
X

f (X ) (8)

and X = (X1, X2, . . . , X N )T is the vector of parameters.
We use an iterative first-order search method to find the optimal parameters,

Xq = Xq−1 + k∗
q Sq . (9)

Here q is the iteration number, Sq is the search direction, and k∗
q is a scalar multiplier

determining the amount of change in X for the iteration. The search direction is taken as
the negative of the gradient of the function,

Sq = −∇ f (X ). (10)

To compute the gradient of the function, we consider a first-order Taylor series expansion
of f (X ) about X0

f (X ) � f (X0) + ∂ f (X0)

∂ X
�X,

where

�X = X − X0.

By changing only one parameter Xi by �Xi ,

�X = (0, 0, . . . , �Xi , . . . , 0, 0)T,
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we have

f (X ) � f (X0) + ∂ f (X0)

∂ Xi
�Xi .

This leads to

∂ f (X0)

∂ Xi
= f (X ) − f (X0)

�Xi
.

By tuning N parameters one by one and obtaining the corresponding performance, the
gradient function ∇ f (x) can be calculated as

∂ f (X0)

∂ X
=

(
∂ f (X0)

∂ X1
, . . . ,

∂ f (X0)

∂ X N

)
. (11)

After finding the search direction, we use the golden section algorithm [11, 12] to find the
best scalar k.

This method is similar to the back-propagation algorithm of neural networks, which is
a first-order approximation of the steepest-descent technique in the sense that it depends
on the gradient of the instantaneous error surface in weight space [13]. Like any gradient
descent search, our parameter tuning method has problems with efficiency and conver-
gence. It runs the risk of being trapped in a local minimum, where every small change
in parameters increases the cost function. Usually, however, a reasonably good solution
can be found after a small number of iterations. Simulated annealing [11] provides a way
of escaping local minimum by taking some random steps instead of going greedily for
the quick, nearby solution. In other words, the method sometimes goes uphill as well as
downhill in the search space, determined by a control parameter (temperature). However,
the assignment of an annealing schedule may require physical insight and/or trial-and-error
experiments.

4. EXPERIMENTAL RESULTS

In this section, we briefly present a rule-based algorithm that extracts document layout
structure using the bounding boxes of different entities [15]. Then we report the performance
of each module on the images from the UW-III Document Image Database.

4.1. UW Document Image Databases

A large quantity of ground truth data, varying in quality, is required in order to give an
accurate measurement of the performance of an algorithm under different conditions. At the
University of Washington, we have produced the UW Document Image Database [8, 9] series
of ground truth databases on CDROM for the document image analysis and recognition
communities. The first two databases in the series, UW-I and UW-II, provide a variety
of ground truth information about their constituent documents, including zone and page
bounding boxes, attributes, and ASCII text. In order to facilitate the training and evaluation
of document layout analysis algorithms, UW-III [10] includes text line bounding boxes
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TABLE 4

Ground Truth Information Provided for Each

Page in the UW-III Document Image Database

Structure Ground truth

Layout Hierarchy of bounding boxes enclosing
page, header, footer, text and nontext zones,
text lines, and words for each page.

Logical Label of content type for each zone.
Reading order of text and nontext zones,
text lines, and words.

Content Text content for each text zone.
Style Page and zone format attributes.

and word bounding box ground truth, in addition to the ground truth information provided
in the previous database releases. Ground truth for nontext structures are also provided
in the database, such as chemical formulas, mathematical formulas, and engineering line
drawings.

The UW-III contains a total of 1600 English document images randomly selected, copied,
and scanned from scientific and technical journals. Each page contains a hierarchy of
manually verified page, zone, text line, and word entities with bounding box and in the
correct reading order. The text ground truth and zone attributes are attached to each zone
entity. The zone attribute includes information about the type of the zone (i.e., text, figure,
table, etc.), the dominant font size, the dominant font style, and the justification. A list of
ground truth information for each page is provided in Table 4.

The UW document image databases can be utilized by the document understanding
community as a common platform to develop, test, and evaluate their systems. Based on
the ground truth data, we can evaluate the performance of document analysis algorithms
and build statistical models to characterize various types of document structures. For each
structure that we use to describe a document, there is an associated metric that measures
the difference between a structure that is automatically produced and the ground truth
structure.

4.2. Algorithm Description

The input of the algorithm is a set of bounding boxes that enclose the connected compo-
nents on a binary document image. Figure 4a shows a segment of a document image, and
Fig. 4b shows the bounding boxes produced in this step.

The document page segmentation roughly divides the image into a list of zones by
analyzing the spatial configuration of bounding boxes. The analysis is done by projecting
bounding boxes onto vertical and horizontal lines [16]. A projection profile is a frequency
distribution of the bounding boxes on the projection line. Figures 4c and 4d show the
horizontal and vertical projection profiles of the bounding boxes in Fig. 4b.

A document image can be segmented using a recursive X–Y cut [17] procedure based on
the bounding boxes. At each step, the horizontal and vertical projection profiles are calcu-
lated. Then a zone division is performed at the most prominent valley in either projection
profile. The process is repeated recursively until no sufficiently wide valley is left. The free
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FIG. 4. (a) An English document, (b) bounding boxes of connected components of black pixels, (c) a horizontal
projection profile, and (d) a vertical projection profile.

parameters used in the page segmentation algorithm are as follows:

� the minimum connected component width and height: w1 and h1.
� the maximum connected component width and height: w2 and h2.
� the maximum height/width aspect ratio of connected component: r1.
� the minimum width of the valley in the vertical projection profile, w3, and in the

horizontal profile, w4. If w3 or w4 is smaller than a threshold, no cut will be applied.
� the maximum height/width aspect ratio of the current region: r2. If r2 is larger than

a threshold, no further cut will be applied.

Inside each zone generated from the page segmentation process, the spatial configuration
of bounding boxes is analyzed to extract text lines. From Figs. 4c and 4d, it is clear that the
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text lines can be extracted by finding the distinct high peaks and deep valleys at somewhat
regular intervals in the horizontal projection profile. The free parameters used in this text
line extraction algorithm are listed as follows:

� the minimum height of text line: h3.
� the maximum height of text line: h4.
� the threshold for detecting rule: r3. If a detected text line contains only one com-

ponent, and the text line’s aspect ratio is larger than r3, the text line is considered as a
rule.

� the minimum size of connected components accepted for projection: w5 and h5.
� the maximum size of connected components accepted for projection: w6 and h6.
� the maximum aspect ratio of connected components accepted for projection: r4.

Within each textual zone, text lines are merged into text blocks. The beginning of a
text block, such as a paragraph, math zone, and section heading, is usually marked either
by changing the justification of the current text line, by putting extra space between two
text lines, or by changing font size or font style. So when a significant change in intertext
line spacing or justification occurs, it is very likely that a new text block begins. The free
parameters used in this algorithm are:

� justification threshold: t1.
� interline spacing threshold: t2.

4.3. Parameter Tuning

The parameters of each algorithm are decided using the optimization process described
in Section 3.5. For the segmentation process, the weights we use for computing the perfor-
mance are given in Table 2. Therefore, our performance criterion is the cost for converting
the detected layout structure to the ground truth.

For each algorithm, we start with their default parameters obtained by observing a small
number of images, then we tune the parameters by minimizing the algorithm’s cost on
the images in the UW-III database, until the improvement of performance is less than a
threshold. The algorithms’ cost after the parameter tuning, compared to their performance
using the default parameters, is shown in Table 5. The average improvement is 17.6% with
respect to the original performance.

The numbers and percentages of miss, false, correct, splitting, merging, and spurious
detections of each algorithm after the optimization process are presented in the follow-
ing sections. The parameter values before and after the optimization process are also
given.

TABLE 5

The Performance of Algorithms before and after the

Optimization Process

Page Line Block

Original 0.143 0.022 0.141
Optimized 0.104 0.017 0.137
Improved by 27.3% 22.7% 2.8%
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TABLE 6

The Default and Optimized Parameters for the Page Segmentation

w1 h1 w2 h2 r1 r2 w3 w4

Default 3 3 1800 2200 50 5 30 30
Optimized 3.4 3.3 2615 2187 52.6 3.1 39.1 34.4

4.4. Performance of Page Segmentation

Given a set of connected components computed from a document image, page segmenta-
tion partitions the components into a set of zones, such that each zone is homogeneous (text
zones with homogeneous read order, and nontext zones). The parameters before and after the
optimization are given in Table 6. Table 7 illustrates the numbers, and percentages of miss,
false, correct, splitting, merging and spurious detections with respect to the ground truth
zones as well as the algorithm output. Since the page segmentation finds the coarse homoge-
neous zones, we do not consider the merging of adjacent text within the same column as error.

This algorithm is restricted to bi-directional X–Y cuttable layouts. It is also sensitive
to severe page skew. So deskew must be done before applying the projection. To decide
whether to apply a cut on a projection profile valley, a threshold on the width of valley is
used. Instead of having a global value, the threshold might be adaptively determined by
considering the width and depth of the projection profile valley, the size of nearby connected
components, and the aspect ratio of current zone.

4.5. Performance of Text Line Segmentation

Given a set of homogeneous text zones, and the connected components enclosed by each
zone, the text line segmentation partitions the components into a set of text lines. In this
experiment, the ground truth text zones are used as the input. The parameters before and
after the optimization are given in Table 8. The numbers and percentages of miss, false,
correct, splitting, merging, and spurious detections of the text line extraction algorithm are
shown in Table 9.

The advantages of this algorithm are that it is very simple and fast, and it produces a very
low misdetection rate. Table 9 shows that most of the detection errors are text lines being
merged. This algorithm is sensitive to skew (global or local), smear, warping, and noise. If
the intertext line spacing is very small and the superscript, subscript, or the ascender and
descender of adjacent lines overlap or touch each other, the text lines are usually merged.

4.6. Performance of Text Block Extraction

Given a set of text lines within the same column, text block extraction partitions the text
lines into a set of text blocks. In this experiment, the ground truth text lines are used as
the input and the column information is assumed to be known. The default and optimized
parameters are given in Table 10. The performance of the text block extraction algorithm
is shown in Table 11. Its total cost is 13.76%.

This algorithm utilizes the paragraph formatting attributes as the cues for text block
segmentation. Instead of the global threshold for the interline spacing and the justifica-
tion, a local threshold can be adaptively determined based on the text font size within a
homogeneous region.
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TABLE 7

Performance of the X–Y Cut Page Segmentation on 1600 Pages from the UW Database

Total Correct Splitting Merging Miss–False Spurious

Ground truth 24216 21019 462 2186 245 304
(86.80%) (1.91%) (9.03%) (1.01%) (1.25%)

Detected 14848 11346 1883 710 592 317
(76.41%) (12.68%) (4.78%) (3.99%) (2.14%)

TABLE 8

The Default and Optimized Parameters for the Text Line Segmentation

h3 h4 r3 w5 h5 r4

Default 10 500 5 3 3 50
Optimized 8.4 1000 7.4 41 20 44.3

TABLE 9

Performance of the Text Line Extraction Algorithm on 1600 Pages

from the UW Database

Total Correct Splitting Merging Miss–False Spurious

Ground truth 105439 100471 124 4543 157 33
(95.39%) (0.12%) (4.31%) (0.15%) (0.03%)

Detected 102494 100471 383 1504 4 132
(98.03%) (0.37%) (1.47%) (0.00%) (0.13%)

TABLE 10

The Default and Optimized Parameters

for the Text Block Extraction

t1 t2

Default 20 30
Optimized 17.8 26.2

TABLE 11

Performance of Text Block Extraction on 1600 Pages from the UW Database

Total Correct Splitting Merging Miss–False Spurious

Ground truth 21738 16680 1670 3014 2 372
(76.73%) (7.68%) (13.87%) (0.01%) (1.71%)

Detected 23302 16680 5191 1094 0 337
(71.58%) (22.28%) (4.69%) (0.00%) (1.45%)
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5. SUMMARY

This paper introduced quantitative performance metrics for the document structure analy-
sis algorithms. A large quantity of ground truth data, varying in quality, is required in order to
give an accurate measurement of the performance of an algorithm under different conditions.
In the University of Washington English Document Image Database-III [10], there are 1600
English document images that come with manually edited ground truth of entity bounding
boxes and their properties. These bounding boxes enclose text and nontext zones, text lines,
and words. We do the performance evaluation by determining the correspondence between
the ground truth document structure and the automatically computed document structure,
making the comparison between two structures, and reporting the performance measures.
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