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Abstract

The detection of correlations is a data mining task of increasing im-
portance due to new areas of application such as DNA microarray analy-
sis, collaborative filtering, and text mining. In these cases object similar-
ity is no longer measured by physical distance, but rather bythe behavior
patterns objects manifest or the magnitude of correlationsthey induce.
Many approaches have been proposed to identify clusters complying
with this requirement. However, most approaches assume specific clus-
ter models, which in turn may lead to biased results. In this paper we
present a novel methodology based on linear manifolds whichprovides
a more general and flexible framework by which correlation clustering
can be done. We discuss two stochastic linear manifold cluster mod-
els and demonstrate their applicability to a wide range of correlation
clustering situations. The general model provides the ability to capture
arbitrarily complex linear dependencies or correlations.The specialized
model focuses on simpler forms of linear dependencies, yet general-
izes the dependencies often sought by the so called “pattern” clustering
methods. Based on these models we discuss two linear manifold clus-
tering algorithms, the later a fine-tuned derivative of the first targeting
simpler forms of correlation and “pattern” clusters. The efficacy of our
methods is demonstrated by a series of experiments on real data from the
microarray and collaborative filtering domains. One of the experiments
demonstrates that our method is able to identify statistically significant
correlation clusters that are overlooked by existing methods.
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1 Introduction

Classical clustering methods as well as subspace methods [1, 2, 3, 4] fo-
cus on grouping objects with similar values. They define object similarity by
the “physical” distance between the objects over all or a subset of dimensions,
which in turn may not be adequate to capture correlations in the data. A set of
points may be located far away from each other yet induce large correlations
among some subset of dimensions. The detection of correlations is a an impor-
tant data mining task because correlations may reveal a dependency or some
cause and effect relationship between the features under consideration. An-
other important application of correlations is in data modeling where correla-
tions may be used to carry out (local) dimensionality reduction by eliminating
correlated (redundant) features. In recent studies correlations were often dis-
cussed and presented in terms of the behavior patterns objects manifest, hence
the namepattern clusteringoften associated with methods amid at this type
of problem. In gene expression microarray clustering the goal is to identify
groups of genes that exhibit similar expression patterns under some subset of
conditions (dimensions), from which gene function or regulatory mechanisms
may be inferred. In recommendation or collaborative filtering systems, sets of
customers with similar interest patterns need to be identified so that customers’
future interests can be predicted and proper recommendations be made. From
a correlation point of view it can be shown that objects exhibiting coherent be-
havior patterns induce large correlations among their defining features. Hence,
the identification of large correlations is a means by whichpattern clusterscan
also be discovered.

The most widely studiedpattern cluster modelsare theshift andscaling
models, which induce only positive correlations and are typically referred to
as biclusters [5, 6, 7] in the microarray clustering literature, andslope one
clusters in the collaborative filtering literature [8]. In the case of a shift pattern
the behavior pattern of one object under a set of features is offset from another
by some constant, whereas in the case of scaling the behaviorpattern of one
object is a scaler multiple of another. The corresponding linear dependencies
between each pair of featuresxi , x j captured by these two types of patterns
are of the formx j = xi + ci j and x j = bi j xi respectively, wherebi j andci j

are constant coefficients. From the above it is now clear why the shift and
scaling patterns induce large correlations. Fig. 1 showsparallel coordinate
plots of three different types of patterns clusters each containing ten points
embedded in an 8-dimensional space: a shift pattern inducing only positive
correlations, a scaling pattern also inducing only positive correlations, and a
pattern inducing both positive and negative correlations.These type of plots
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Figure 1. Parallel coordinate plots of three different pattern clusters.

are used to emphasize symmetry or cohesion in behavior patterns. Note that the
pattern inducing negative correlations does not manifest the same symmetry as
the other two.

It has recently been suggested [9, 10, 11, 12] that other types of informa-
tion carrying patterns such as patterns inducing negative correlations or pat-
terns capturing more complex linear dependencies, such asx j = bi j xi + ci j

of which the shift and scaling are special cases, are completely overlooked
by most clustering methods, and that current state of the artalgorithms are
not flexible enough to mine different patterns simultaneously. It has also been
suggested [7] that traditional similarity measures, such as thecosineor the
Pearson correlationmeasures, are not adequate to capture correlations or pat-
tern clusters when those localize to subspaces of the data, as they are strongly
biased by the data residing the in the “irrelevant” dimensions. While there
is no consensus on what types of patterns should be considered meaningful,
in practice pattern based clustering algorithms postulatea unique underlying
“globally expressed” pattern or cluster model, while overlooking or rejecting
the possibility that other types of information carrying patterns may co-exist
in the data. This in turn is less truthful to the data and may lead to a large bias
in the results. Therefore, a method which would target correlations in general
and not specific models would be beneficial.

Avoiding (for the moment) mathematical abstraction, alinear manifoldis
simply a translated subspace, which can be visualized as a line, plane, hyper-
plane, etc., depending on its dimensionality. In many problem domains it as-
sumed that linear models are sufficient enough to describe or capture the data’s
inherent structure. Typical examples include linear regression, PCA, and sub-
space clustering, which are all special cases of linear manifold learning. Yet
very few remote attempts have been made to devise clusteringmethods able to



identify or learnmixtures of linear manifolds. Moreover, very often observed
real data is a consequence of a process governed by a small number of factors.
In the data space this is manifested by the data points lying or being located
close to surfaces such as linear or non-linear manifolds whose intrinsic dimen-
sionality is much smaller than the dimensionality of the data. Linear manifold
clustering[13] seeks to identify groups of points that fit or are embedded in
lower dimensional linear manifolds. One of the main advantages of the linear
manifold clustering paradigm is that it is applicable to a wide range of clus-
tering applications or problem domains. This is because a linear manifold is a
generalization of more common and specific cluster models. It can easily be
shown that “classical” clusters (hyper-spherical/ellipsoidal in shape) such as
the ones sought by the K-means algorithm [14], and subspace clusters such as
those discussed in [1, 2, 15] are special cases of linear manifolds. In the context
of correlation, it can be shown that common to all forms of linear correlation
and linear dependencies, is that in the data space they manifest themselves as
lines, planes, and generally speaking as linear manifolds [16, 17, 18]. Hence,
the detection of linear manifolds is a means by which correlations or linear
dependencies may also be identified.

Correlations correspond to linear dependencies between two or more fea-
tures (variables or attributes) of the data, and can therefore be discussed from
this view point. These linear dependencies can be a simple asthose sought
by pattern clustering methods or may be more complex where one or more
features are linearly dependent on a combination of others.Needless to say
the more complex dependencies are harder to interpret whichis why many
methods focus on simpler models.

In the following we discuss the application of linear manifold clustering to
the problem of correlation clustering. In section 2 we discuss a generallinear
manifold cluster modeland demonstrate its ability to capture arbitrarily com-
plex linear dependencies. In section 3 we discuss aline cluster model, which
is a specialization of the linear manifold cluster model. The line cluster model
targets simpler linear dependencies of the formx j = bi j xi + ci j , generalizing
the type of correlations sought by pattern clustering methods, and thus recti-
fying the their shortcomings. In sections 4 and 5 we present two algorithms.
The first called LMCLUS (Linear Manifold CLUStering) aimed at identifying
general linear manifold clusters, and the second called SLCLUS (Subspace
Line CLUStering) a fine-tuned specialization aimed at line clusters which are
embedded in axis-parallel subspaces. In section 6 we present a series of ex-
periments on real data sets demonstrating the efficacy of our methods, and in
section 7 we conclude the paper.



2 The Linear Manifold Cluster Model

A linear manifold is a subspace that may have been translatedaway from
the origin. A subspace is a special case of a linear manifold that contains the
origin. Geometrically, a 1D manifold can be visualized as a line embedded in
the space, a 2D manifold as a plane, and a 0D manifold as a point. Classical
clustering algorithms such as K-Means assume that each cluster is associated
with 0D manifold (a point typically the cluster center), andtherefore omit
the possibility that a cluster may have a non-zero dimensional linear manifold
associated with it. For the sake of completeness we give a formal definition of
a linear manifold.

Definition 1 (Linear Manifold) L is a linear manifold of vector space V if
and only if for some subspace S of V and translation t∈ V, L = {x ∈
V| f or some s∈ S, x = t + s}. The dimension of L is the dimension of S ,
and if the dimension of L is one less than the dimension of V then L is called
a hyperplane. A linear manifold L is rectangularly bounded if and only if for
some translation t and bounding vectors aL and aH , L = {x ∈ V| f or some s∈
S, aL ≤ s≤ aH , x = t + s}. A rectangularly bounded linear manifold has finite
extent and is localized with center t+ aL+aH

2 . In the case that aL = −aH, its
center is the translation t.

Thelinear manifold cluster modelhas the following properties: The points
in each cluster are embedded in a lower dimensional linear manifold of finite
extent. The intrinsic dimensionality of the cluster is the dimensionality of the
linear manifold. The manifold is arbitrarily oriented. Thepoints in the cluster
induce a correlation among two or more attributes (or a linear transformation
of the original attributes) of the data set. The points in theorthogonal comple-
ment space to the manifold form a compact densely populated region. More
formally let D be a set ofd-dimensional points,X ⊆ D be the subset of points
that belong to a cluster,x be ad × 1 vector representing some point inX,
b1, . . . , bd be a set of orthonormal vectors that span ad-dimensional space,B
be ad × k matrix whosek columns are a subset of the vectorsb1, . . . , bd, and
B be ad × (d − k) matrix whose columns are the remaining vectors.

Definition 2 (The Linear Manifold Cluster Model) Let µ be some point in
R

d, φ be a zero mean k× 1 random vector whose entries are i.i.d. on support
(−R/2,+R/2) where R is the range of the data, andǫ be a zero mean(d−k)×1
random vector with small variance independent ofφ. Then eachx ∈ X, a
k-dimensional linear manifold cluster, is modeled by,

x = µ + Bφ + Bǫ. (1)



The idea is that each point in a cluster lies close to ak-dimensional linear
manifold of finite extent, which is defined byµ, a translation vector, the space
spanned by the columns ofB, and the range parameterR. Since

E[x] = E[µ + Bφ + Bǫ] = µ + BE[φ] + BE[ǫ] = µ + 0+ 0 = µ

the cluster mean isµ. On the manifold the points are assumed to be dis-
tributed in each direction (thek column vectors ofB) on bounded support
(−R/2,+R/2). It is in this manifold that the cluster is embedded, and there-
fore the intrinsic dimensionality of the cluster will bek. What characterizes
this type of cluster is the third component that models a small random error
associated with each point on the manifold. The idea is that each point may
be perturbed in directions that are orthogonal to the subspace spanned by the
columns ofB, that is the subspace defined by thed−k columns ofB. We model
this behavior by requiring thatǫ be a (d−k)×1 random vector, distributed with
mean0 and covarianceΣ, where the square root of the largest eigenvalue ofΣ

is much smaller thanR, the range of the data.
Traditional "full-space" clustering algorithms takek = 0, and therefore

assume that each point in a cluster can be modeled byx = µ + Bǫ where
B is simply the identity matrix. Subspace clustering algorithms focus their
clustering effort on the space spanned by the column vectors ofB, and when
restricted to axis parallel subspaces, they assume bothBandBcontain columns
of the identity matrix.

As mentioned linear manifolds also capture correlations orlinear depen-
dencies. More specifically, each linear manifold cluster gives rise to a system
of linear equations that capture an arbitrarily complex setof linear dependen-
cies. Just as a surface can be defined by the normal vector perpendicular to it.
A linear manifold can be defined by the set of vectors which areorthogonal to
it. That is, a linear manifold can be defined by the following vector equation,

B
′
(x − µ) = 0, (2)

which essentially describes the linear dependencies induced by the linear man-
ifold points. To see this more clearly we can rearrange eq. (2) asB

′
x = B

′
µ

and rewrite the above system as a linear combination of scalars

bk+1,1x1 + bk+1,2x2 +, . . . ,+ bk+1,dxd = ck+1

bk+2,1x1 + bk+2,2x2 +, . . . ,+ bk+2,dxd = ck+2
...

bd,1x1 + bd,2x2 +, . . . ,+ bd,dxd = cd

(3)
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Figure 2. Sample data set of three clusters, each of which is embedded in a different
linear manifold of one (C3) or two dimensions (C1,C2).

wherebk+1, bk+2, . . . , bd are the column vectors ofB, bi, j the j-th component
of bi, ck+i = b′k+iµ, andxi the i-th feature or attribute of the data. Note that the
number of equations or linear dependencies is equal tod−k the dimensionality
of the space orthogonal to the linear manifold. Furthermore, using Gauss-
Jordan eliminationthis set of equations can be simplified and put inreduced
row echelonto produce a unique description of the linear dependencies.As a
special case, note that ad − 1-dimensional linear manifold can be defined by
one equation of the form

bd,1x1 + bd,2x2+, . . . ,+bd,dxd = cd,

which if rearranged gives exactly aregression modelthat describes the re-
lationship between aresponsevariable (can be any of thex′i s) and a set of
explanatoryor predictorvariables (the remainingxi ’s).

Fig. 2 is an example of data set modeled by eq. (1). The data setcon-
tains three non-overlapping clustersC1,C2,C3 each consisting of 1000 points.
C1,C2 which are almost planar and parallel to each other are embedded in 2D
linear manifolds. Their points are uniformly distributed in the manifold and
they include a small error term in the space complementary tothe manifold.
Similarly, C3 an elongated line-like cluster, is embedded in a 1D linear man-
ifold with an error element in the 2D space complementary to the manifold.
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Figure 3. The geometry of the three pattern clusters in the data space.All are man-
ifested by lines but are oriented and translated differently depending on the type of
pattern they manifest. A regular cluster (reg) is also plotted to emphasize the differ-
ence between correlation and regular clusters.

3 The Line Cluster Model

Line clusters arise naturally from the kind of patterns thatare often sought
in data (e.g., shift, scaling, negative correlations, and generally correlations
induced by the linear dependencyx j = bi j xi + ci j ). Each of these kinds of
patterns in its ideal form is a line cluster. Figure 3 shows how these patterns
look from the point of view of line clusters.

In terms of our formal definition, a line cluster occurs whenB is just a
k × 1 vector spanning a 1D subspace,B is a k × k − 1 matrix whosek − 1
column vectors form an orthonormal basis that spans the space orthogonal to
the space spanned byB. In following we will useβ andβ instead ofB andB
to distinguish between the two cases.

Definition 3 (The Line Cluster Model) Let µ be some point inRk, φ be a
zero mean random scalar distributed on the support(−R/2,+R/2) where R is
the range of the data, andǫ is a (k− 1)× 1 random vector having mean0 and
covariance matrixσ2I, whereσ ≪ R . Then eachx ∈ X, a k-dimensional line
cluster, is modeled by,

x = µ + βφ + βǫ. (4)

Note that in this caseφ is a scalar, and homoscedasticity (constant variance) is
assumed about the error termǫ. This assumption is common to other quanti-
tative models such as the shift, scaling, and regression models, and simplifies
the line cluster model making statistical inference easier.



The interesting property of ideal line clusters (σ2 = 0) is that the correla-
tion between variables (features of the data) is+1 or -1. This is easy to see.
Let the density function of the cluster bef . Without loss of generality,f can
be taken to be the density of the scaler random variableφ, which has mean 0
and varianceσ2

φ. Let σi j be the covariance between variablesxi and x j . Let

µ′ = (µ1, µ2, . . . , µk) and letβ′ = (β1, β2, . . . , βk). Sinceσ2 = 0, ǫ is effectively
0, and the model forx simplifies to

x = µ + βφ. (5)

Then,
σi j = E[(µi + φβi − µi)(µ j + φβ j − µ j)] = βiβ jσ

2
φ

Hence,σii = β
2
i σ

2
φ andσ j j = β

2
jσ

2
φ. By definition, the correlationρi j between

the variablesxi andx j is defined by

ρi j = σi j/
√
σiiσ j j

= βiβ jσ
2
φ/

√

β2
i σ

2
φ
β2

jσ
2
φ

= ±1.

It can also be shown that correlations give rise to line clusters [17], and
that the more a set of points deviates from a predefined line (the parametersµ
andβ are fixed), the less correlated the features underlying the points will be,
where the amount of correlation depends on the size ofσ2.

4 The General Algorithm

LMCLUS can be viewed as an hierarchical-divisive clustering procedure.
It executes three levels of iteration (Fig. 4), and expects three inputs:L, an up-
per limit on the dimension of the linear manifolds in which webelieve clusters
may be embedded;S, a sampling level parameter used to determine the num-
ber of trial linear manifolds of a given dimensionality thatwill be examined
in order to reveal the best possible partitioning of a given set of points;Γ, a
sensitivity or “goodness of separation” threshold, which is used to determine
whether or not a partitioning should take place based on a trial linear manifold.

At the highest level of iteration the algorithm monitors thesize of the data
which is being partitioned. When no data is left to be partitioned the algorithm
terminates. The second level of iteration causes the algorithm to iterate over a
range of manifold dimensionalities, commencing with one-dimensional mani-
folds, and terminating withL-dimensional manifolds. For each linear manifold



dimension the algorithm enters the third level of iteration, in whichFindSepa-
ration (Fig. 5) is invoked in an attempt to reveal separations amongsubsets of
the data and to determine whether some of the points are embedded in linear
manifolds.

The idea behindFindSeparationis to successively sample points that can
define a linear manifold of a given dimension, and select the linear manifold
that is closest to a substantial number of points. This subset of closest points
will typically correspond to a cluster. The proximity of theinput data points
to the manifold is captured by a histogram of the distances the points are from
the manifold. If the manifold indeed has some subset of points near it, then the
distance histogram will have a mixture of two distributions. One of the distri-
butions has a mode near zero and arises from the distances of points belonging
to a cluster. The other distribution arises from the points not belonging to a
cluster.

The problem of separating the cluster points from the rest isthen cast into
a histogram thresholding problem. Upon terminationFindSeparationreturns
four valuesγ- which is a measure of the “goodness” of the separation,τ- a
proximity threshold that is computed from the histogram andis used to split the
data into two groups,β- the basis of the manifold which exposes the separation,
and o-a point on the manifold representing its origin. Whenγ exceeds the
value of the input sensitivity threshold parameterΓ, indicating that a worthy
separation has been found, then the data set is split according toτ. This split
corresponds to the partitioning of all the points which are located close enough
to the just determined manifold, i.e. all points that potentially belong to a given
cluster, and those that belong to other clusters.

The third iteration continues reapplyingFindSeparationin an attempt to
further partition the cluster which may consist of sub-clusters, until the se-
lected data points can not be further separated. At this point the algorithm will
retract to the second level of iteration in an attempt to partition the cluster in
higher dimensions, a process which will continue until the dimension limitL
is reached. WhenL is reached we have a subset of the points that cannot be
partitioned any more, and declare that a cluster is found.

The algorithm then retracts to the first level of iteration and is reapplied
on the remaining set of points until no more points are left tobe partitioned,
detecting one cluster at a time. We note that if outliers exist then the last clus-
ter/partition that is found will contain this set of points. By definition outliers
do not belong to any cluster and therefore will remain the last group of points
to be associated to any other group. Since they are unlikely to form any clus-
ters the algorithm will not be able to partition them, and they will therefore be



all grouped together.

Algorithm LMCLUS (D, L, S, Γ)
C = ∅ # set o f labeled clusters initially empty.
Dims= ∅ # set o f intrinsic dimensionalities o f each cluster.
i = 1 #cluster label
while D , ∅ do

X = D
for k = 1 to L do

while [γ, τ, o, β] = FindSeparation(X, k, S), γ > Γ do
# a separation is revealed by a k-dimensional
# mani f old. Collect all points residing in the vicinity
# o f that mani f old.
X = {x| x ∈ Y, ‖ (x− o) ‖2 − ‖ β′(x− o) ‖2< τ}
LmDim= k

# a cluster is f ound, add it to the set o f labeled clusters.
Ci = X, C = C ∪ {Ci }
# recored the intrinsic dimensionality o f the cluster
dimi = LmDim, Dims= Dim∪ {dimi }
i = i + 1
# remove cluster points f rom the dataset.
D = D − X

return [C, Dims]

Figure 4. The linear manifold clustering algorithm.

4.1 Finding Separations

Let D,X, B, B, andµ be as defined in section 2. The distance of a point
x ∈ D to a linear manifold defined byµ and the column vectors ofB is given
by

||(I − BBT)(x − µ)|| = ||BB
T
(x − µ)||. (6)

As mentioned earlier in section 2 the points ofX are likely to form a com-
pact and dense region in the space orthogonal to the manifoldin which they
are embedded. Therefore by projectingD into the space spanned the column
vectors ofB and executing some form of clustering in the reduced space itis
possible to identify and separateX from the rest of the data. However, eq. (6)
shows that the distance of a point to the cluster center in thereduced space
is equivalent to the distance of a point to the linear manifold. Thus, rather
than clustering in the reduced space it is also possible to measure distances
from the manifold and collect all the points that lie in the vicinity of this mani-
fold, essentially executing one-dimensional clustering.Since we are interested
in estimatingB, and because we are interested in detecting one cluster at a
time, and since one-dimensional clustering is typically faster than clustering in
higher dimensions, we choose to take this path.



Algorithm FindSeparation (X, k, S)
γ = −∞, τ = −∞, o = 0, β = 0
N = log ǫ/ log(1− (1/S)k)
for i = 1 to N do

M = Sample(k + 1) points f rom X
O = x ∈ M
B = FormOrthonormalBasis(M, O)
Distances= ∅
for each x∈ X − M do

y = x−O
Distances= Distances∪ {‖ y ‖2 − ‖ B′y ‖2}

H = MakeHistogram(Distances)
T = FindMinimumErrorThreshold (H)
G = EvaluateGoodnessOfSeparation(T, H)
if G > γ then
γ = G, τ = T, o = O, β = B

return [γ, τ, o, β]

Figure 5. Detecting separations among clusters embedded in lower dimensionality
linear manifolds.

Lemma 1 ||(I − BBT)(x − µ)|| =
√

||(x − µ)||2 − ||BT(x − µ)||2

Proof: Let y = x − µ,

||(I − BB′)y||2 = ||y − BB′y||2

= (y − BB′y)′(y − BB′y)

= y′y − 2y′BB′y − y′(BB′)2y

= y′y − y′BB′y ( BB′ is idempotent so (BB′)2 = BB′ )

= ||y||2 − ||B′y||2.

Lemma 1 provides us a much more efficient way of computing the distance
of a point to a manifold. Ifd is the dimension of the data, then computing the
distance using lemma 1 gives us a speedup ofO(d), which for high dimensional
data becomes a significant factor. To simplify the computation even further we
choose to use the squared distance rather than the distance,henceforth we will
use the term “distance” to mean the squared distance.

4.1.1 Minimum Error Thresholding

The problem of separating all the points that lie in the vicinity of a manifold
can be cast into the problem of finding aminimum error thresholdthat is used
to classify points as either embedded in the manifold (belonging toX) or not,
based on their distances to the manifold. Kittler and Illingworth [19] (KI)
describe an efficient method for finding the minimum error threshold. Their



method was designed for segmenting an object from its background in gray
scale images using a grey level histogram of the image. Theirmethod views the
histogram segmentation problem as a two class classification problem, where
the goal is to minimize the number of misclassified pixels. Analogous to our
problem, the distance histogram can be viewed as an estimateof the probability
density function of the mixture population comprising of distances of points
belonging to a linear manifold cluster and those that do not.

The KI procedure is based on the assumption that each component of the
mixture is normally distributed. To support this assumption in our case, we
note that as a consequence to the central limit theorem, the distances to the
manifold which are merely sums of random variables will approach distribution-
wise the normal, as the dimension of the space increases.

Let δ be the distance of a point to the manifold,p(δ|i) be the probability
density function of the distances of classi, wherei ∈ {1, 2}, µi , σi be the mean
and standard deviation of distances in classi, andPi be the prior of classi.
Then because of the normality assumption

p(δ|i) = 1
√

2πσi

exp













−(δ − µi)2

2σ2
i













.

Givenµi , σi ,Pi, andp(δ|i) there exists a thresholdτ such that

P1p(δ|1) > P2p(δ|2) if δ ≤ τ and P1p(δ|1) < P2p(δ|2) if δ > τ,

whereτ is theBayes minimum error threshold[20], which can be found by
solving forδ the following equation

P1
1

√
2πσ1

exp













(δ − µ1)2

−2σ2
1













= P2
1

√
2πσ2

exp













(δ − µ2)2

−2σ2
2













.

However, the true values ofµi , σi ,Pi are usually unknown. KI propose to
obtain these estimates from the distance histogramh. Suppose that the his-
togram is thresholded at an arbitrary thresholdt, then we can model the two
resulting populations by a normal densityh(δ|i, t) with parameters:

Pi(t) =
b

∑

δ=a

h(δ), µi(t) =

∑b
δ=a δ ∗ h(δ)

Pi(t)
, σ2

i (t) =

∑b
δ=a(δ − µi(t))2 ∗ h(δ)

Pi(t)

wherea = 0 andb = t if i = 1, anda = t + 1 andb = max(δ) if i = 2. Now
using the modelh(δ|i, t) for i ∈ {1, 2}, the conditional probability ofδ being
correctly classified is given by

p(i|δ, t) = h(δ|i, t)Pi (t)
h(δ)

.



We wish to find the thresholdt that maximizes this probability. Sinceh(δ) is
independent ofi and t it can be safely ignored. Furthermore, since the loga-
rithm is a strictly increasing function, taking the logarithm and multiplying by
a constant will not change the maximizing value. Therefore

ǫ(δ, t) =

(

δ − µi(t)
σi(t)

)2

+ 2 logσi(t) − 2 logPi(t)

can be considered as an alternative index of the correct classification perfor-
mance, and the overall performance is given by

J(t) =
∑

δ

h(δ)ǫ(δ, t),

which reflects indirectly the amount of overlap between the two Gaussian pop-
ulations. Substitutingµi(t), σi(t),Pi(t), andǫ(δ, t) into J(t) we get

J(t) = 1+2
(

P1(t) logσ1(t) + P2(t) logσ2(t)
)−2

(

P1(t) log P1(t) + P2(t) logP2(t)
)

,

(7)
and the minimum error threshold selection problem can be formulated as

τ = arg min
t

J(t).

J(t) can be computed easily and finding its minima is a relativelysimple task
as the function is smooth.

4.2 Sampling Linear Manifolds

A line, which is a 1D linear manifold, can be defined by two points, a
plane which is a 2D manifold can be defined using three points.To construct
a randomk-dimensional linear manifold by sampling points from the data we
need to samplek + 1 linearly independent points. Letx0, . . . xk denote these
points. Choosing one of the points, sayx0 as the origin, thek vectors spanning
the manifold are given by

yi = xi − x0

wherei = 1 . . . k. Assuming each of these sampled points came from the same
cluster, then according to eq. (1)

yi = xi − x0 = (µ0 + Bφi + Bǫ i) − (µ0 + Bφ0 + Bǫ0)

= B(φi − φ0) + B(ǫ i − ǫ0).



If the cluster points did not have an error component off the manifold, i.e., they
all lie on the linear manifold, then sampling anyk+1 points which are linearly
independent and belong to the same cluster would enable us toreconstruct
B. So in order to get a good approximation ofB we would like each of the
sampled points to come from the same cluster and to be as closeas possible to
the linear manifold. From the equation above we see that thisoccurs when

ǫ i − ǫ0 ≈ 0,

resulting in a set ofk vectors which are approximately a linear combination of
the original vectors inB. A good indication as to why this is likely to occur
when the sampled points come from the same cluster, is given by the fact that

E[ǫ i − ǫ0] = 0,

and that normally distributed data (ǫ i − ǫ0 follows a normal distribution) tends
to cluster around its mean. In cases where the clusters are well separated, the
requirement thatǫ i − ǫ0 ≈ 0 can be relaxed. That is, when the clusters are well
separated more sets of points coming from the same cluster, and not only those
that are relatively close to the manifold will be good candidates to a construct a
manifold that will induce a large valley in the distance histogram that separates
the linear manifold cluster from the remaining points. As a consequence, the
problem of sampling a linear manifold that will enable us to separate a linear
manifold cluster from the rest of the data can be reduced to the problem of
samplingk+ 1 points that all come from the same cluster.

Assuming there areS clusters in the data set whose size is distributed with
low variance, then for large data sets the probability that asample ofk + 1
points all come from the same cluster is approximately

(

1
S

)k

.

If we want to ensure with probability (1− ǫ) that at least one of our random
samples ofk+ 1 points all come from the same cluster, then we should expect
to make at leastn selections ofk+ 1 points, where















1−
(

1
S

)k












n

≤ ǫ,

yielding that

n ≥ log ǫ

log(1− (1/S)k)
. (8)



Therefore, by computingn given ǫ, andS which is an input to the algorithm
we can approximate a lower bound on the number of samples required, such
that with high probability, at least one of then samples containsk + 1 points
that all come from the same cluster. Unlike related methods,the user input
S does not predetermine the number of clusters LMCLUS will output. It is a
rough estimate of the number of clusters in the data set, which is only used to
compute an initial estimate of the sample size required to ensure we sample
points coming from the same cluster. It is rather a “gauge” with which we can
tradeoff accuracy with efficiency.

Putting it all together, for each sample of points{y1, . . . , yk} we construct
an orthonormal basisB of a linear manifold using the Gram-Schmidt process.
(If the Gram-Schmidt process indicates that the sampled points are not linearly
independent, a new sample of points is taken.) Then using KI’s method we
compute a thresholdτ. Of all possible thresholds corresponding to different
linear manifolds which induce different separations, we prefer the one which
induces the best separation. The best separation is defined as the separation
which induces the largest discriminability given by

discriminability=
(µ1(τ) − µ2(τ))2

σ1(τ)2 + σ2(τ)2
, (9)

and the one which causes the deepest broadest minimum in KI’scriterion
function-J(t). The deepest minimum can be quantified by computing the dif-
ference/depth of the criterion function evaluated at the minimumτ and the
value evaluated at the closest local maximaτ′, i.e.

depth= J(τ′) − J(τ).

The composite measure of the goodness of a separation is thengiven by

G = discriminability× depth. (10)

A typical run of the algorithm is illustrated in Figs. 6 and 7 by a tree
which summarizes the clustering process of the sample data set depicted in
Fig. 2, and the corresponding histograms that were used to separate the linear
manifold clusters in this data set. At the beginning of the process the algorithm
searches for 1D linear manifolds in which some clusters may be embedded.
Since clusterC3 is such a cluster it is separated fromC1,C2 using the threshold
returned by KI’s procedure, and the algorithm proceeds by trying to further
partition it in higher dimensions. Since it cannot be further partitioned using
2D manifolds, clusterC3 is declared to be found. The algorithm then attempts
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Figure 6. A tree summarizing the clustering process of the sample dataset from Fig.
2. The labels on the arrows specify the dimension of the linear manifold which was
used to separate the clusters.

to separate the remaining clustersC1,C2 using 1D manifolds. Since both these
clusters are embedded in 2D linear manifolds the algorithm will fail. However
by trying to separate them using 2D manifolds the algorithm will succeed. At
this point the algorithm will attempt to further partition each of the clustersC1

andC2, however since they are inseparableC1 andC2 are declared to be found,
and the algorithm terminates.

5 The Line Cluster Algorithm

The line cluster algorithm SLCLUS is a specialization of thegeneral algo-
rithm of the previous section that is aimed at specific lineardependencies of
the formx j = bi j xi + ci j between pairs of features. Because of this and unlike
LMCLUS it is restricted to axis-parallel subspace. Consequently, is basedfea-
ture selectiontechniques. It also exploits thedownward closure property for
lines: If there exists a line in a set ofk dimensions then there exits a line in all
k− 1 subsets of thesek dimensions [17].

Downward closure tells us that if a set of points form a line cluster in some
set of dimensions it is possible to commence the search for the cluster in a
smaller set of dimensions, and iteratively extend it in a bottom-up manner us-
ing forward selection. Moreover, the search for clusters inlower dimensions is
typically easier (faster) than a search for clusters in higher dimensions. Down-
ward closure also provides pruning power. If a line cluster is not visible in a
smaller set of dimensions it is not necessary to search for itin higher dimen-
sions. Using this property we can also devise a termination condition for the
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Figure 7. Histograms used to separate the clusters from Fig. 2. (a)C3 is separated
from C2 andC3 by sampling 1D linear manifolds. (b)C1 is separated fromC2 by
sampling 2D linear manifolds. (c) a histogram for which no separation can be found.

algorithm, i.e., if the algorithm is unable to detect any more clusters in a small
initial set of dimensions then the algorithm should terminate. Starting from
lower dimensions and working up ensures that the line clusters are found in
the largest possible subspaces.

The algorithm in its most generic form can be stated as follows: find a line
cluster in an initial set of dimensions using a random walk onthe feature’s lat-
tice. Using forward-feature-selection add dimensions (features) to extend and
refine the line cluster until no more dimensions can be added,in which case
a line cluster is assumed to be found. Remove the identified line cluster from
data set and reapply the first two steps on remaining set of points. The algo-
rithm is designed so that it detects the the largest possibleclusters embedded
in the largest possible subspaces. The rational is that correlations induced by
larger clusters in a larger set of features provide strongerevidence pertaining to
the relationship between the objects under consideration,and from a statistical
point of view is less likely to occur by chance.

To detect lines in subsets of features (axis-parallel subspaces) SLCLUS
uses LMCLUS restricted to 1D linear manifolds (henceforthline detector).
However, rather than using a goodness of separation threshold to qualify clus-
ters, SLCLUS uses an error tolerance threshold∆, defined as the the maximum
distance of points to a line, we are willing to allow. The tradeoff is that at the
expense of detecting clusters which are to some extent less data-driven we
get clusters which are easier to interpret, more consistentwith the line cluster
model, and more consistent with the notion of correlation. In addition, rather
than returning the line which is best separated from the remaining set of points,



SLCLUS returns the line having most points, ensuring that the largest possible
clusters are detected.

5.1 Selecting an Initial Set of Features by Random Walk

One possibility is to start the clustering process with lineclusters of the
smallest possible dimensionality, i.e., 2D line clusters.This can achieved by
searching through all possible 2D subspaces for a line cluster using the line
detector algorithm. However, confirmed by experiments presented in ref. [17],
clusters tend to overlap when projected from higher dimensional spaces into
lower dimensional spaces. Hence, the projection of severalline clusters em-
bedded in higher dimensional spaces into a lower dimensional space may either
mask each other or appear as a single cluster. This in turn may“confuse” fea-
ture selection used to extend a cluster in the determinationof which features
are relevant to the cluster. Ideally the clustering processshould start with a
larger set of initial features, close in number to the dimensionality of the sub-
space in which some line cluster exists. This will not only improve cluster
detection accuracy but also improve efficiency as the extension process will be
shorter. To achieve this goal we propose a method that is based on arandom
walk on thefeatures lattice.

The basic idea can be stated as follows: starting from the full set of fea-
tures, randomly remove one feature at a time, after each removal invoke the
line detector algorithm to detect line clusters in the subspace defined by the
remaining features, and repeat the process until a line cluster is detected, or
until no more features are left to be removed. As mentioned, ideally we would
like the random walk to stop sooner. More formally, letF be the full set of
features, andLF be the lattice (poset) defined by (P(F),⊆). If F1 andF2 are
two elements inLF (subsets ofF), we say thatF2 is moregeneralthanF1 or
F1 morespecificthanF2 denoted byF2 ≺ F1 if F2 ⊂ F1. Let F′ ⊆ F be a set
of features (subspace) in which some line cluster exists, and F′′ be the set of
features remaining after each feature removal during the walk. If at a certain
point during the random walkF′′ ⊆ F′, i.e., a subset of features that constitute
a higher dimensional line cluster is detected, we can stop the random walk and
useF′′ as our starting point (initial set of features). Then using forward selec-
tion we can extend the line cluster currently residing in thesubspace defined
by the features ofF′′ to the higher dimensional subspace in which the cluster
exists defined by the features ofF′. Due to the downward closure property of
lines, once this condition is met it is not necessary to continue the walk (re-
move features) as any subset ofF′′ will also contain a line cluster. Thus, the
method can be restated as: perform arandom walkonLF starting fromF and



moving in thegeneralizationdirection until eitherF′′ ⊆ F′ or F′′ = ∅.
Fig. 8 shows the change in the probability (the derivation islengthy and

beyond the scope of this paper) of the random walk succeeding(detecting clus-
ters at dimensionality larger than two) and the expected dimensionality of the
clusters intercepted by the random walk, as the number of clustersc in the data
and the dimensionality of the subspacesk in which the clusters exist are var-
ied. Each curve represents a different number of clusters in the data set, where
the lowest curve represents a data set with one cluster and the highest with ten
clusters (c = 1, . . . , 10). For illustrative purposes the dimensionality of the data
is fixed atd = 50, but similar patterns can be observed for other data dimen-
sionalities. It is clear from Fig. 8(a) that as the number of clusters increases
and/or the dimensionality of the subspaces in which clusters areembedded is
increased the probability of success increases. It is also evident that even when
a small number of clusters exist in the data and the clusters are embedded in
higher dimensional subspaces there is a high probability ofsuccess. Hence,
one conclusion that can be drawn is that the random walk is likely to suc-
ceed when a large (not necessarily extremely large) number of clusters exist in
the data and the clusters are embedded in a relatively higherdimensional sub-
space. Fig. 8(b) similarly shows that the random walk is moreeffective, that
is, clusters are intercepted sooner and at higher dimensions when the clusters
are embedded in higher dimensional subspaces. The more effective region of
the random walk seems to be approximately the upper third range of subspace
dimensionalities. The figure also shows that the expected value converges to
an exponential and that the addition of more clusters beyonda certain point
will not enhance the capability of the random walk detectingclusters sooner.
One more important conclusion that can be drawn from the figures is that if
the random walk fails, it is likely that the clusters are embedded in lower di-
mensional subspaces, in which case we can revert to the first possibility, which
is to initialize the clustering process by searching for 2D line clusters in all
possible 2D subspaces.

5.2 The Distance of a Point to a Line

SLCLUS requires the computation of a point’s distance (squared) to a line.
The distanceδ of a pointx modeled by eq. (4) to ak-dimensional line is given
by:

δ = ‖(I − ββ′)(x − µ)‖2 = ‖(I − ββ′)(βφ + β̄ǫ)‖2

= ‖βφ − βφ + β̄ǫ − 0‖2 = ‖β̄ǫ‖2 = (β̄ǫ)′β̄ǫ
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Figure 8. Random Walk Statistics.

= ǫ′β̄
′
β̄ǫ = ǫ′ǫ =

k−1
∑

i=1

ǫ2i .

According to the line cluster modelǫi ∼ N(0, σ2). Therefore the distanceδ
normalized byσ2 will have

δ

σ2
=

k−1
∑

i=1

ǫ2i

σ2
∼ χ2

k−1, (11)

a chi-squared distribution withk− 1 degrees of freedom. Hence,

E[δ] = E[σ2χ2
k−1] = (k− 1)σ2 and Var[δ] = Var[σ2χ2

k−1] = 2(k − 1)σ4.

(12)
Because the distance grows with the dimensionality of the subspace in which
it measured, and since the search for line clusters will be computed across
different dimensionalities, we normalize the distance by its degrees of freedom
(k − 1) or equivalently the dimensionality of the space orthogonal to the line.
This creates a uniform or normalized distance measure whichis independent
of the dimensionality of the subspace in which it is measured. Therefore the
normalized distanceδ/(k − 1) has

E
[

δ

k− 1

]

= σ2 and Var
[

δ

k − 1

]

=
2σ4

k− 1
. (13)

The expected value and variance of the normalized distance will be used as
heuristics to set the input parameters to the algorithm.



5.3 The Score (Fit) function

At each forward selection step the quality of the line cluster must be as-
sessed according to some criteria in order to determine whether or not to pro-
ceed to the next step. The criteria we use to assess the quality of a cluster is
the “fit” of the set of points constituting the cluster to the line in which they are
embedded. The fit is defined to be the average-normalized-squared-distance
(average error) of the points to the line.

If k is the dimensionality of the subspace in which a cluster is detected,n
the number of points constituting the cluster,X the cluster points, andxi the
i-th point. Then the fit or score functionJ(X) is defined as

J(X) =
1

n(k− 1)

n
∑

i=1

(

‖(I − ββ′)(x − µ)‖2
)

. (14)

Prior to the fit computation,µ andβ must be estimated.µ is estimated by
computing the sample mean of the cluster. Using least-squares it can be shown
that an estimate forβ is the largest eigenvector of the cluster’s covariance ma-
trix, which can be computed using thepower method.

To guide the algorithm to give certain preferences to the size and dimen-
sionality of the cluster,J(X) can be modified as follows:

J′(X) = J(X)na(k− 1)b. (15)

For example guiding the algorithm to prefer even higher dimensional sub-
spaces we can setb to some value less than zero. Based on eq. (13)

E[J(X)] = σ2 and Var[J(X)] =
2σ4

n(k− 1)
, (16)

which will also be used as heuristics to set the input parameters.

5.4 Putting it All Together

SLCLUS (Fig. 9) commences by a random walk to select an initial set of
features to initiate the clustering process. If the walk failed then the initial set
of features is determined by searching through all possible2D subspaces for
the best 2D line cluster. If no such cluster exists (determined by a fit threshold
J) then SLCLUS terminates. If either the random walk succeedsor a 2D line
cluster is detected, then SLCLUS proceeds by repeatedly calling the forward
selectionprocedure (Fig. 10) to extend the cluster into higher dimensions and
refine it, until no “improvement” can be made. A cluster is improved if its



Algorithm SLCLUS (D,S,∆, J)
J(X) = ∞
X=perform random walk (D)
if (J(X) > J)

X=find the best 2D-line cluster(D)
if (J(X) > J)

terminate
while ( |dims(X)| < |dims(D)| )

X′=ForwardSelection (X,S,∆)
if (J(X′) < J(X))

X = X′

else
break

output X
D = D − pts(X)
if (D , ∅)

goto first step
return

Figure 9. The subspace line clustering algorithm.

fit J(X) decreased. At this point a line cluster is assumed to be found, it is
outputted, removed from the data, and the algorithm is reapplied on the re-
maining set of points until no more points are left to be clustered. The forward
selection procedure extends a cluster one dimension at a time, by choosing the
dimension whose data when added to an existing cluster, attains the maximum
reduction in the fitJ(X). We note that by calling the line detector procedure
from within the forward selection procedure the algorithm ensures that line
clusters are refined by also pealing off unrelated points from them. This refine-
ment is necessary when the projection of several line clusters appear as one
line cluster in lower dimensional subspaces. In addition, if the random walk
fails it is likely that a cluster is embedded in a lower dimensional subspace, in
which case searching through all possible 2D subspaces is likely to reveal it
since it is less masked or overlapped by other cluster projections.

SLCLUS requires three input:S,∆, andJ. S is the sampling level param-
eter used by LMCLUS, which is set in accordance with the heuristic discussed
in section 4.2.∆ andJ pertain to the error tolerance or deviation from the line
we are willing to allow, and indirectly effect the magnitude of correlations the
generated clusters will induce. E.g., setting them to higher values will likely
generate clusters inducing lower correlations. Assuming we are willing to ac-
cept clusters whose average deviation (distance) from a line isσ (i.e, we are
assuming thatǫ ∼ N(0, σ2I )), then using the statistics derived in eq. (13) and
eq. (16) as heuristics, we can set∆ andJ to their expected value plus a number
of their standard deviations.



Algorithm ForwardSelection (X,S,∆)
Y = X
while (unexamined dimensions ofX remain)

select an unexamined dimension ofX
add dimension data toX
X′ =LineDetector(X, S,∆)
if (J(X′) < J(Y))

Y = X′

restore X
return Y

Figure 10. The forward selection subroutine used to gradually extend the subspace
in which line clusters are detected and to peel off points which do not belong to the
cluster.

6 Empirical validation

The aim of the experiments presented in this section is to demonstrate the
applicability and efficacy of the linear manifold clustering paradigm to the
problem of correlation clustering. Due to space limitations we omit experi-
ments with synthetic data and refer the reader to ref. [13, 17] for this propose.
For the same reason we narrowed the scope of experiments to the problem of
pattern clustering and the detection of the simpler form of linear dependen-
cies or correlation. For experiments discussing general linear manifolds and
general linear dependencies we refer the reader to ref. [13,18].

Extensive tests were conducted on three real data set. Two data sets that
have become standard benchmarking data sets for clusteringgene expression
data–theyeast Saccharomyces Cerevisiaecell cycle expression data obtained
fromhttp://arep.med.harvard.edu/biclustering/, and theColon Can-
cer data obtained fromhttp://microarray.princeton.edu/oncology/.
The third–Jesterobtained fromhttp://ieor.berkeley.edu/~goldberg/
jester-data/, is a data set used in an online joke collaborative filtering/recommender
system [21].

6.0.1 Yeast Data

The yeast data contains 2884 genes (objects) and 17 time points/conditions
(dimensions), and is a very attractive data set for evaluating clustering al-
gorithms because many of the genes contained in it are biologically char-
acterized and have already been assigned to different phases of the cell cy-
cle. Applied on this data set SLCLUS discovered 62 line clusters. We com-
pared these clusters with the 100 biclusters reported by thebiclustering al-
gorithm [5], which were obtained fromhttp://arep.med.harvard.edu/



biclustering/. The clusters’ size detected by SLCLUS ranged in [15, 255]
and on average much smaller than the clusters reported by thebiclustering al-
gorithm. From a biological standpoint this makes sense, as the whole yeast
genome contains roughly only 6000 genes, and typical functional categories
of the yeast genome contain dozens rather than hundreds of genes that were
included in some of the biclusters. The dimensionality of the clusters detected
by our algorithm ranged in [3, 16] and was on average smaller than the dimen-
sionality of the biclusters. We also compared themean squared residue score
(MSRS) [5], which is part of theshift patterncluster model and used by the bi-
clustering algorithm as a criteria to identify shift pattern clusters. The authors
of the biclustering algorithm used MSRS=300 as a threshold to qualify “wor-
thy” biclusters. SLCLUS detected on average clusters with aslightly larger
MSRS. However, this is reasonable since our algorithm was not restricted to
searching only for shift pattern clusters for which this score was designed.
Nonetheless, our algorithm was successful in finding clusters that induce large
correlations. We usedaverage correlation, defined to be the average of the
absolute value of the correlation coefficient between each pair of features be-
longing to a cluster, to quantify the degree of correlation induced by a cluster.
After the removal of 3 outlier clusters (clusters with average correlation less
than 0.8) the mean average correlation was found to be 0.96. Fig. 11 is a plot
of MSRS versus average correlation of the clusters detectedby our algorithm.
The figure shows that there are gene clusters in the data that induce large cor-
relations and may be functionally related, yet do not followthe shift pattern
cluster model (have MSRS>300), supporting one of the main motivations for
this work (overlooked patterns). We note that some of the clusters found by
our algorithm did follow the shift pattern cluster model.

We also evaluated the biological significance of the clusters SLCLUS pro-
duced by means offunction enrichment–the degree to which the clusters grouped
genes of common function. This was done by computing for eachcluster P-
values (using the hypergeometric distribution) of observing a certain number
of genes within a cluster from a particular MIPS (Munich Information Center
for Protein Sequences,http://mips.gsf.de/) functional category. Table 1
shows five of them that had smaller P-values, indicating thatSLCLUS is able
to detect statistically significant clusters.

6.0.2 Cancer Data

The cancer data contains 2000 genes (objects) and 62 tissue samples (di-
mensions), of which 40 are colon tumor and 22 normal colon samples. The
goal in this experiment was to identify gene clusters that can differentiate the
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Figure 11. mean squared residue score (MSRS) versus average correlation of yeast
clusters detected by SLCLUS.

Table 1. MIPS gene function enrichment.
Genes in MIPS Functional Genes in Clustered P-value
Cluster Category Category Genes

ribosome biogenesis 215 27 1.698e-09
211 protein synthesis 359 35 5.649e-09

cytoplasm 554 37 2.696e-05
cytoplasm 554 15 1.565e-14

17 protein synthesis 359 13 1.178e-13
ribosome biogenesis 215 11 6.229e-13

subcellular localisation 2256 16 8.658e-07
193 amino acid biosynthesis 118 13 5.462e-05
49 amino acid metabolism 204 6 6.740e-06
16 cell cycle and 628 9 5.772e-06

DNA processing



cancerous tissues from the normal ones. These clusters may later afford re-
searchers the ability design classifiers for diagnostic purposes. Applied on this
data set SLCLUS detected 81 line clusters. The size of the clusters was gen-
erally small, the largest cluster contained 21 genes. The dimensionality of the
subspaces in which the clusters were embedded ranged in [4, 16]. The average
MSRS of the clusters was 15243, indicating that most of the clusters did not
follow the shift pattern cluster model. However, their meanaverage correla-
tion (after removal of two outlier clusters) on the other hand was around 0.83.
Again indicating that related groups of genes may exist in the data, yet are
overlooked by most clustering methods.

We also found seven gene clusters that were present in eitheronly the nor-
mal tissues or only the cancerous tissues. One cluster contained only normal
tissues and the remaining six only cancerous tissues. They contained a small
number of genes 16-18, and were embedded in subspaces of dimensionality
ranging in [4, 9], i.e., contained between 4-9 tissues. The average correlation
of these clusters was around 0.88, higher than the rest of theclusters, provid-
ing evidence that the genes within these clusters may be functionally related
and can used for discriminatory purposes. Most of the remaining clusters con-
tained a mixture of tissues none with an overwhelmingly majority of normal
or cancerous tissues.

6.0.3 Jester Data

The Jester data set contains a million continuous ratings inthe range [−10.00, 10.00]
of 100 jokes (dimensions) from 73421 users (objects). Not all users rated all
jokes, thus the data contains missing values. We extracted asubset of 6916
users that rated all jokes. Applied on this data set SLCLUS identified 252 line
clusters with the following statistics. The average size (number of users) of
the clusters was 28 and the average dimensionality (number of jokes) of the
clusters was 10. Again we examined the MSRS of the clusters toget an idea of
what types of patterns were identified. Surprisingly we discovered that most
of the clusters followed the shift pattern (slope one clusters in the collaborative
filtering literature) with a very low average MSRS of approximately 5. This
finding demonstrates that while being able to identify a wider and more general
spectrum of patterns SLCLUS does not over look the more common patterns,
which as stated are a special case of the line cluster model, when those are
present or more evident in the data. After the removal of 29 outlier clusters the
average correlation was found to be approximately 0.7, and not as high as in
the preceding two experiments.



7 Conclusions

The aim of this paper was to demonstrate the applicability ofthe linear
manifold clustering paradigm to the problem of correlationclustering. We
showed that the linear manifold cluster model is a generalization of more com-
mon and specific cluster models. This generalization provides a more flex-
ible framework in which cluster analysis may be performed. In the context
of correlation we showed that general linear manifolds are able to capture ar-
bitrarily complex linear dependencies that may give rise tocorrelations. We
also showed that 1D linear manifolds as a special case of the general model
can capture correlations of a simpler form, where each pair of features are lin-
early dependent upon each other. Based on these models two stochastic algo-
rithms were presented, the later generalizing the so called“pattern” clustering
paradigm. A series of experiments on real data sets was used to demonstrate
the efficacy of our methods. One experiment demonstrated that our method is
able to identify statistically significant correlation clusters that are overlooked
by other existing methods. Until cluster validation techniques appropriate to
the correlation or linear manifold clustering paradigms are devised, substanti-
ating clustering results in the absence of ground truth or domain knowledge is
hard task. In future work we plan to investigate several statistical approaches
to cluster validation which are based on linear manifold likelihood models and
on permutation tests.
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