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Abstract

The detection of correlations is a data mining task of insiregim-
portance due to new areas of application such as DNA miagamaly-
sis, collaborative filtering, and text mining. In these ca@gject similar-
ity is no longer measured by physical distance, but rathéhépehavior
patterns objects manifest or the magnitude of correlatibeg induce.
Many approaches have been proposed to identify clusterplgorg
with this requirement. However, most approaches assunu#ispaus-
ter models, which in turn may lead to biased results. In thisgp we
present a novel methodology based on linear manifolds whictides
a more general and flexible framework by which correlatiarstdring
can be done. We discuss two stochastic linear manifold exluabd-
els and demonstrate their applicability to a wide range ofatation
clustering situations. The general model provides thetatd capture
arbitrarily complex linear dependencies or correlatidrie specialized
model focuses on simpler forms of linear dependencies, grel-
izes the dependencies often sought by the so called “pattirstering
methods. Based on these models we discuss two linear ncifcd-
tering algorithms, the later a fine-tuned derivative of thst fiargeting
simpler forms of correlation and “pattern” clusters. THigoacy of our
methods is demonstrated by a series of experiments on taetde the
microarray and collaborative filtering domains. One of thpexgiments
demonstrates that our method is able to identify statiffisggnificant
correlation clusters that are overlooked by existing metho
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1 Introduction

Classical clustering methods as well as subspace metho@s 31 4] fo-
cus on grouping objects with similar values. They define aganilarity by
the “physical” distance between the objects over all or asubf dimensions,
which in turn may not be adequate to capture correlationsdrdata. A set of
points may be located far away from each other yet induce laggrelations
among some subset of dimensions. The detection of coortais a an impor-
tant data mining task because correlations may reveal andepey or some
cause and féect relationship between the features under consideration
other important application of correlations is in data miodewhere correla-
tions may be used to carry out (local) dimensionality reidmcby eliminating
correlated (redundant) features. In recent studies @tiveks were often dis-
cussed and presented in terms of the behavior patternd®bjanifest, hence
the namepattern clusteringoften associated with methods amid at this type
of problem. In gene expression microarray clustering thel goto identify
groups of genes that exhibit similar expression patternkeusome subset of
conditions (dimensions), from which gene function or regpty mechanisms
may be inferred. In recommendation or collaborative filtgrsystems, sets of
customers with similar interest patterns need to be idedtsb that customers’
future interests can be predicted and proper recommemndatie made. From
a correlation point of view it can be shown that objects eiinitp coherent be-
havior patterns induce large correlations among their oiefifeatures. Hence,
the identification of large correlations is a means by wipiatiern clustersan
also be discovered.

The most widely studieghattern cluster modelare theshift and scaling
models, which induce only positive correlations and arecslfy referred to
as biclusters[5, 6, 7] in the microarray clustering literature, aslbpe one
clusters in the collaborative filtering literature [8]. letcase of a shift pattern
the behavior pattern of one object under a set of featurefsstdrom another
by some constant, whereas in the case of scaling the behaatiwrn of one
object is a scaler multiple of another. The correspondingdi dependencies
between each pair of features x; captured by these two types of patterns
are of the formx; = X + ¢jj andx; = bjjx respectively, wherdy;; and c;
are constant cdicients. From the above it is now clear why the shift and
scaling patterns induce large correlations. Fig. 1 shparallel coordinate
plots of three dierent types of patterns clusters each containing ten points
embedded in an 8-dimensional space: a shift pattern indumnty positive
correlations, a scaling pattern also inducing only positierrelations, and a
pattern inducing both positive and negative correlatiohisese type of plots



(a) shift pattern (b) scaling pattern (c) negative correlations

Figure 1. Parallel coordinate plots of threeffiirent pattern clusters.

are used to emphasize symmetry or cohesion in behaviormsattdote that the
pattern inducing negative correlations does not manifessame symmetry as
the other two.

It has recently been suggested [9, 10, 11, 12] that othestgpanforma-
tion carrying patterns such as patterns inducing negatveslations or pat-
terns capturing more complex linear dependencies, suoh asbijjx + Gj
of which the shift and scaling are special cases, are cosipleverlooked
by most clustering methods, and that current state of thalgarithms are
not flexible enough to mine flerent patterns simultaneously. It has also been
suggested [7] that traditional similarity measures, sugltha cosineor the
Pearson correlatiormeasures, are not adequate to capture correlations or pat-
tern clusters when those localize to subspaces of the dathgew are strongly
biased by the data residing the in the “irrelevant” dimensio While there
iS no consensus on what types of patterns should be condidezaningful,
in practice pattern based clustering algorithms postdat@ique underlying
“globally expressed” pattern or cluster model, while oweking or rejecting
the possibility that other types of information carryingtpens may co-exist
in the data. This in turn is less truthful to the data and may I® a large bias
in the results. Therefore, a method which would target ¢aticens in general
and not specific models would be beneficial.

Avoiding (for the moment) mathematical abstractiorinaar manifoldis
simply a translated subspace, which can be visualized a®aglane, hyper-
plane, etc., depending on its dimensionality. In many gobtdomains it as-
sumed that linear models arefcient enough to describe or capture the data’s
inherent structure. Typical examples include linear regjan, PCA, and sub-
space clustering, which are all special cases of linear fimldriearning. Yet
very few remote attempts have been made to devise clustemtigods able to



identify or learnmixtures of linear manifolds. Moreover, very often observed
real data is a consequence of a process governed by a sméalenoffactors.
In the data space this is manifested by the data points Iyifgeimg located
close to surfaces such as linear or non-linear manifoldse/hdrinsic dimen-
sionality is much smaller than the dimensionality of theadhtnear manifold
clustering[13] seeks to identify groups of points that fit or are embeldithe
lower dimensional linear manifolds. One of the main advgesaof the linear
manifold clustering paradigm is that it is applicable to alevrange of clus-
tering applications or problem domains. This is becauseeati manifold is a
generalization of more common and specific cluster modelsan easily be
shown that “classical” clusters (hyper-spheriebibsoidal in shape) such as
the ones sought by the K-means algorithm [14], and subspasters such as
those discussed in[1, 2, 15] are special cases of linearfatdsi In the context
of correlation, it can be shown that common to all forms oééincorrelation
and linear dependencies, is that in the data space theyesatliEmselves as
lines, planes, and generally speaking as linear manifdléis17, 18]. Hence,
the detection of linear manifolds is a means by which cotiea or linear
dependencies may also be identified.

Correlations correspond to linear dependencies betweermitwnore fea-
tures (variables or attributes) of the data, and can thexdfe discussed from
this view point. These linear dependencies can be a simpllkeoas sought
by pattern clustering methods or may be more complex wheeeoormore
features are linearly dependent on a combination of othdeedless to say
the more complex dependencies are harder to interpret vigiathy many
methods focus on simpler models.

In the following we discuss the application of linear maldfolustering to
the problem of correlation clustering. In section 2 we désca generdinear
manifold cluster modednd demonstrate its ability to capture arbitrarily com-
plex linear dependencies. In section 3 we disculiseacluster modelwhich
is a specialization of the linear manifold cluster modeleTihe cluster model
targets simpler linear dependencies of the fogm= bjjx; + cjj, generalizing
the type of correlations sought by pattern clustering nasthand thus recti-
fying the their shortcomings. In sections 4 and 5 we presgatalgorithms.
The first called LMCLUS (Linear Manifold CLUStering) aimetlidentifying
general linear manifold clusters, and the second calledL&LSC(Subspace
Line CLUStering) a fine-tuned specialization aimed at lihesters which are
embedded in axis-parallel subspaces. In section 6 we prassgries of ex-
periments on real data sets demonstrating fieagy of our methods, and in
section 7 we conclude the paper.



2 The Linear Manifold Cluster Model

A linear manifold is a subspace that may have been transtateg from
the origin. A subspace is a special case of a linear manif@ti¢ontains the
origin. Geometrically, a 1D manifold can be visualized ama embedded in
the space, a 2D manifold as a plane, and a OD manifold as a goiasgsical
clustering algorithms such as K-Means assume that eactecigsassociated
with OD manifold (a point typically the cluster center), atigerefore omit
the possibility that a cluster may have a nhon-zero dimemsiimear manifold
associated with it. For the sake of completeness we givenadiadefinition of
a linear manifold.

Definition 1 (Linear Manifold) L is alinear manifold of vector space V if
and only if for some subspace S of V and translatioa &, L = {x €
V|for some se S, x = t + s}. The dimension of L is the dimension of S,
and if the dimension of L is one less than the dimension of W lthis called

a hyperplane. A linear manifold L is rectangularly bounded if and onlyaf f
some translation t and bounding vectoisand a4, L = {x € V|for some s
S,a. < s<ay, x=t+ s}. Arectangularly bounded linear manifold has finite
extent and is localized with centeﬁt@. In the case thata= —ay, its
center is the translation t.

Thelinear manifold cluster moddias the following properties: The points
in each cluster are embedded in a lower dimensional lineaifaid of finite
extent. The intrinsic dimensionality of the cluster is thmeénsionality of the
linear manifold. The manifold is arbitrarily oriented. Theints in the cluster
induce a correlation among two or more attributes (or a litkgansformation
of the original attributes) of the data set. The points indfthogonal comple-
ment space to the manifold form a compact densely populagidn. More
formally let D be a set ofl-dimensional pointsX C D be the subset of points
that belong to a clustex be ad x 1 vector representing some point X
bs,...,bq be a set of orthonormal vectors that spashdimensional space3
be ad x k matrix whosek columns are a subset of the vectbrs. . ., by, and
B be ad x (d — k) matrix whose columns are the remaining vectors.

Definition 2 (The Linear Manifold Cluster Model) Let u be some point in
RY, ¢ be a zero mean k 1 random vector whose entries are i.i.d. on support
(-R/2, +R/2) where R is the range of the data, aabtle a zero mea(d—k) x 1
random vector with small variance independentgof Then eachx € X, a
k-dimensional linear manifold cluster, is modeled by,

X =yt + Bg + Be. D



The idea is that each point in a cluster lies close todimensional linear
manifold of finite extent, which is defined lpy a translation vector, the space
spanned by the columns Bf and the range parameter Since

E[X] = E[u + Bp + Be] = u + BE[¢] + BE[e] = u+0+0=p

the cluster mean ig. On the manifold the points are assumed to be dis-
tributed in each direction (thk column vectors ofB) on bounded support
(-R/2,+R/2). ltis in this manifold that the cluster is embedded, aret¢h
fore the intrinsic dimensionality of the cluster will ke What characterizes
this type of cluster is the third component that models a ksraadom error
associated with each point on the manifold. The idea is thaalh @oint may
be perturbed in directions that are orthogonal to the swdesppanned by the
columns ofB, that is the subspace defined by thek columns ofB. We model
this behavior by requiring thatbe a ¢l— k) x 1 random vector, distributed with
mean0 and covarianc&, where the square root of the largest eigenvalug of
is much smaller thaR, the range of the data.

Traditional "full-space" clustering algorithms take= 0, and therefore
assume that each point in a cluster can be modeled by u + Be where
B is simply the identity matrix. Subspace clustering aldoris focus their
clustering &ort on the space spanned by the column vectorB, aind when
restricted to axis parallel subspaces, they assumeBbaitialB contain columns
of the identity matrix.

As mentioned linear manifolds also capture correlationineiar depen-
dencies. More specifically, each linear manifold clustgegirise to a system
of linear equations that capture an arbitrarily complexaédinear dependen-
cies. Just as a surface can be defined by the normal vectamnukcplar to it.
A linear manifold can be defined by the set of vectors whichoaifgogonal to
it. That is, a linear manifold can be defined by the followiregtor equation,

B (x—pu) =0, )

which essentially describes the linear dependencies @dling the linear man-
. . . — —
ifold points. To see this more clearly we can rearrange ejjagB x = B u
and rewrite the above system as a linear combination ofrscala

brizaXs + brezoXe +, ...+ DrerdXd = Cker
briziXt + briooXe +, ...+ D2dXd = G2

®3)

bd,lxl + bd,2X2 +, ... ,+ bd,dxd

Cd



Figure 2. Sample data set of three clusters, each of which is embeddediferent
linear manifold of one@3) or two dimensions1, C2).

whereby.1, bkso, . . ., bq are the column vectors @, bi j the j-th component
of by, cki = by, andx; thei-th feature or attribute of the data. Note that the
number of equations or linear dependencies is equitothe dimensionality

of the space orthogonal to the linear manifold. Furthermaseng Gauss-
Jordan eliminationthis set of equations can be simplified and puteduced
row echelonto produce a unique description of the linear dependenéissa
special case, note thatte— 1-dimensional linear manifold can be defined by
one equation of the form

ba,1X1 + ba2Xo+, ..., +bddXd = Cy,

which if rearranged gives exactly ragression modelhat describes the re-
lationship between aesponsevariable (can be any of thg's) and a set of
explanatoryor predictor variables (the remaining’s).

Fig. 2 is an example of data set modeled by eq. (1). The dateoset
tains three non-overlapping clusté&s, C,, C3 each consisting of 1000 points.
C1, C, which are almost planar and parallel to each other are eneloeiddD
linear manifolds. Their points are uniformly distributedthe manifold and
they include a small error term in the space complementatiigananifold.
Similarly, C3 an elongated line-like cluster, is embedded inCalthear man-
ifold with an error element in the2 space complementary to the manifold.



Figure 3. The geometry of the three pattern clusters in the data sgdtare man-
ifested by lines but are oriented and translatetedently depending on the type of
pattern they manifest. A regular cluster (reg) is also pthtb emphasize the fir-
ence between correlation and regular clusters.

3 The Line Cluster Model

Line clusters arise naturally from the kind of patterns @&t often sought
in data (e.g., shift, scaling, negative correlations, aadegally correlations
induced by the linear dependengy = bjjx + cjj). Each of these kinds of
patterns in its ideal form is a line cluster. Figure 3 shows linese patterns
look from the point of view of line clusters.

In terms of our formal definition, a line cluster occurs wHhgns just a
k x 1 vector spanning a 1D subspaijs ak x k — 1 matrix whosek — 1
column vectors form an orthonormal basis that spans theespréicogonal to
the space spanned I8/ In following we will useB andg instead ofB and B
to distinguish between the two cases.

Definition 3 (The Line Cluster Model) Let u be some point irR¥, ¢ be a
zero mean random scalar distributed on the supgeR/2, +R/2) where R is
the range of the data, andis a(k — 1) x 1 random vector having medhand
covariance matrix?l, whereo < R . Then eacl € X, a k-dimensional line
cluster, is modeled by,

X = u + B + Be. 4)

Note that in this case is a scalar, and homoscedasticity (constant variance) is
assumed about the error teen This assumption is common to other quanti-
tative models such as the shift, scaling, and regressioretsoand simplifies
the line cluster model making statistical inference easier



The interesting property of ideal line clustets?(= 0) is that the correla-
tion between variables (features of the data}1sor -1. This is easy to see.
Let the density function of the cluster e Without loss of generalityf can
be taken to be the density of the scaler random variaplghich has mean 0
and variancené. Let ojj be the covariance between variablesand x;. Let

W= (ug, po, ..., ) and letB’ = (81, Bo, . ... Bx). Sinceo? = 0, e is efectively
0, and the model fox simplifies to

X =u+ Bo. %)

Then,
oij = E[(ui + ¢ — 1) + 68; — uj)] = BiBjo5

Hence,oii = 70 andoj; = . By definition, the correlatiop;j between
the variablesg andx; is defined by

pij = Oij/\oicjj

BiBios! BT

= +1

It can also be shown that correlations give rise to line ehssf17], and
that the more a set of points deviates from a predefined lireegarameterg
andp are fixed), the less correlated the features underlying eirgpwill be,
where the amount of correlation depends on the size?of

4 The General Algorithm

LMCLUS can be viewed as an hierarchical-divisive clustgnmocedure.
It executes three levels of iteration (Fig. 4), and expdutse inputsL, an up-
per limit on the dimension of the linear manifolds in which bedieve clusters
may be embedded, a sampling level parameter used to determine the num-
ber of trial linear manifolds of a given dimensionality thaill be examined
in order to reveal the best possible partitioning of a givenad points;T’, a
sensitivity or “goodness of separation” threshold, whiglused to determine
whether or not a partitioning should take place based omHittear manifold.

At the highest level of iteration the algorithm monitors #iee of the data
which is being partitioned. When no data is left to be pantiéid the algorithm
terminates. The second level of iteration causes the #hgotio iterate over a
range of manifold dimensionalities, commencing with oimaahsional mani-
folds, and terminating with-dimensional manifolds. For each linear manifold



dimension the algorithm enters the third level of iteratimnwhich FindSepa-
ration (Fig. 5) is invoked in an attempt to reveal separations ansoihgets of
the data and to determine whether some of the points are elmathéd linear
manifolds.

The idea behindrindSeparatioris to successively sample points that can
define a linear manifold of a given dimension, and select itieal manifold
that is closest to a substantial number of points. This suifsdosest points
will typically correspond to a cluster. The proximity of timgput data points
to the manifold is captured by a histogram of the distanceptints are from
the manifold. If the manifold indeed has some subset of paigtr it, then the
distance histogram will have a mixture of two distributio®ne of the distri-
butions has a mode near zero and arises from the distancesitd pelonging
to a cluster. The other distribution arises from the poirdsbelonging to a
cluster.

The problem of separating the cluster points from the retstan cast into
a histogram thresholding problem. Upon terminationdSeparatiorreturns
four valuesy- which is a measure of the “goodness” of the separatierg
proximity threshold that is computed from the histogram isndsed to split the
data into two groupg- the basis of the manifold which exposes the separation,
and o-a point on the manifold representing its origin. Whemxceeds the
value of the input sensitivity threshold paramdieiindicating that a worthy
separation has been found, then the data set is split angatwlr. This split
corresponds to the partitioning of all the points which aated close enough
to the just determined manifold, i.e. all points that patehyt belong to a given
cluster, and those that belong to other clusters.

The third iteration continues reapplyiindSeparationin an attempt to
further partition the cluster which may consist of sub-t#us, until the se-
lected data points can not be further separated. At thig gaénalgorithm will
retract to the second level of iteration in an attempt toifamt the cluster in
higher dimensions, a process which will continue until timehsion limitL
is reached. Wheh is reached we have a subset of the points that cannot be
partitioned any more, and declare that a cluster is found.

The algorithm then retracts to the first level of iteratiord as reapplied
on the remaining set of points until no more points are lethégpartitioned,
detecting one cluster at a time. We note that if outlierstekisn the last clus-
terpartition that is found will contain this set of points. Byfiétion outliers
do not belong to any cluster and therefore will remain thedasup of points
to be associated to any other group. Since they are unlikdigrin any clus-
ters the algorithm will not be able to partition them, andythall therefore be



all grouped together.

Algorithm LMCLUS (D, L, S, I
C=0 #setof labeled clusters initially empty
Dims=0 # setof intrinsic dimensionalities of each cluster
i =1 #cluster label
while D # 0 do
X=D
for k=1to L do
while [y, 7, 0, 8] = FindSeparation(X, k, S), y > T'do
# a separation is revealed by adimensional
#manifold Collect all points residing in the vicinity
#of that manifold
X={XxeYll(x=0) 7~ (x-0) IP< 7}
LmDim= k
#a cluster is found add it to the set of labeled clusters
Ci =X, C=CU{Cj}
#recored the intrinsic dimensionality of the cluster
dimy = LmDim, Dims= Dim U {dim;}
i=i+1
# remove cluster points from the dataset
D=D-X
return [C, Dimg

Figure 4. The linear manifold clustering algorithm.

4.1 Finding Separations

Let D, X, B, B, andu be as defined in section 2. The distance of a point
x € D to a linear manifold defined by and the column vectors & is given
by
—T
Il = BBT)(x — )|l = I[BB” (x — ). (6)

As mentioned earlier in section 2 the pointsXoére likely to form a com-
pact and dense region in the space orthogonal to the manmifaldich they
are embedded. Therefore by projectingnto the space spanned the column
vectors ofB and executing some form of clustering in the reduced spdse it
possible to identify and separatefrom the rest of the data. However, eg. (6)
shows that the distance of a point to the cluster center irrddaced space
is equivalent to the distance of a point to the linear madifoThus, rather
than clustering in the reduced space it is also possible @suore distances
from the manifold and collect all the points that lie in theiwity of this mani-
fold, essentially executing one-dimensional clusteri@ipce we are interested
in estimatingB, and because we are interested in detecting one cluster at a
time, and since one-dimensional clustering is typicalstdathan clustering in
higher dimensions, we choose to take this path.



Algorithm FindSeparation (X, k, S)
Yy =—00, T=—00, 0:0,,8=0
N = loge/ log(1— (1/S)¥)

fori=1toNdo
M = Sample(k + 1) points from X
O=xeM
B = FormOrthonormalBasis(M, O)
Distances= 0
for each xe X - M do
y=x-0

Distances= Distancesu {|| y |12 — || B’y [I?}
H = MakeHistogram(Distance$
T = FindMinimumErrorThreshold (H)
G = EvaluateGoodnessOfSeparatiofl, H)
if G > ythen
y=G,tr=T,0=0,8=8B
return [y, 7, 0, ]

Figure 5. Detecting separations among clusters embedded in lowesrdiionality
linear manifolds.

Lemmal [|(I - BBT)(x — p)ll = Vli(x — @)l = IBT(x — p)[I12
Proof: Lety = x — pu,

(1 - BB)yl? ly - BB|I?

= (y-BBY)'(y-BBY)

= yy-2yBBy-y(BB)%

= yy-yBBy (BB isidempotent sogB)? = BB')
= lyl? - IByI%

Lemma 1 provides us a much morffi@ent way of computing the distance
of a point to a manifold. Ifd is the dimension of the data, then computing the
distance using lemma 1 gives us a speedup(dj, which for high dimensional
data becomes a significant factor. To simplify the compoitegiven further we
choose to use the squared distance rather than the distemmforth we will
use the term “distance” to mean the squared distance.

4.1.1 Minimum Error Thresholding

The problem of separating all the points that lie in the vigiof a manifold
can be cast into the problem of findingranimum error thresholdhat is used
to classify points as either embedded in the manifold (lggtanto X) or not,
based on their distances to the manifold. Kittler and Iogth [19] (KI)
describe an ficient method for finding the minimum error threshold. Their



method was designed for segmenting an object from its baakgr in gray

scale images using a grey level histogram of the image. Tinetinod views the
histogram segmentation problem as a two class classificptioblem, where
the goal is to minimize the number of misclassified pixels.aldgous to our
problem, the distance histogram can be viewed as an estirfiie probability

density function of the mixture population comprising o$tdinces of points
belonging to a linear manifold cluster and those that do not.

The KI procedure is based on the assumption that each comipohthe
mixture is normally distributed. To support this assumptio our case, we
note that as a consequence to the central limit theorem,istendes to the
manifold which are merely sums of random variables will aggh distribution-
wise the normal, as the dimension of the space increases.

Let 6 be the distance of a point to the manifola{g|i) be the probability
density function of the distances of classvherei € {1, 2}, uj, oi be the mean
and standard deviation of distances in clgsandP; be the prior of class.
Then because of the normality assumption

o1 —(6 - w)®
p(li) = Voo eXp( > )

|
Giveny;, o, Pi, andp(d]i) there exists a threshotdsuch that

P1p(6|1) > Pop(612) if o<t and P1p(6|1) < Pop(612) if 6>,

wherer is the Bayes minimum error threshol@0], which can be found by
solving foré the following equation

1 (6 - ,Ul)z)
P exp( =P
! @O‘l _20'% 2 @O‘z

However, the true values ¢f, o, P; are usually unknown. KI propose to
obtain these estimates from the distance histognansuppose that the his-
togram is thresholded at an arbitrary threshiplthen we can model the two
resulting populations by a normal densitigi, t) with parameters:

06 = wi(0)? = h(s)
Pi(t)

(6 —,uz)z).

ex
p( —20'%

b b
__ 6 *h(0)
PO = D 0O, i) = =
6=a :
wherea=0andb =tifi =1, anda=t+ 1 andb = maxo) if i = 2. Now
using the modeh(dli, t) for i € {1,2}, the conditional probability 0§ being
correctly classified is given by

od(t) =

h(sli, t)Pi(t)

p(ils, t) = heo)



We wish to find the thresholtthat maximizes this probability. Sind&o) is
independent of andt it can be safely ignored. Furthermore, since the loga-
rithm is a strictly increasing function, taking the loghrit and multiplying by

a constant will not change the maximizing value. Therefore

6 — pi(t)
ai(t)

can be considered as an alternative index of the corredifitagion perfor-
mance, and the overall performance is given by

3(t) = > h(©)e(o, 1),
0

2
€(o6,t) = ( ) + 2logoi(t) — 2logP;(t)

which reflects indirectly the amount of overlap between we Gaussian pop-
ulations. Substituting;(t), oi(t), P;(t), ande(s, t) into J(t) we get

J(t) = 1+2(P4(t) log o1 (t) + P2(t) log o2(t))—-2 (P1(t) log P1(t) + P2(t) log Pa(t)),
(")

and the minimum error threshold selection problem can baditated as
T = arg rrtwinJ(t).

J(t) can be computed easily and finding its minima is a relatigatyple task
as the function is smooth.

4.2 Sampling Linear Manifolds

A line, which is a 1D linear manifold, can be defined by two peira
plane which is a 2D manifold can be defined using three poifdsconstruct
a randomk-dimensional linear manifold by sampling points from th¢éedae
need to sampl& + 1 linearly independent points. L&p,...Xyx denote these
points. Choosing one of the points, sayas the origin, thé& vectors spanning
the manifold are given by

Yi =Xi —Xo

wherei = 1...k. Assuming each of these sampled points came from the same
cluster, then according to eq. (1)

Yi = Xi — Xo = (o + Bé; + Bei) — (1o + By + Beo)

= B(¢ — ¢o) + B(€ — €0).



If the cluster points did not have an error componehttee manifold, i.e., they
all lie on the linear manifold, then sampling aky 1 points which are linearly
independent and belong to the same cluster would enable recomstruct
B. So in order to get a good approximation Bfwe would like each of the
sampled points to come from the same cluster and to be asadqsessible to
the linear manifold. From the equation above we see thabttdars when

€ — €y~ 0,

resulting in a set ok vectors which are approximately a linear combination of
the original vectors irB. A good indication as to why this is likely to occur
when the sampled points come from the same cluster, is givémefact that

E[ei — 0] =0,

and that normally distributed datg & €g follows a normal distribution) tends
to cluster around its mean. In cases where the clusters dreaparated, the
requirement tha¢; — egp ~ 0 can be relaxed. That is, when the clusters are well
separated more sets of points coming from the same clusténa only those
that are relatively close to the manifold will be good caiaditd to a construct a
manifold that will induce a large valley in the distance bggam that separates
the linear manifold cluster from the remaining points. Asasequence, the
problem of sampling a linear manifold that will enable uséparate a linear
manifold cluster from the rest of the data can be reducedeamtbblem of
samplingk + 1 points that all come from the same cluster.

Assuming there ar8 clusters in the data set whose size is distributed with
low variance, then for large data sets the probability thatmple ofk + 1
points all come from the same cluster is approximately

1 k
5| -
If we want to ensure with probability (2 €) that at least one of our random

samples ok + 1 points all come from the same cluster, then we should expect
to make at least selections ok + 1 points, where

]

N> log €
~ log(1- (/)%

yielding that
(8)



Therefore, by computing given e, andS which is an input to the algorithm
we can approximate a lower bound on the number of samplegredgsuch

that with high probability, at least one of timesamples containk + 1 points

that all come from the same cluster. Unlike related methdus,user input
S does not predetermine the number of clusters LMCLUS wilpatit It is a

rough estimate of the number of clusters in the data set,hwkionly used to
compute an initial estimate of the sample size required suenwe sample
points coming from the same cluster. It is rather a “gaugdhwihich we can

tradedt accuracy with &iciency.

Putting it all together, for each sample of poifys, .. ., yx} we construct
an orthonormal basiB of a linear manifold using the Gram-Schmidt process.
(If the Gram-Schmidt process indicates that the sampleaatpare not linearly
independent, a new sample of points is taken.) Then using déthod we
compute a threshold. Of all possible thresholds corresponding téfetient
linear manifolds which induce fierent separations, we prefer the one which
induces the best separation. The best separation is defne separation
which induces the largest discriminability given by

(a(7) = p2(7))

discriminability = )
Y= (02 + oo

)

and the one which causes the deepest broadest minimum incktésion
function-J(t). The deepest minimum can be quantified by computing the dif-
ferencg¢depth of the criterion function evaluated at the minimwrand the
value evaluated at the closest local maxirha.e.

depth= J(z') — J(7).
The composite measure of the goodness of a separation igitrenby
G = discriminability x depth (10)

A typical run of the algorithm is illustrated in Figs. 6 and ¥ & tree
which summarizes the clustering process of the sample @atdepicted in
Fig. 2, and the corresponding histograms that were usecharae the linear
manifold clusters in this data set. At the beginning of thecpss the algorithm
searches for 1D linear manifolds in which some clusters neagrbbedded.
Since clustefC3 is such a cluster it is separated fr@pn C, using the threshold
returned by KI's procedure, and the algorithm proceeds Yangrto further
partition it in higher dimensions. Since it cannot be furtpartitioned using
2D manifolds, cluste€s is declared to be found. The algorithm then attempts



1{C1, Cs, C3}
/
{Cs}

21 l1
{Cs} 5 {C1,Cs}

Figure 6. A tree summarizing the clustering process of the samplesdtiom Fig.
2. The labels on the arrows specify the dimension of the tinganifold which was
used to separate the clusters.

to separate the remaining clust&s C, using 1D manifolds. Since both these
clusters are embedded in 2D linear manifolds the algorithifrfail. However
by trying to separate them using 2D manifolds the algorithithsucceed. At
this point the algorithm will attempt to further partitioah of the cluster€;
andC,, however since they are inseparaBleandC, are declared to be found,
and the algorithm terminates.

5 The Line Cluster Algorithm

The line cluster algorithm SLCLUS is a specialization of ¢femeral algo-
rithm of the previous section that is aimed at specific lindgpendencies of
the formx; = bj;x + ¢jj between pairs of features. Because of this and unlike
LMCLUS itis restricted to axis-parallel subspace. Conssy, is basedea-
ture selectiontechniques. It also exploits trdownward closure property for
lines If there exists a line in a set &fdimensions then there exits a line in all
k — 1 subsets of thededimensions [17].

Downward closure tells us that if a set of points form a linesttr in some
set of dimensions it is possible to commence the search &clilster in a
smaller set of dimensions, and iteratively extend it in adsmatup manner us-
ing forward selection. Moreover, the search for clustetswer dimensions is
typically easier (faster) than a search for clusters in @igtimensions. Down-
ward closure also provides pruning power. If a line clussemot visible in a
smaller set of dimensions it is not necessary to search forhigher dimen-
sions. Using this property we can also devise a terminatomdition for the
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Figure 7. Histograms used to separate the clusters from Fig. 2C{a3 separated
from C, andCs by sampling 1D linear manifolds. (If}; is separated fronC, by
sampling 2D linear manifolds. (c) a histogram for which npasation can be found.

algorithm, i.e., if the algorithm is unable to detect any endusters in a small
initial set of dimensions then the algorithm should terrténaStarting from
lower dimensions and working up ensures that the line dsistee found in
the largest possible subspaces.

The algorithm in its most generic form can be stated as fdldimd a line
cluster in an initial set of dimensions using a random walkhenfeature’s lat-
tice. Using forward-feature-selection add dimensionat(fees) to extend and
refine the line cluster until no more dimensions can be adiedhich case
a line cluster is assumed to be found. Remove the identifieddiuster from
data set and reapply the first two steps on remaining set afgor he algo-
rithm is designed so that it detects the the largest possibiters embedded
in the largest possible subspaces. The rational is thaglations induced by
larger clusters in a larger set of features provide stroageience pertaining to
the relationship between the objects under consideradiothfrom a statistical
point of view is less likely to occur by chance.

To detect lines in subsets of features (axis-parallel sadeg) SLCLUS
uses LMCLUS restricted to 1D linear manifolds (hencefditle detectoy.
However, rather than using a goodness of separation tHdeghqualify clus-
ters, SLCLUS uses an error tolerance thresigldefined as the the maximum
distance of points to a line, we are willing to allow. The &dfd is that at the
expense of detecting clusters which are to some extent Essdiiven we
get clusters which are easier to interpret, more consistéhtthe line cluster
model, and more consistent with the notion of correlationaddition, rather
than returning the line which is best separated from the i@ngaset of points,



SLCLUS returns the line having most points, ensuring thataihgest possible
clusters are detected.

5.1 Selecting an Initial Set of Features by Random Walk

One possibility is to start the clustering process with lohgsters of the
smallest possible dimensionality, i.e., 2D line clustérkis can achieved by
searching through all possible 2D subspaces for a linearlusting the line
detector algorithm. However, confirmed by experimentsgmrts] in ref. [17],
clusters tend to overlap when projected from higher dinmradi spaces into
lower dimensional spaces. Hence, the projection of selieeklusters em-
bedded in higher dimensional spaces into a lower dimenisspage may either
mask each other or appear as a single cluster. This in turf‘coajuse” fea-
ture selection used to extend a cluster in the determinatiavhich features
are relevant to the cluster. Ideally the clustering proctssuld start with a
larger set of initial features, close in number to the dinamality of the sub-
space in which some line cluster exists. This will not onlyprove cluster
detection accuracy but also improv@igency as the extension process will be
shorter. To achieve this goal we propose a method that islb@sarandom
walk on thefeatures lattice

The basic idea can be stated as follows: starting from tHesétlof fea-
tures, randomly remove one feature at a time, after eachvanmvoke the
line detector algorithm to detect line clusters in the sabspdefined by the
remaining features, and repeat the process until a lindeclis detected, or
until no more features are left to be removed. As mentiordmhlly we would
like the random walk to stop sooner. More formally, Fetbe the full set of
features, and’r be the lattice (poset) defined bp(F), ©). If F, andF, are
two elements infg (subsets of), we say thaf, is moregeneralthanF; or
F1 morespecificthanF, denoted byF, < F1 if F» ¢ F1. LetF’ C F be a set
of features (subspace) in which some line cluster exist$ Féhbe the set of
features remaining after each feature removal during tHk. what a certain
point during the random walk”” C F’, i.e., a subset of features that constitute
a higher dimensional line cluster is detected, we can swpahdom walk and
useF” as our starting point (initial set of features). Then usioigviard selec-
tion we can extend the line cluster currently residing inghbspace defined
by the features oF” to the higher dimensional subspace in which the cluster
exists defined by the featuresef. Due to the downward closure property of
lines, once this condition is met it is not necessary to coithe walk (re-
move features) as any subsetFdf will also contain a line cluster. Thus, the
method can be restated as: performaadom walkon Lg starting fromF and



moving in thegeneralizationdirection until eithef="” € F’ or F”” = 0.

Fig. 8 shows the change in the probability (the derivatiotemgthy and
beyond the scope of this paper) of the random walk succeédétgcting clus-
ters at dimensionality larger than two) and the expectededsionality of the
clusters intercepted by the random walk, as the number sfeisc in the data
and the dimensionality of the subspadeis which the clusters exist are var-
ied. Each curve represents @fdient number of clusters in the data set, where
the lowest curve represents a data set with one cluster arfughest with ten
clusters¢ = 1,...,10). For illustrative purposes the dimensionality of theada
is fixed atd = 50, but similar patterns can be observed for other data dimen
sionalities. It is clear from Fig. 8(a) that as the numberlaéters increases
andor the dimensionality of the subspaces in which clustersarbedded is
increased the probability of success increases. It is @isem that even when
a small number of clusters exist in the data and the clusterermbedded in
higher dimensional subspaces there is a high probabilisuotess. Hence,
one conclusion that can be drawn is that the random walk &ylito suc-
ceed when a large (not necessarily extremely large) nunfludnsiers exist in
the data and the clusters are embedded in a relatively hiiimemsional sub-
space. Fig. 8(b) similarly shows that the random walk is nefiiective, that
is, clusters are intercepted sooner and at higher dimensityen the clusters
are embedded in higher dimensional subspaces. The rfective region of
the random walk seems to be approximately the upper thiglerahsubspace
dimensionalities. The figure also shows that the expected @nverges to
an exponential and that the addition of more clusters beyoaodrtain point
will not enhance the capability of the random walk detectihgsters sooner.
One more important conclusion that can be drawn from thediyig that if
the random walk fails, it is likely that the clusters are enide in lower di-
mensional subspaces, in which case we can revert to thedssitility, which
is to initialize the clustering process by searching for 22 Iclusters in all
possible 2D subspaces.

5.2 The Distance of a Point to a Line

SLCLUS requires the computation of a point’s distance (seplieto a line.
The distancé of a pointx modeled by eq. (4) to kdimensional line is given

by:

I = BB)Y(x = I = 111 = BB")(Bg + Be)lP
1Bp — B + Be — Ol = ||Bell” = (Be) Be

>
Il
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Figure 8. Random Walk Statistics.
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According to the line cluster mode}] ~ N(0,0?). Therefore the distance
normalized by? will have

PR S
2
P = Z ﬁ ~ Xk=1> (11)
i=1

a chi-squared distribution witk— 1 degrees of freedom. Hence,

E[6] = E[oZ ;] = (k- 1)0® and Varp] = Var[o®yZ ;] = 2(k - 1)o*.

(12)
Because the distance grows with the dimensionality of thesace in which
it measured, and since the search for line clusters will beptded across
different dimensionalities, we normalize the distance by iggaks of freedom
(k — 1) or equivalently the dimensionality of the space orth@jda the line.
This creates a uniform or normalized distance measure whittdependent
of the dimensionality of the subspace in which it is measurBuerefore the
normalized distancé/(k — 1) has

S 1. § 1. 20*
E[m]—" and Va'{k—l]‘k—l‘ (13)

The expected value and variance of the normalized distanitdavused as
heuristics to set the input parameters to the algorithm.



5.3 The Score (Fit) function

At each forward selection step the quality of the line clusteist be as-
sessed according to some criteria in order to determinehghet not to pro-
ceed to the next step. The criteria we use to assess theyqoiaditcluster is
the “fit” of the set of points constituting the cluster to theelin which they are
embedded. The fit is defined to be the average-normalizearadidistance
(average error) of the points to the line.

If kis the dimensionality of the subspace in which a cluster isaed,n
the number of points constituting the clust¥rthe cluster points, ang the
i-th point. Then the fit or score functiai(X) is defined as

_ 1 C _ Y _ 2
J(X)_n(k—l);(”(l BB - ). (14)

Prior to the fit computatiory andg must be estimatequ is estimated by
computing the sample mean of the cluster. Using least-seguican be shown
that an estimate fg8 is the largest eigenvector of the cluster’'s covariance ma-
trix, which can be computed using tpewer method

To guide the algorithm to give certain preferences to the aixd dimen-
sionality of the clusterJ(X) can be modified as follows:

J(X) = IX)nd(k — 1)P. (15)

For example guiding the algorithm to prefer even higher disi@nal sub-
spaces we can sbtto some value less than zero. Based on eq. (13)

20

E[J(X)] =o? and Var[](X)]:m,

(16)
which will also be used as heuristics to set the input pararaet

5.4 Putting it All Together

SLCLUS (Fig. 9) commences by a random walk to select an irg@aof
features to initiate the clustering process. If the wallefathen the initial set
of features is determined by searching through all pos@blesubspaces for
the best 2D line cluster. If no such cluster exists (deteeahiby a fit threshold
J) then SLCLUS terminates. If either the random walk succeeds2D line
cluster is detected, then SLCLUS proceeds by repeatedingahe forward
selectionprocedure (Fig. 10) to extend the cluster into higher diroerssand
refine it, until no “improvement” can be made. A cluster is noyed if its



Algorithm SLCLUS (D, S, A, J)
J(X) = o
X=perform random walk (D)
if (J(X) >J)
X=find the best 2D-line cluste(D)
if (J(X)>J)
terminate
while (|dimgX)| < |dimgD)| )
X’=ForwardSelection (X, S, A)
if (J(X’) < JI(X))
X=X
else
break
output X
D =D - ptgX)
if (D #0)
goto first step
return

Figure 9. The subspace line clustering algorithm.

fit J(X) decreased. At this point a line cluster is assumed to bedfoitiris
outputted, removed from the data, and the algorithm is Hespjpn the re-
maining set of points until no more points are left to be @testl. The forward
selection procedure extends a cluster one dimension atalyrchoosing the
dimension whose data when added to an existing clustemsttee maximum
reduction in the fitJ(X). We note that by calling the line detector procedure
from within the forward selection procedure the algorithns@es that line
clusters are refined by also pealinj enrelated points from them. This refine-
ment is necessary when the projection of several line clistppear as one
line cluster in lower dimensional subspaces. In additibthe random walk
fails it is likely that a cluster is embedded in a lower dimenal subspace, in
which case searching through all possible 2D subspacekely lio reveal it
since it is less masked or overlapped by other cluster projex

SLCLUS requires three inpug, A, andJ. S is the sampling level param-
eter used by LMCLUS, which is set in accordance with the Is¢iardiscussed
in section 4.2 A andJ pertain to the error tolerance or deviation from the line
we are willing to allow, and indirectlyféect the magnitude of correlations the
generated clusters will induce. E.g., setting them to higladues will likely
generate clusters inducing lower correlations. Assumiagve willing to ac-
cept clusters whose average deviation (distance) fromeaidior (i.e, we are
assuming thaté ~ N(0, o?1)), then using the statistics derived in eq. (13) and
eg. (16) as heuristics, we can #eandJ to their expected value plus a number
of their standard deviations.



Algorithm ForwardSelection (X, S, A)

Y=X

while (unexamined dimensions &fremain)
select an unexamined dimension oK
add dimension data toX
X’ =LineDetector(X, S, A)
if (J(X) <J(Y))

Y=X

restore X

return Y

Figure 10. The forward selection subroutine used to gradually extbedstibspace
in which line clusters are detected and to pelpmints which do not belong to the
cluster.

6 Empirical validation

The aim of the experiments presented in this section is toodetrate the
applicability and éicacy of the linear manifold clustering paradigm to the
problem of correlation clustering. Due to space limitasiome omit experi-
ments with synthetic data and refer the reader to ref. [1Bf{dtthis propose.
For the same reason we narrowed the scope of experiments ppghlem of
pattern clustering and the detection of the simpler formireddr dependen-
cies or correlation. For experiments discussing genamahli manifolds and
general linear dependencies we refer the reader to refl1gl3,

Extensive tests were conducted on three real data set. Tiacsdts that
have become standard benchmarking data sets for clustgeimg expression
data—theyeast Saccharomyces Cerevis@al cycle expression data obtained
fromhttp://arep.med.harvard.edu/biclustering/, and theColon Can-
cer data obtained frorattp://microarray.princeton.edu/oncology/.
The third—Jesterobtained fromhttp://ieor.berkeley.edu/~goldberg/
jester-data/,is a data set used in an online joke collaborative filtgrampmmender
system [21].

6.0.1 Yeast Data

The yeast data contains 2884 genes (objects) and 17 timiy/jpoimditions
(dimensions), and is a very attractive data set for evalgatiustering al-
gorithms because many of the genes contained in it are halbg char-
acterized and have already been assigned fferdint phases of the cell cy-
cle. Applied on this data set SLCLUS discovered 62 line elsst We com-
pared these clusters with the 100 biclusters reported byitastering al-
gorithm [5], which were obtained frorhttp://arep.med.harvard.edu/



biclustering/. The clusters’ size detected by SLCLUS ranged in §B5]
and on average much smaller than the clusters reported liydiustering al-
gorithm. From a biological standpoint this makes sensehasvhole yeast
genome contains roughly only 6000 genes, and typical fonaticategories
of the yeast genome contain dozens rather than hundredses geat were
included in some of the biclusters. The dimensionality eftlusters detected
by our algorithm ranged in [36] and was on average smaller than the dimen-
sionality of the biclusters. We also compared thean squared residue score
(MSRS) [5], which is part of thehift patterncluster model and used by the bi-
clustering algorithm as a criteria to identify shift pattelusters. The authors
of the biclustering algorithm used MSRS00 as a threshold to qualify “wor-
thy” biclusters. SLCLUS detected on average clusters wistigitly larger
MSRS. However, this is reasonable since our algorithm wasestricted to
searching only for shift pattern clusters for which this recavas designed.
Nonetheless, our algorithm was successful in finding atastet induce large
correlations. We usedverage correlationdefined to be the average of the
absolute value of the correlation d¢beient between each pair of features be-
longing to a cluster, to quantify the degree of correlatiotduiced by a cluster.
After the removal of 3 outlier clusters (clusters with aggraorrelation less
than 0.8) the mean average correlation was found to be 0§61 is a plot
of MSRS versus average correlation of the clusters detdwstedir algorithm.
The figure shows that there are gene clusters in the datanthade large cor-
relations and may be functionally related, yet do not folliwe shift pattern
cluster model (have MSRS00), supporting one of the main motivations for
this work (overlooked patterns). We note that some of thetehs found by
our algorithm did follow the shift pattern cluster model.

We also evaluated the biological significance of the clgsgrCLUS pro-
duced by means dfinction enrichmentthe degree to which the clusters grouped
genes of common function. This was done by computing for eacster P-
values (using the hypergeometric distribution) of obsegvé certain number
of genes within a cluster from a particular MIPS (Munich Imfation Center
for Protein Sequencekttp://mips.gsf.de/) functional category. Table 1
shows five of them that had smaller P-values, indicating $ &L US is able
to detect statistically significant clusters.

6.0.2 Cancer Data

The cancer data contains 2000 genes (objects) and 62 tismmes (di-
mensions), of which 40 are colon tumor and 22 normal colonpéesn The
goal in this experiment was to identify gene clusters thatdifierentiate the
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Table 1. MIPS gene function enrichment.

DNA processing

Genesin MIPS Functional Genesin| Clustered|| P-value
Cluster Category Category|| Genes

ribosome biogenesis 215 27 1.698e-09
211 protein synthesis 359 35 5.649e-09
cytoplasm 554 37 2.696e-05
cytoplasm 554 15 1.565e-14
17 protein synthesis 359 13 1.178e-13
ribosome biogenesis 215 11 6.229e-13
subcellular localisation|| 2256 16 8.658e-07
193 amino acid biosynthesig 118 13 5.462e-05
49 amino acid metabolism 204 6 6.740e-06
16 cell cycle and 628 9 5.772e-06




cancerous tissues from the normal ones. These clustersateydtord re-
searchers the ability design classifiers for diagnostip@ses. Applied on this
data set SLCLUS detected 81 line clusters. The size of treterthiwas gen-
erally small, the largest cluster contained 21 genes. Timemwsionality of the
subspaces in which the clusters were embedded rangedlié][4he average
MSRS of the clusters was 15243, indicating that most of thetets did not
follow the shift pattern cluster model. However, their meamrage correla-
tion (after removal of two outlier clusters) on the other thavas around 0.83.
Again indicating that related groups of genes may exist endhta, yet are
overlooked by most clustering methods.

We also found seven gene clusters that were present in eithethe nor-
mal tissues or only the cancerous tissues. One clusterigedtanly normal
tissues and the remaining six only cancerous tissues. Tdioed a small
number of genes 16-18, and were embedded in subspaces ofsiomality
ranging in [4 9], i.e., contained between 4-9 tissues. The average atiael
of these clusters was around 0.88, higher than the rest afitiseers, provid-
ing evidence that the genes within these clusters may bdidmadly related
and can used for discriminatory purposes. Most of the reimgiciusters con-
tained a mixture of tissues none with an overwhelmingly migjaf normal
or cancerous tissues.

6.0.3 Jester Data

The Jester data set contains a million continuous ratintjeirange+10.00, 10.00]
of 100 jokes (dimensions) from 73421 users (objects). Nais#rs rated all
jokes, thus the data contains missing values. We extractedset of 6916
users that rated all jokes. Applied on this data set SLCL@&tifled 252 line
clusters with the following statistics. The average sizenfber of users) of
the clusters was 28 and the average dimensionality (nunfbjekes) of the
clusters was 10. Again we examined the MSRS of the clustegsttan idea of
what types of patterns were identified. Surprisingly we a@isced that most
of the clusters followed the shift pattern (slope one chssitethe collaborative
filtering literature) with a very low average MSRS of approztely 5. This
finding demonstrates that while being able to identify a waded more general
spectrum of patterns SLCLUS does not over look the more campatterns,
which as stated are a special case of the line cluster modhen whose are
present or more evident in the data. After the removal of 2Baviclusters the
average correlation was found to be approximately 0.7, ancs high as in
the preceding two experiments.



7 Conclusions

The aim of this paper was to demonstrate the applicabilityheflinear
manifold clustering paradigm to the problem of correlat@ustering. We
showed that the linear manifold cluster model is a genextidin of more com-
mon and specific cluster models. This generalization pesvia more flex-
ible framework in which cluster analysis may be performed.tHe context
of correlation we showed that general linear manifolds &te t capture ar-
bitrarily complex linear dependencies that may give risedoelations. We
also showed that 1D linear manifolds as a special case ofahergl model
can capture correlations of a simpler form, where each pd@atures are lin-
early dependent upon each other. Based on these modelsawt@stic algo-
rithms were presented, the later generalizing the so cgletiern” clustering
paradigm. A series of experiments on real data sets was as@hionstrate
the dficacy of our methods. One experiment demonstrated that oiinoohés
able to identify statistically significant correlation stars that are overlooked
by other existing methods. Until cluster validation teciu@s appropriate to
the correlation or linear manifold clustering paradigmes devised, substanti-
ating clustering results in the absence of ground truth aralo knowledge is
hard task. In future work we plan to investigate severalsieal approaches
to cluster validation which are based on linear manifolélikood models and
on permutation tests.
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