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An lterative Clustering Procedure

ROBERT M, HARALICK, MEMRER, [EEE,

Afsrraet—In many remote sensing applications millions of measure-
ments can be made from a satellite at one time, and meany times e data is
of marginal value. In these situations clustering technigues mizht save
much data transmission withont lnss of infermation sinee cluster codes
may he transmitted instead of multidimensional data points, Tata points
within a cluster are highly similar so that interpretation of the cluster
code ean be meaningfully made on the basis of knowing what sort of data
peint is (vpical of those i the cluster. We intreduce an iterative clustering
technique; the procedure suboptimally minimizes the probability of
differences between the binary reconstructions from the cluster eodes and
the original hinary data,

The iterative clustering technique was programmed for the G 635
KANDIDATS (Kansas Digital ITmage Data Svetem) and tested on two
data sets, The first was a multi-image set, Twelve images of the northern
part of Yellowstone Park were taken by the Michipan scanner system,
amd the images were redoeed and run with the progeam. Thirty<thousand
data points, cach consisting of a hinary vector of 25 components, were
clustered into four clusters. The percentage difference between the
components of the reconstructed binary data and the original hinary
data was 24 percent.

The second datn set consisted of measurements of the frequency
content of the siganals from lghtning discharpes. One hundred snd thiety-
four data measurements, each consisting of o binary vector of 32 com-
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ponents, were clustered into fowr clusters, The ground truth divides the
elements into two ¢lasses: elowd-to-ground and cloud-to-clowd discharpes.
The best performance of a trained classifier provided 82 percent of
correct classification, Associating two clusters with each class vielded
T4.5 percent of correet classification.

l. INTRODUCTION

A Clustering

LUSTERIMNG, when properly used (it has been used
Cutc long ago as 1939 by Tryvon [33]) and interpreted,
can provide meaninglul information about a data set,
Clustering s often used as a tool to help inform the
researcher where the “action™ in his data set lies. A cluster
15 usually thought to be a subset of data points which are
highly similar or associated and relatively unassociated
with data points outside the subset [11], With this inter-
pretation. data points within o cluster are viewed as
measurements which have been made of some one kind of
environmental object or process, Hence clusters may
inform the researcher what measurements come from
distinet environmental objects or processes, that is, distinet
as seen through the eves of the instrument used to measure
the environment.
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B, Lireratwre Review

There are a number of proposed clustering techniques
currently available, Widely uvsed i numerical taxonomy
[45] are agelomerative and divisive hierarchical clustering
schemes, Here, a small and fixed set of patterns is given and
a matrix is computed whose (£ j)th entry is the association
or similarity between the fth and jth patterns, The measure
ol association or similarity can be the correlution coefhcient,
Yules Q, or some inverse metrie function, The agglomerative
procedures [26] generally link together the most similar
patterns. Then the similarities hetween the groups of
linked patterns and the remaining groups (or patterns) are
recomputed  using  the minimum, maximum or mean
similarity between the two groups, The procedure continues
in this manner linking together the most similar patterns
or groups. Michener and Sokal [33]. Ward [54]. and
McQuitty [297] were early users ol this scheme.

The divisive procedures [26] begin with all the patterns
in the same group and split the group into the two most
dissimilar groups, Splitting, as proposed by Edwards and
Cavalli-Sforza [ 7], can be done by examining all possible
partitions of two parts for each group and selecting the
partition of that group which reduces the within group
variance the most. Lance and Williams [25] suggest succes-
sively splitting the groups by thresholding that variable in a
way which is expected to reduce the variance the greatest
for the split groups, Mattson and Dammann [ 30] suggest
successively splitting each group by threshelding the dom-
inant eigenvector of the covariance matrix for that group.
Wirth er al. |35] suggest thresholding the association or
simlarity matrix and  defining  the components of the
resulting  graph as the clusters. Thresholding 15 done
successively from strict thresholds to more liberal thresholds,

Nonhierarchical schemes have also been used in clusterning
a fixed small set of patterns. Most popular among these have
been those iterative schemes beginning with an arbitrary
set of exhaustive and mutually  exclusive clusters and
successively improving the set of clusters by transferring
patterns from one cluster to another until no further
improvement is available | 10]. In the ISODATA technique
[2] each pattern is put into the cluster for which the
squared distance between it and the cluster mean is least,
Then the new cluster means are computed and the whole
procedure repeated. Jones and Jackson [22] suggested an
iterative technique where clusters are found one at & time,
An initial pattern is picked to be the first pattern in the
cluster. Patterns are successively transferred into and out of
the cluster in a way which increases the within cluster
similarities and decreases m-cluster o out-cluster similar-
ities. Another type of nonhierarchical scheme [4] starts
out by thresholding the association or similarity matrix
and defining as “core clusters™ the maximal complete
subgraphs (cliques) of the resulting graph. Then the smaller
core clusters are merged nto the large core clusters, and
largely overlapping core clusters are merged.

When the number of patterns is not a small and Hxed
set, all of the preceding methods seem unleasible since
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they cach involve too many calculations. In the case of a
large number of patterns another approach has been
developed. Here, the clustering problem is conceived of in a
different way. It is assumed that the patierns are generated
by a number of different “sources” according to some
unmigue  source probabality  distribution. The probability
distribution for the collection of patterns is then a mixture
of the probability distributions of the sources, The
clustering problem is then concerned with decomposing the
mixture by identifying from the mixture distribution the
individual probability distributions of the sources and then
constructing a minimum risk Bayes decision rule to assign
any pattern to the most probable source. The decision rule,
of course, determines a partition, and the cells of the
partition are the clusters. Work on the identifiability of
mixture distributions has been done by Teicher [50]-] 52],
Yakowitz [57], [59]. Yakowitz and Spragins [58], and
Stanat [48]. Application and development of this technique
under the name “learning without a teacher™ or *‘un-
supervised learning” has been done mainly by Fralick [9],
Spragins [47], Patrick and Hancock [36], Patrick [37],
Hilborn and Lainiotis [17], and Patrick and Costello [38].

Ruspini [43] has an interesting article on the abstract
formulation of the clustering problem.

In this paper we will view a cluster as a subset of highly
associated or similar data points, not necessarily requiring
the clusters to be unassocizted. From this perspective
clustering serves as a dimensionality reduction technique.
Clusters are formed parametrically from a sample of
patterns iteratively improving a cluster assignment function
of simple form.

When no more improvement is possible for the cluster
assignment function, the entire set of patterns may be
quickly clustered using it. An additional feature of this
method is the concomitant definition of a simple inverse
clustering function which assigns cach cluster to some data
point representative of the cluster, Hence a data point
assigned to a cluster may be reconstructed from the cluster
cade. A test made ol this clustering algorithm with some
remaote sensor multispectral scanner imagery indicated that
it correctly reconstructed 79.3 percent of the binary data
components after a 25 to 3 dimensionality reduction. A
map is also illustrated indicating the correspondence of the
clusters with natural terrain type categorics.

C. Development of Nerative Clustering

In our discussion we will be concerned with clustering
techniques which are applicable to data sets in which it 15
appropriate to ignore the order of the data points. For these
cases the entire structure of the data is described by the
triple (£, F.p), where £ is a countable set of all possible
measurements sometimes referred to as measurement space,
s the empirically observed probability distribution on
0, and pis a metric on . A set of M clusters for (D.P,p) 15
defined by any pair (%,0*), where % = {C,,C,.- ", Cy}
is @ set of M subsets of D which cover D, J, C, = D,
and [ = d Fd® o0 dy® 1S i subset of distinet elements
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of D, D* < 0, such that

KE)
iill J;;'. aled,d 1P
is minimal for all possible sets % and D%,

Usually, it is also required that the subsets € be mutually
exclusive C; n O J.oso that % ds a partition
of 0. A data point &% in O is interpreted as being the
most typical point in C, and &% is therefore the most
representative measurement of the kind of environmental
object or process associated with cluster O,

The reader might note that measurement &% was not
defined to be a member of cluster ©;; however, when
Pid*y = 0, for every % € D%, this fact follows from the
minimality of

=, for { #

A
Y ¥ plddP().
i=1 deC

iWhen Pid*) = Olorsome d® € D7, itis of no consequence
inte which cluster o ® is put; putting & in cluster ) 13
intuitively most pleasing, so without loss of generality we
assume it there when Pid*) = 0.

In many remote sensing applications millions of measure-
ments can be made rom a satellite al one time, and some-
times most of the data is not even worth transmitting. In
these situations it is useful to cluster the data first, and then
instead ol transmitting the data point , one transmits a
code assigned to the cluster to which & belongs. Transmitting
a dara point o from a multispectral sensor usually involves
a choice of one out of at least a million (d, for example,
can be a six-tuple where each component is a choice of one
out of ten), while transmitting o cluster code wsually involves
a choice of onc out of ten. Then, there can be a 20 to | bit
compaction achieved by transmitting cluster codes instead
of data points, 1f before or after the transmission of cluster
codes an inverse clustering function is transmitted which
assigns ¢ach data point to some cluster code, then the
received cluster codes can be interpreted as having come
from measurements of an environmental object or process
of which the data point specified by the transmitled inverse
clustering function must be a tvpical example.

Let D be the set of possible data points, and % =
{Cy0 .0yt be the set of clusters. The clustering function
D — %, s defined by

Mdy= ¢,  iland only ifd = €.

Let D% = {d,*, -+, dyy® be the set of representative data
points for the cluster set . We define the inverse clustering
function g, g: % — 0, by g(C;) = % With this choice of g,
by the definition of the clustering function f we must have
that

M
Y Y Plpldd”) = ¥ Pdipldg - f)d)
i dedy el

is minimal for all ¥ and D*, or equivalently, minimal lor all
functions f, /> D = ¥, and g, g: ¥ —= D.

This later perspective can offer another definition of a
set of clusters, Let /3 be the set of all possible data points,

T

P be a probability distribution on £, @ be a metric on 0,
and C = {c,.- eyt be a set of cluster codes, Let fand g
be functions, [0 = C and g: C — 0D, such  that
S Playplddg = i) is minimized, The cluster set which
partitions D is {f Ye, WS ek uf Weydh, and the
representative data point for cluster /™Yoy 15 glc). The
function s called a clustering function, and the function
¢ is called an inverse clustering function.

There are some interesting facts about f and g which
emerge Irom this perspective: 1) the function j 15 onto:
2y all the images of g are distinet: 3} af gie) = & then
ey = ¢ 4 F-g is the identity function en C; and 3)
g - fis Pelosest” 1o the identity function on [,

A formidable problem is to find functions ¢ and £ which
minimize ¥, .5 Pldipled (g« Fd). In fact, besides cx-
haustive scarch, there is no known way to find optimal
functions ¢ and f Becuuse of this we propose an iterative
suboptimal way for a restricted class of funections defined
parametrically. First, we will assume that measurement
space £ is an N-dimensional binary space. This assumption
is really mot wvery restrictive since any real data may be
appropriately coded to a hinary form.

Initially, the functions fand g are chosen arbitrarily from
a class of parametric functions, They are iteratively im-
proved, monotonically decreasing X, p Pl lpld iy = i)
by making small changes in the function parameters on
the hasis of previous performance. Because the functions

fand g are required to be in & restricted class of parametric

functions, the minimum found is not guaranteed Lo be the
globul minimum. In fact we shall see that the algorithm is
suboptimal in the sense that there 15 no guarantee that a
local minimum within the class of parametric functions will
be Tound.

The fallowing notation convention will be used through-
out the paper. Let D = {—1,1 Woand € = [— L1 Tor
K = N. Forany & = D, we will write

TR

iy

i

\ 6,/

and, for any ¢ £ C, we will write

For any real number a, we define sgn (@) by

. | +1, ifand only ifa = 0
sgn (a) = :
| —1, otherwise,
For any real N vector
iy
2
r= .
Wy
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we define sgn (e} by
fsgn (ry)
sgnr) = w“.ﬁ':}
Lagn -l "x)
Let @ be a K % A real matrix and ¥ be a N = K real
Malris:

fdi1 42 i x
0 = ff;l 12 'fj’%_\

Ve ez Hun/

'I'rl' o R fu.'."

1
fzp tiz v g

tey Tzt v ey
:

We define (Qd), = | g8, and (To), = ¥

will restrict our attentien to functiens /= 02— € and

i fiti '“"'

g O = D which have the parametric form
fdu g 0w fdiy
Jld) = sen ':‘ir?’i B ‘f-:'.\ £ If:; =
x"f.:.l s f-I;.x. x’i.\,"
flh Lz gl £
glc) = sgn [ 30 T2 Ll O e I
RTINS Eyi -.Z'I.x /

(I we change the form ol g by leaving out the sgn. there is
the possibility of extending the method to nonbinary
data. Perhaps this can be the topic of a Muture paper.) By
expressing fand g parametrically, we can change the fune-
tions fand g a litde by perturbing the parameters in the
€ and 7 matrices a lintle. Beeause their implementation is
gasy. linear threshold functions of this sort have been wsed
frequently o supervised  pattern recognition  learning
systems [1], [3]. [5], [e], [12]. [13], [18). [19], [21].
[23], [24], [31]. [32], [34], [35], [39]-[41]. [4¥]. [56].
Their use here in an unsupervised or clustering mode
[14], [15] provides an additional application.

The essence of the iterative clustering algorithm may be
seenin the following perspective. Once the @ and T matrices
are chosen, we can calculate ¥, 5 Pleipta (g o Qi) We
can also predict changes in the summation due to small
changes in some elements in the & ar 7 matrices. We will
apply only those changes that canse the summation to
decrease. We continue the process until any additional
small changes in some elements of O or 1, but not bath,
cause an mnerease in the summation. At this point, / and
g suboptimally minmize ¥, Pll)ptdig - O0d).

The dteration process s not unigque. For any pair of
functivns fand g arbitrarily chosen, there are usually many
ways o improve the O and the T matrices, Since we cannaot
consider all the possible changes, 1t is not guarantecd that
the final fand g are local minima of ¥, ., Pidipid g - Fid ),
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11, FieraTive CrLustemisg PROCEDURI

A Definition
The iterative clustering procedure is described by s
Lhree major components:

Iy the clustering function by which it assigns duta points
to clusters and the anverse clustering function by
which it defines a wvpical or representative data point
For cach cluster:

21 the pectormance criterion by which it evaluates any

pair of clustering and inverse clustering functions: and

the adjustment procedure by which it changes and
improves the clustering and inverse clustering function
an the basis of their performance.

a1

B Clustering and Tnverse Clustering Fuuction

In our case the clustering function is delined by fid) =
sgn (Od): fid) is interpreted as the binary {+1,— 1) code
or label For the cluster 1o which o s assigned. The inverss
clustering function is defined by gle) = sgn(Feks gie) 1s
interpreted as the representative date point typical of the
cluster whose label is ¢

. Performance Criterion
[he perlormance criterion for the patr of clustering and
mverse clustering functions | and g 1s

Y Pl )ptdig - DGy = X PlDpdd, sgu (T sgn Qd 1)
de

de 2
where pis a metric specifying the number of components in
which ats arguments disagree, and 7 is a probability
distribution an 2 = i

! |
— 141}

D Adjustient Procedure

Fhe idex of perturbing the O aid F matrices a linde is o
simple enough idea concerning how o adjust. The problem
is how much to adjust and which way 1o adjust, We solve
the problem of how much to adjust by an analvsis o
“significant change”. We solve the problem of which way
to adjust by a complete analysis of the effect ol o change (in
terms ob the performance criterion) on any one element ol
the & or T malrices.

Iy Significant Changes o How Much to Adist: The
binary nature ol the signum funcion makes the £ and o
functions respond 1o changes in the parameters of the
oand 1 matrices inoa stepwise manner. Such stepwise
behavior implies that changes in the £ or 7 matrices do not
necessarily lead 1o changes n the fand g functions, We
define a significant change in an element of the @ or ¥
matrix as ane which leads to u change in the For g function
for some element in 1 or
amount Tor some parameter s the magmiude of aoy
perturbation on that paranmeter which produces @ significant

respectively, A significant

change.

It s
magnitude called the smallest sigmificant amount cannaot
The smallest significant amaount by

not hard  to show That perturbations  below g

produce o change
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which an element of the dith row of the ¢ or I matrix must
be perturbed in order 1o produce a change in f or g 15 just
greater than

i
min | Y g §; for f
de =

| &
min | ¥ Lot vl far g
el | j=1

for Pl = 00 It is also not hard to show that when the
magnitude of a perturbation on a parameter s increased
bevond a certain amount, called the largest signilicant
amount, no additional changes in the for g function can be
obrained. Perturbing a parameter by any larger amount than
the largest significant amount causes exactly the same change
in for g as perturbing by the largest significant amoeunt,
The largest signiflicant amouwnt Tfor an element in the ith
row ol the & or ¥ matrix is

N I
max | Y a8
deld [ f=1

for f

[
mMaax E 'ri|' W
cel |[§=1

for g

for Pld) = 0.

The number of distinet significant changes in some
parameter of the @ and T matrices is finite bounded by the
number of nongero probability elements in £} and C,
respectively. However, becanse changes in a parameter above
or below certain amounts produce no further changes i
S or g and because S and g have a stepwise behavior under
changes of their parameters, the number of distinct signi-
ficant changes can be expected to be much smaller than the
number of elements in 2,

21 Effeer of Change or Which Wav ro Adjust: We know,
now, how to get significant changes in the functions fand g.
Each significant change in for g can cause a change in the
performance criterion 3., Pldelddg < Mid)). We are
mterested inosuch significant changes of © and g which
produce a better performance index. In order to keep track
of changes in the performance index we must now define
the following sets, functions, and parameters.

&, Consider the ordering of the distinet elements in the
sequence ¢|Qdl, | ¢ D3 Set g, equal to just more than
the fth element in this ordering; &, is therefore the jth
largest significant amount for any element in the Kth row
of the ¢ matrix.

1,2 Similarly, consider the ordering of the distinet
elements in the sequence |3 sgn (Qd)l, | o= D50 Set 0
to be just more than the fth element in this ordering,
ft,; is therefore the jth largest significant amount for any

element mn the sth row of the ¥ matrix.

The number O, 1s the absolute value of the Lth component of

{f, that s,
i
Q] L Grutn! -
i

e
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A, This s the set of all elements in £ whose sth
component is different from the wnth component of its
image under g o

/5,
[ iy : i
A,y =1d =| 7 eDd, £ (sgn{T sgn (Qd))),

%, |

im=1.2*M,

r,: This is the set of elements in £ whose nth component

5 +1:
[ F&.I\
L= 0,1 EU:J-“—- —!:_ r.‘—1_.1,"',.-\'.

i

[

#.0 This is the set of all elements in £ whose mmage
under / has 1ts kth component + |

F,o = {de D|10d), = 0}, o= 12050 K

;7 This is the set of all elements in & whose image
under £ has the &th component + 1 and which would be
affected by a significant change of an element in the Ath
row of the @ matrix by applying the jth largest significant
amount;

D, = {de D0 < (Qd), < &l

b= 120K  j= 12

Dy;” : This s the set of all elements in £ whose image
under /" has the &th component —1 and which would be
affected by a significant change of an element in the kth
row of the € matrix by applying the jth largest significant
amount:

Dy~ ={deD| —g; < (Qd), =0},
k=12-K j= 124

E,;”: This 1s the set of all elements in £ whose image
under g - f has the mh component + 1 and which would be
affected by a significant change of an element in the nth
row of the 7 matris by applyving the jth lurgest significant
amount:

E, ={deD|0 < (Tsgn (e, < 0,1
i = Lo e LBl

E,.; : This is the set of all elements in D whose image
under g « /" has the sth component —1 and which would
be alfected by a significant change of an element in the ath
row of the T matrix by applying the jth largest significant
armount:

E, = {ded| -0,

i

< (T sgn (Qd)), = 0,
mo= 12N, fr= ol
M. This is the set of all elements & in D for which

I} its image under £1s + 1, and 23 a significant change of an
element in the &th row of the ¢ matnx changes its image
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under g = f:

fa N
04

H == e D san (0T sgn (Od)y, — 20,0

l

]

na

WO

Z dyand (Qd), = 0
it= 12N,

kE=12K.

o2 This is the set of all elements o in £ for which
1y s image under (s — 1, and 2 a signilicant change of
an clement in the &th row of the @ matrix changes its
image under g =

in
={d=|"*]eb| san ((T sgn (Qd )}, + 28,

£, and (Qd), = 0},

'HuL'

k= L2%K,

Finally, for any set 5 we denote the complement of § by
&% Figs, 1 and 2 illustrate Venn diagrams of these scts.
Define the metne p by
— ﬁf

Nz
[ i

w6
Ala il & 5

The metric ¢ counts the number of components of & and d
which disagree. For this definiion of p, miminmizing
¥ iep Pld) « pidd), where d = sgn i sgn (O, 05 equiv-
alent to minimizing 302 P14, since A, is the set of all
clements in £ for which 8, # sgn (T segn (Qd)), and

", if é, = sgn (T sgn (Qd ),
lor s components and all
ather componenis agrec
0, ird, = sgn (T sgn (Qd)),
[or every componant,

pled,d) =

Any significant change in the @ or the T matrices moves
some elements o of £ into A Tor some u, and some other
elements o of I3 out of A, for some 2. The change is hene-
ficial if and only if 3., P{4,) is decreased due to the
change, In order to be able to decide whether a change is
beneficial or not, we must determine the net number ol
elements which are moved out of each A, due to the change,
It is mot hard to show that the anly elements in £ which are
allected by significant changes of the jth largest significant
amount are some of those in the sets O, 0,7, £
and E,;

Consider significant changes in the @ matrix. There are
four cases to consider depending on whether an element
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belongs to D7 or By, 7. and whether we change g, by
adding or subtracting ii.r-_l. For cach of these four cases we
must answer three guestions

ad For which elements is the change in g, going to
produce a change in (Qd), "

by OF the elements Tor which the change in g, produoces a
change in (e}, Tor which of them is the change going 1o
produce a change in sgn (7 sgn (Qd)) = i’

¢) What is the net change in 30, PiA,) caused by the

change n g, "
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We will discuss the guestion for one case in an outling
form and give the results of the other three cases,
Case 1: Consider the case in which we add g 1o

Fenlin = Gan + B) and d e D7

a) Since d e D, we must have that O < (Qd), < &
Adding £ to g, will increase (Qd), if 6, = +1, and
decrease (Qd), if 8, = —1. Hence by adding &; to g,
{Od), can be changed from positive to negative for all those
elements whose nth component 18 — 1. These elements must
be members of D,;7 ~ G,

by The elements in D whose sgn (7 sgn (Qd7),, 15 affected
by a change in (@d), going from positive to negative musl
belong to H,”. Hence the elements in [ whose
sgn (T sgn (Qd)), is affected by adding & to g, must
belong to H,* n D7 N G

¢) OF the elements in 2 for which sen (T sgn (Qd)), s
allected by adding &, to g, some clements are in A, and
these will move out of A_: others are not in A, and these
will move into A,. The elements which are moved out of
A, are members of Dy," n G5 H," A, The elements
which are moved into A, are members of D~ m G5 0
H.t e AF Since this change may affect all components of
sen (1 sgn (Qd)), the net beneficial effect of the change
can be expressed by

N
E [Pfﬂi;+ L G.’ir L Hl'is+ m Ar}

— P(Dy" A G, Hy' 0 A9

By the same argument, the net beneficial effects of the
remaining three cases are found to be as follows,

Case 2: For adding &, to gulge « g + &) and
d € Dy, the net beneficial effect is

"
E [HDL; NG, Hy” moAD
i=1

— P, n G, m Hyo o AR

Case 3: For subtracting & from guddu — quw — &)

and € D,;* the net beneficial effect is

N
_}.:I [B(Dy,* n G, n Hy' A
— PD 0 Gy Hy' A

Case 4:; For subtracting &; from gl < da
and € £y, the net benefcial effect is

.l:”}

N
Y [PDy™ 0 G0 Hy™ 0 A)

— P(Dy;” n GS o Hy” n AD)]

Fig. 3 illustrates a Venn diagram of the possible transition
of clements to and from various sets due to adjustment
(e — dan + &)

Consider, now, significant changes in the T matnx,
There are four cases to consider depending on whether an
element belongs to E,," or E,;”, and whether we change

“p )
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Some transitions of data elements frem and into sets £y,°
and 0,7 due o reinforcement o < ta + &g

Fig. 3.
i, by adding or subtracting fl,;. For cach of these cases
we st answer two questions.

d) For which of the elements is the change in 1, going Lo
produce a change in sgn (7 sgn (Qd)),?

e) What is the net change in A, caused by the change
in 1,7 (Note that a change in 1, affects only A,.})

We will discuss the guestions for one case in outline form
and give the results for the other three cases.

Case 5- Consider the case in which we add 0, to
Fany -rn[‘ L gt [ ”lh;! and o £ I-'-'"“_I."
d) Since dek,;', we must have that 0 < sgn

(Tsgn (Qd)), < #,; so that sgn(Tsgn(Qdh, = +1.
Adding 8, to 1, will increase (T sgn (Qd)), it (Qd), = 0,
and decrease it if (Qd), < 0. Hence by adding #,; to 1,
sgn (T sgn (Qd)), can be changed from +1 to —1 for all
the & whase (Qd), is negative. Such elements must be in
E.Y o FE
ey Of the clements in 0O whose sgn (T sgn (Qd 1), 15
affected by adding #,; to 1. some elements are in 4,, and
these will move out of A,: others are not in A, and these
will move in A,. The elements which are moved out of
A, are members of £,,7 ~ £ A4, The elements which
are moved into A, are members of E 7~ FF o oA The
net beneficial effect of the change can be expressed by
Pk
By the same argument, the net beneficial eflect of the
other three cases are found to be as follows.

Case 6: For adding 0,; to fy, fa « fa + 0, and
d € E,;~ the net beneficial effect is

P(E,” n Fon A,) — P(E,;™

AFEn A) = PE;Y n FEn A,

o Fy oo ASh
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Fig. 4. Transitions of data elements from and into set A, due to
reinforcement foy o= fm + o
Case 7. For subtracting &, from s, foo = e — M

and o e £

i the net beneficial effect is

P -"-".n.-. m ‘rl.k M -"IHJ . f“: I’f-.-_.-1 M -Ir'lj. 'l rr.nl.]..

Case 8. - I
and o & E, ;7

For subtracting 0, from f fa « fu o

the net benelicial elfect 1s

PiL

T O FEn A) - l“h"l'.1‘:+ nES AR

Fig. 4 illustrates a Venn diagram of the possible transitions
of elements to and from varnous sets due 1o the adjustment
b+t + 0

Consider now the four possible types of adjustments to
some parameters in the O or T matrices:

Gin * e + By (1
fon = Pon — Eyj (2)
fog = Fp =+ H“J (39
tae = L — B0 (4)

We will deline improvement numbers so we can compare
the benefit due to the four different possibilities of significant
changes. The first possibility of significant change is;

&
Q._LI”1!|I:‘- — :?:. P:JI__ M [[I}R_l + e Ifij. - - G".]
i=]

Dy N HyT n GO

— P4, n [Dy;" n Hi" 0 G)
LT [I-},‘_J_ ™ hllj.

r G} ("

where (., ™™ is the net increase in the probability that
8, = sgn (Fsegn (Qd)), after the clement g, has been
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increased by &, The second is

N
an_l'mlml\ T E F:4 i m [I{DLJ‘ m Gn i ”EJ. ! :I

(%) |:-D,1|:
= .P{AI-I & [-{LJL_I‘- ' 'G_,, ™ ”,j._]

A Gur ™ 'H.‘J. l:l:l:

w Dy A GE A H ) (2%

where ™™ is the net increase in the probability that

&, = sgn (T sgn (Qd)), after the clement g, has been
decreased by &, The third is

Toa M0 = PUA [(Bor 00 B (B v FY)])

~ fk]']:

where T,,7™ is the net increase in the probability that

i P,:A”" i [1 .F“, e "'.kl.] W, i‘r-n.; (3

g, = sgn (T sgn (Q4)), after the clement ¢, bhas heen
inereased by 0, The Tourth s
T /™™ = Py 0 [(Ba* 0 B U (B 0 ED))

— P{AS n[{E, n RYVIE,” n O 4)

where T /™™ is the net increase in the probability that
d. = sgn (T sgn (Qd)), after the element ¢, has been
decreased by (1.

The improvement numbers are either positive, negative,

or zero. A onegative improvement number indicates an
increase in 30, PlA) due to the respective change. A
positive improvement number indicates a decrease in

SN O P(A) due to the respective change. A beneficial
change in the {2 or the 7 matrix is possible only if at least
one of the improvement numbers is positive,

We compute the improvement numbers by counting the
elements in the proper sets as defined in the preceding.
We apply the smallest significant change which is beneficial.
I there is no benefit for any change, then the @ and 7
matrices cannot be further iteratively improved by this
algorithm.

I Resurts

In crder to test the iterative clustering algorithm it was
implemented in o computer program for the GE-633
KANDIDATS,? and it was run with a multispectral set of
images and an B-dimensional lightning discharges data set.

4, Multi-Tmage Ser

Twelve images taken by the Michigun scanner system
were the multi-image data set. These images were taken of a
2 by 6 mi area in the northern part of Yellowstone Park at
approximate coordinates [H0730 by 44737 on September 19,
1967, Fig. 5 shows an old panchromatic photograph of

FRANDIDATS (Kansas Dhgital Image Data Swvstem) 5 a high-
efficiency package of image processing programs developed by the
Center for Research, Inc., University of Kansas. [0 s specially designed
to opertle on the GE-635 computer with mimimum time and cost,
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Fig, 5.

Panchromstic imagery

Yellowstone arei.
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TABLE 1
TABULATION OF WavELE~GTH Bamn ror IMAGES

Image  Wavelength Band

{rmuh
I B0 1000
2 720800
i GH0-T20
4 (20660
3 SEO-620
f 550-580
7 320-530
8 F00-520
9 A B0-500
1 460480
11 440-460
i2 400440

the area taken in 1954, Each image of the multi-image set
was, in effect, a picture taken with a different narrow-band
filter, where the filters passed light in narrow bandwidths
from the near infrared band part of the spectrum through
the ultraviolet portion of the spectrum. Table T tabulates
these bands, The images were digitized to 2530 levels on a
grid of 220 by 1260 for a total of about 270 000 resolution
cells for each image, Each resolution cell contains the
returns from 12 spectral bands coming from a 20 by 20 It
small-arca ground pateh, Successive resolution cells contain
returns from small-area ground patches separated by
pap of 2001t

In order to reduce computer time the original 12 images
were preprocessed to yvield 4 smaller images, but with most
af the statistical and spatal structure preserved. The first
part of the preprocessing consisted of a principal com-
ponents analysis [20]. A principal components analysis
may be considercd in the following fashion. In any image
some grey tones occur more frequently than others, We may
consider the relative frequency of the grey tones in the image
as defining a l-dimensional probahility distribution, This
prabability distribution has a mean and variance, Similarly,
in a |2-dimensional multi-image set each resolution cell
has a [2-dimensional vector of grey tones. Some of these
grey Lone vectors oceur more frequently than others, and we
mayv consider the relative frequency of the grey tone vectors
as defining a 12-dimensional probability distribution, This
probability  distribution has a mean with a covariance
matrix, The first principal component is that cigenvector
of the covariance matrix having the largest eigenvalue,
The kth principal component is the eigenvector of the
covariance matrix having the Ath largest cigenvalue, We
will define the &th principal component image as the
projection of the multi-image on the 1-dimensional subspace
spanned by the kth principal component. Because the sum
of variances of the |-dimensional probability distributions
determined by the principal component images equals the
total variance of the original 12-dimensional probability
distribution, the ratio of the variance ol the kth principal
component to the total variance s called the vanance
accounted for by the &th principal component. The variance
accounted Tor by the kth principal component is an indicator
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TABLLE I
WEIGHTS Usco o Omrarsy Liseas Comuisations ok Firsy,
SEoosiy, aND THIRD Prisciral CosMposesTs

Priocipal Component

First Second Third

Percent of Variancoe Accounted For

Wavelength Band 97.4 1.4 1.4
- TIHH) ST —0,33153 027651
T20-5(M) | — 333529 026790
fl)- 720 ; —,31352 LIRS 1
20 fi40 0.23184  —0.23019 0.1 1530
SEO R0 0. 2009 0.16154 HRE T
S30-5E0 0.1 7456 0.094258 0L.0256596
20 A50 070442 {1.25404
S00-520 0L03aTT (L0438
80200 (L5240 01270
EL R (0,22149 ~ (LG0T TE
4404040 0.25916 [N T 00437060
AU 014878 065714 (AT el

of how much statistical structure from the original 12 images
15 preserved by the fth principal component image.

The principal components analyvsis provided the following
results. It was determinegd that the first component accounted
for 97.4 percent of the vanance, the second component
.6 percent of the wvariance, and the third component
0.9 percent of the varunce. The respective weights used n
the linear combimation are histed in Table U and the three
principal component images are illustrated in Fig. 6.

Tuble T1 has an interesting interpretation. The first linear
combination has weights which are all positive and which
are about the same magnitude, The first principal component
image is then very close to what @ panchromatic image of
the area would be. This should not be surprising since
maost photo interpreters will prefer a panchromatic image
over any narrow-band  image becazuse they see more
structure in it The second linear combination weighs the
infrared part of the spectrum negatively, the middle of the
spectrum hardly ac all, and the ulira-violet part of the
spectrum positively, This weighting trend from the infrared
to the ultra-vielet 15 almost a lingar one. 1t is indicative of
the fact that the spectral reflectance curve for most natura]
ohjects shows that when infrared reflectance is high, then
the and when the ultra-
violet reflectance is high, then the infrared reflectance is low.
Hence the weighting done by the second principal component
will enhance the difference between those objects with high-
infrared and high-ultra-violet reflectance. The third linear
combination is perhaps indicative of the spectral reflectance
difference  between wegetation and rock. The speciral
reflectance curve for most vegetation slopes positively at the

eltra-viclet reflectance 15 low.

ultra-violet end ol the spectrum, while that for rvolite (a
volcanic rock knewn to be prevalent in the arca phaoto-
graphed) 15 almost flat in that very same region, Hence
weighing the 460-480-my part of the spectrum negatively
and the 400-440-mp end of the specirum positively will
enbance the difference between vegetation and ryvolite.
Since the first three principal compoenents accounted lor
about 99 percent of the variance, there is no need o cluster
12 images. Almost all the information is contained in three
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linear combinations (principal components) of the original
12.

The next step in the preprocessing consisted of reducing
the size ol the three principal component images, Each
image wits 220 resolution cells horzontally by 1200 resolu-
tion cells vertically. Each was reduced in size to 73 resolution
cells horzontally by 406 resolution cells vertically by taking
every third row of resolution cells and every third reselution
cell on cach such row taken.

The final step in the preprocessing consisted of guantizing
the grev tones of the three images. This was dong in two
parts: the mmages were lirst gquantized to 64 grey tone
classes by a felded-tail lincar guantizing procedure and then
quantized to 13, B, and 7 grey tone classes for the first,
second, and thicd principal component images, respectively,
by a spatial guantizing procedure, The Tolded-tail quantizing
i essentiallv a linear quantizing procedure modilied to
ignore extreme wild points on the tails of the distribution,
In other words instead of determining the highest grey
tone and the smallest grey tone and then equally dividing
the resulung interval mio 64 pieces as the linear guantizing
does, the folded-tall linear quantizing determines & “high”
grev tone less than the highest and a “small™ grev one
greater than the smallest and equally divides the resulting
mmterval up into 64 quantized classes, OF course grey lones
higher than the determined “high™ and smaller than the
determined “small™ get put in the highest and smallest
quantized class, respectively.

The spatial guantizing procedure lurther reduces the
number of guantized classes from 64 to 13 in o way which
capitalizes on the spatial dependence of the 64 quantized
grey tone classes. A 64 = 64 Markov transition probability
matrix is set up where the (7, th element is the probahility
that a resolution cell having a grey tone in the ith grey tone
class will be next to a resolution cell having a grey tone in
the jfth grev tone class. The spatial quantizing uses the
mformation i this matrix o form gquantized classes whose
grey tones have a high probability of ocourring nest to
cach other. Hence spatial contizuity of grey tones tends Lo
be preserved. These quantizing procedures are fully de-
scribed in [6].

Aflter guantizing, cach resolution cell of the multi-image
is characterized by a triplet of quantized grey tones, This
triplet must be converted to o hinary (— 1.+ 1) Mtuple so
that 1t may be used with the iterative clustering algorithm,
Singe the metric chosen for the clustening was the number
ol components in which the hinary Netuples disagree,
the binary code for the gquantized prey tone triplet cannot be
any arhitrary binary code. Tt must be a code which under
the metric preserves the ordering structure of teiplet, In
other words a disagreement of only one component between
two hinary A-tuples should arise if and only if there 15 a
difference of only one in one ol the components for the
carresponding  gquantized  prey-tone triplets. One simple
binury code which preserves the ordering structure 15 the
following code having 23 binary components, The first &
rightmoest components of the rightmost [ components
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Fig. 6.

Principal compaonent mages.



286

arg ang if and only il the first principal component lies in
the &th quantized grey tone class. The first & rightmost
components of the middle 7 components are one if and only
if the second principal compaonent lies in the Lth quantized
grey tone class. The first & rightmost components of the
lefimost & components are one i and only if the third
principal component lies in the &th quantized grey tone
class. All components which are not one are minus one.

OF the 3000 resolution cells in the multi-image, a
random sample of 1908 was chosen. From this sample data
sequence Sy = o,y - .dyapay the empirical probability
distribution P was defined on 2 = {—1,+11*7 by P(d) =
fi | = o}/ 1908, where Pid) is the relative lrequency of
the clement o in the sequence Sy The set € was defined by
C = {—1,4+1}* so that a maximum of eight clusters were
possible. The sample was then clustered by the iterative
clustering algorithm. The inmial & and 7 matrices were
chosen by considering each row of the (F and ¥ matrices as a
vector and sampling each row from a probability distribution
uniform for any direction and dependent only on direction.
The final resulting @ matrix was usced to define the cluster
assignment function () = sgn (7 sgn (Qd)).

Lach data element in the sample had 25 components, so
the total number of sample components was 1908 25 =
47 700. The initial @ and T matrices produced 21 708
reconstructed components which did not agree with the
original ones, Then the signs of the elements in the 7 matrix
were changed in every row § for which the number of
elements in the sample in which 4, # (sgn (T sgn (2d))),
was more than half of the elements in the sample. At that
point, the number of disagreeing components was reduced
to 12754, Then, by the iterative process, the number was
reduced to 8486 after 103 iterations. This means that
23 percent of the components of the training set were
correctly reconstructed by the final ¢ and T matrices through
the transformation sgn (T sgn (0d)). As a check on this
83 percent estimate, the full data set of 30 044 data elements
was applied 1o transformation sgn (T sgn (Qd)). A total of
395 512 of the reconstructed compeonents out of 751 100
possible agreed for o result 79.3-percent correct,

In another expeniment the initial @ and 7 matrices were
constructed such that the rows of the @ matrix and the
columns of the T matrix consisted of the three principal
components of the binary coded data, The initial @ and 7
matrices produced 9035 reconstructed components which
did not agree with the ariginal ones. Then, by the iterative
process, the number was reduced to 6108 after 539 iterations.
This means that 41 392 components, which are 87.3 percent
of the 47 700 sampled components. were reconstructed
correctly. As a check on this 873 percent estimate, the Tull
set of 30044 data elements was applicd to transformation
spn (0 sgn (O A total of 602 933 of the reconstructed
components out of 751 100 possible agreed for a result
Bl-percent correct,

Fig. 7 illustrates a map of the clusters obtained by the
assignment of the measurement in cach resolution cell 1o a
cluster by the cluster assignment function £ OF the eight
clusters possible, only four major clusters were determined ;
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the remaining clusters occupied such a small percentage of
the image that they need not be considered. Using the
ground truth supplicd by Smedes ¢t al. [47]. a correspon-
dence was made between the clusters and the true ground
categories. The white area corresponds to bog, forest, or
cloud shadow. The bogs are moist arcas with a lush growth
ol sedges and grasses. The forests are lodgepole forests and
Douglas fir. The cross-hatched area corresponds to glacial
kame. These are meadows underlain by sand and gravel
and wvegetated by grass and sagebrush, The diagonally
striped area is glacial till. These are grasslund and sagebrush
meadows underlain by glacial tll. Mixtures of silty to
bouldery mineral soil is exposed over one-fifth of the area,
The black area s bedrock exposure. [t consists of mainly
unvegelated bare bedrock exposed by placial and steam
erosion,

B, Lighming Para Set

The lightming discharge data were taken during two
thunderstorms in Oklahoma during June 1965, A dis-
crimination procedure based on fregquency content of the
messurements was developed by Shanmugam and Breipohl
[44] for classifving the discharges into cloud-to-ground or
cloud-to-cloud type. The measurements were taken by
airborne  instrumentation,  and  the ground  truth
observed and recorded.

Preprocessing of the measurements done by Shanmugam
and Breipohl [44] viclded 8-dimensional data elements
consisting of the following components,

Wils

xy Relative value ol signal in 10-kHz horizontal.
x,  Relative value of signal in 50-kHz horizontal,
x;y  Relative value of signal in 150-kHz horizontal.
x;  Relative value of signal in 250-kHz horizontal.
xs Relative value of signal in 10-kHz vertical.
x, Relative value of signal in 30-kHz vertical.
x,  Relative value of signal in 250-kHz vertical.
xy  Relative value of signal in 2530-kHz vertical.

The data set consisted of 134 8-dimensional measurements.
The components of the measurements were quantized into
five cqually probable levels. Fach component was then
coded into o binary guadruplet in o way that preserved
distances. The codes are shown in the following,

Level Code

| K]
2 (K]
3 0ol
4 0ol
5 1

Hence cach S-dimensional data element was coded into a
binary vector ol 32 compenents. The clustering procedure
was applicd to the 134 data elements. The set € was
defined by € = {—1,+ 11", and four clusters were farmed,
The initial @ and T matrices were constructed by principal
component analysis. The rows of the initial € matrix
consisted ol the eigenvectors corresponding to the two largest
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eigenvalues of the covariance matrix ol the binary vectors,
The inttial T matrix was set by the mitial @ transposed.
The totel number of compeonents was 32+ 134 = 42858, The
initial @ and T matrices produced 1289 reconstructed
components which did not agree with the original ones,
Then, by the iterative process, the number of disagreeing
components was reduced to 1239 Hence 3049 components,
which are 71 percent of the components, were reconstructed
correctly, The codes of the lour clusters were (=1, — 1)
(=141 (=1,=1), and {(+1,4+1}) Associating {—1,—1)
and (+ 1, — 1) with cloud-to-ground discharge and (= 1.4 1)
and (4 [, + ) with eloud-to-cloud discharge showed that 100
of the discharges (74.3 percent) were clustered into groups
corresponding to the given pround truth. Shannugam and
Breipohl [44] reported that a trained classifier provided
B2-percent correct identification,

We should note that in the lightning discharges data set
the iterative procedure did not significantly reduce the
number ol disagreeing components from the initial principal
components starting point. This raises the interesting
possibility of perhaps concentrating ellort on the most
appropriate binary coding technique and letting the principal
components do the clustering.

IV, ConoLusions

we have developed an iterative clustering
two parametric functions, the clustening
the inverse clustering lunction g, which

In conclusion
technique using
function f and
were defined by

Fidy = sgn (Od) = &, gle) = sgn (Teh = d

where @ is a A = N real matnix and T s a N = K real
matrix, where N and K are the dimensions of the binary
duta elements and the cluster codes, respectively, The
clusters were constructed by assigning o cluster code 1o cach
measurement by the clustering function f0 The data was
reconstructed by applying the inverse clustering function g
to the cluster codes. The rows of the @ matrix and the
columns ol the ¥ matnx consisted of cigenvectors corre-
sponding 1o the largest eigenvalues of the covariance matrix
of the binary coded data, The iteratve process took place
by perturbing elements of the @ and T matrices in a way
that suboptimally minimized the differences between the
components of the reconstructed data elements and the
ariginal ones.

The technigue was programmed for the GE 635 and
tested on twoe data sets. The first was o multi-image set of
data. For the training set of the multi-image set 1908 datu
elements of 25 binary components each were sampled from
the multi-image and clustered into four major clusters. OF
the reconstructed data compenents, 87.3 percent agreed
with the original ones. For the prediction set 30 044 data
clements of 23 binary components were used, OF the
reconstructed data components, 80 percent agreed with the
original ones. It s possible 1o construct the rows of the @
matrix and the columns of the T omatrix by considering
them as vectars sampled from a distribution, the directions
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of which are uniformally distributed.
Wiy,

When starting this
it takes more iterations to get results similar to those

obtained by the principal component start (103 iterations

compared to 39 iterations).

The sccond data set was a

lightning discharge data set. One hundred and thirty-four
measurements were clustered into four clusters, Seventy-one
percent of the 4288 reconstructed components agreed with
the original ones. Associating the cluster codes (—1,—1)
and { + I, — 1) with cloud-to-ground discharges and { =1, + 1)
and (+ 1,4+ 1) with cloud-to-cloud discharges showed that
100 measurcments (74.5 percent) were correctly clustered
according to available ground truth.

The success of this initial application of clustering 1o
remote sensing data indicates that it might be possible o
use clustering technigues to cither sereen imagery or pre-

process imagery.

In the screening function images which

have many clusters would be transmitted back from distant

satellite or spacecrafl,

while 1mages with few clusters

never have to be transmitted. In the preprocessing function
only the maps resulting from clustering the multi-images

can be transmitted back.

In cither wse substantial data

reduction is possible.

Although in this experiment the clusters seem to match the
ground truth quite well, it should be possible to refine the
technigue and obtain more major clusters which would
correspend to more specific types of ground categories by
using multilayer linear threshold functions. We anticipate
doing further work in this direction,
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