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1 Introduction

Quantisation is a monotonically increasing transformation that converts a continuous
random variable to a discrete random variable. Quantisation functions that better
preserve the original probability density function (p.d.f.) legitimise the transfer of
statistical analysis and modelling performed on the discrete random variable back to
the original continuous random variable. We present an efficient and exact algorithm
that achieves such a density-preserving quantisation by dynamic programming.
The optimality of the discretisation is guaranteed by a general mapped additivity
satisfied by all major quantisation criteria. In our optimal quantisation algorithm,
the most important regions are finely quantised, while less important regions are
coarsely quantised, statistically much more efficient than a uniform quantisation.
Other methods, e.g., kernel methods, treat everywhere in a space equally without the
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prioritised resource allocation. For the less important regions, there is the potential
wasting of resources. The algorithm can work on either continuous data points
or counts of data already accumulated in finer-than-desired bins. The number of
quantisation levels is determined by either the Bayesian information criterion – a
function of the log likelihood, the sample size, and the number of quantisation levels,
or cross validation.

Graphical modelling of multiple random variables has motivated continued
research on quantisation algorithms. A graphical model uses a graph to represent
the joint p.d.f. of multiple random variables. Each node in the graph represents
a random variable. Edges between nodes encode statistical dependencies among
variables. The joint p.d.f. can be decomposed to the product of conditional probability
functions of variables at each node given their parent nodes. A graphical model
of continuous random variables typically makes parametric assumptions on the
conditional probabilities for each node in the graph, but not so for a graphical model
of discrete random variables. Thus discretisation is often necessary for graphical
modelling if no prior knowledge is available on the forms of conditional probabilities
for each continuous random variable in question. Additionally, there are more
alternatives (Margaritis and Thrun, 2001) to determine statistical independencies
between discrete randomvariables than for continuous oneswhen the underlying p.d.f.
is unknown.

Relevant to our work are approaches that find a quantisation of the data by
optimising an objective function. Entropy (Haralick, 1976), likelihood (Hearne and
Wegman, 1992), and distance have been used as objective functions. Among these
criterions, only likelihood ties directly to the p.d.f. of the original continuous random
variable. A less-known optimal solution (Wu, 1992) using dynamic programming has
been provided for the univariate k-means problem. Fulton et al. (1995) have later
used dynamic programming to find an optimal quantisation to classify a univariate
sample. However, dynamic programming has not been used in density-preserving
quantisation. Our methodology obtains a non-uniform quantisation by optimising an
objective function that combines likelihood and entropy.Optimal quantisation ensures
the adaptivity to the data and overcomes the statistical ineffectiveness of uniform
quantisation.

We applied our quantisation algorithm to genomic features including the
recombination rate and the distribution of Long Interspersed Nuclear Element
LINE-1 (L1) in the human genome. The association pattern is studied between
the recombination rate, obtained by quantisation at genomic locations around L1
elements, and the length groups of L1 elements, also obtained by quantisation on L1
length.

The paper is organised into seven sections. Following Section 1 the introduction,
we define the density-preserving quantisation objective function in Section 2; the
optimality condition for finding a quantisation by dynamic programming is discussed
in Section 3; the dynamic programming algorithm for the quantisation is designed
and analysed in Section 4; quantisation results of the recombination rate distribution
function in human genome are presented in Section 5; the association of quantised
length groups of L1 with the recombination rate is discovered in Section 6; finally,
we draw our conclusions in Section 7.
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2 The likelihood of quantisation

We define and justify a quantisation objective function that includes the likelihood
and entropy measures on the observed data set. Let X be a continuous random
variable with p.d.f. p(x). Let calligraphic χ = 〈x1, x2, . . . , xN 〉 be a sorted sequence
of a random sample of size N from X , where x1 ≤ x2 ≤ · · · ≤ xN . We define χn

m as
the subsequence 〈xm, xm+1, . . . , xn〉. Let Q be an L-level quantisation with decision
boundaries B = {b0, b1, . . . , bL}, b0 < b1 < · · · < bL. Let ∆(q) be the width of bin q.
Let Nq be the total number of data points in bin q. Let p̂(x) be the p.d.f. derived from
the histogram of the observed data using quantisation Q.

To preserve the original p.d.f. p(x), one can minimise the Kullback–Leibler
divergence from p̂(x) to p(x), defined as

DKL(p ‖ p̂) =
∫

p(x) log
p(x)
p̂(x)

dx = E[log p(X)] − E[log p̂(X)].

As p(x) is fixed, minimising DKL(p ‖ p̂) is equivalent to maximising E[log p̂(X)].
Let p̄q be the estimated average probability density of bin q computed by

p̄q =
Nq/N

∆(q)
. (1)

We estimate E[log p̂(X)] by the average sample log likelihood. Thus the
log likelihood of X for quantisation Q is

J(X |Q) = E[log p̂(X)] =
1
N

L∑
q=1

Nq log p̄q =
L∑

q=1

J(X | q), (2)

where

J(X | q) =
Nq

N
log p̄q

is the contribution from bin q.
While entropy has been utilised as a class impurity measure (Breiman et al., 1984),

we use entropy to characterise the generalisation ability of quantisation. Maximising
entropy corresponds to minimising information loss. Entropy is defined by

H(X |Q) = −
L∑

q=1

Nq

N
log

Nq

N
=

L∑
q=1

H(X | q), (3)

where

H(X | q) =
Nq

N
log

N

Nq

is the contribution from bin q. Examples of maximum entropy quantisation
include equal probability quantisation (Haralick et al., 1973), histogram equalisation
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(Jain, 1989), Voronoi tessellation (Voronoi, 1908), or more generally, nearest
neighbour partitions (Gersho and Gray, 1992).

In contrast to likelihood, entropy is not a direct performance measure of
pattern recognition test results. Rather, the entropy measure in our context
controls over-fitting. The larger the entropy, the less likely the possibility of
over-quantisation.

We define the quantisation objective function or performance measure as

T (X |Q) = wJ J(X |Q) + wH H(X |Q) (4)

with

wJ + wH = 1, wJ , wH ≥ 0,

where wJ and wH are given weights for log likelihood and entropy, respectively.
The first term allows a best fit to the data while the second term prevents over-fitting.
If we define T (X | q), the contribution from bin q, as

T (X | q) = wJ J(X | q) + wH H(X | q).
T (X |Q) can be written in an additive form as

T (X |Q) =
L∑

q=1

T (X | q). (5)

A data-driven strategy is to determine the coefficients wJ , wH through cross
validation. The values of wJ , wH that maximise the likelihood of the left-out fold
are selected to be the coefficients. The number of quantisation levels is determined
by either the Bayesian information criterion – a function of the log likelihood, the
sample size, and the number of quantisation levels, or cross validation.

Example: We illustrate with a Chi-squared example that contrasts maximum
likelihood and maximum entropy quantisation. Our example has 1000 data points
generated using a Chi-squared distribution with 4 degrees of freedom. The number
of quantisation levels was 8. The density estimates are shown in Figure 1.
The dashed line is the original Chi-squared p.d.f. In Figure 1(a), it is evident
that the underlying density changes much more rapidly in [0, 2] than in [2,∞).
The bins are narrower for the region from 0 to 2 than for the region above 2,
corroborating the consistency result in Scott (1992). In Figure 1(b), the bins for
the region around the mode at 2 are narrower than the region further away from
the mode. The density of the region around the mode is larger than other regions.
When entropy is maximised, each bin contains about the same number of points.
This naturally leads to narrower bins for regions of higher density and wider bins for
regions of lower density. The rationale behind the entropy measure is that the least
commitment should be made to the sample. This controls the generalisation ability
of the quantisation. On the other hand, the maximum likelihood approach finds the
best fit to the data and it may over-fit. Therefore, it is necessary to combine the
two measures in a controlled fashion as we have done in defining T (X |Q), which
is especially important when the sample size is small.
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Figure 1 Density estimates of Chi-squared data using optimal quantisation: (a) maximum
likelihood quantisation (wJ = 1, wH = 0) and (b) maximum entropy quantisation
(wJ = 0, wH = 1)

3 The optimality condition for quantisation using dynamic programming

Given the sorted data sequence χ and the number of quantisation levels L, the goal
of quantisation is to find an optimal quantiser Q∗ such that a pre-defined objective
function T (χ |Q) is maximised by Q∗. An efficient solution of such a problem is still
open for multivariate random variables. However, an efficient dynamic programming
solution exists for optimal quantisation of a univariate random variable given that
the quantisation performance measure satisfies a very general mapped additivity
condition.

Definition 3.1 (Sub-quantiser): Qu
r is called a sub-quantiser of quantiser Q if it has

u − r + 1 quantisation levels and the decision boundaries are the same with those for
intervals from r to u of Q. We define T (χn

m |Qu
r ) as the performance measure of the

sub-quantisation, evaluated on the subsequence χn
m of χ that falls in the bins of Qu

r .

The performancemeasure of a sub-quantiser is exactly the contributions from the data
points and intervals it covers. Notice that such defined sub-quantiser performance
measure may be different from the performance measure of an isolated quantiser that
covers just the same points and intervals. For the performance measure defined in
equation (4) that involves equations (2) and (3), N is still the size of the overall data
set χN even when computing sub-quantiser performance measures.

Definition 3.2 (Mapped additivity): The mapped additivity condition is that the
mapped performance measure of any quantiser Q on a given data set is additive over
mapped performancemeasures of any combination of sub-quantisers ofQ, when there
is a monotonically increasing function that can achieve the mapping. Let g(x) be such
a monotonically increasing function defined on the domain of T (χ |Q). The mapped
additivity can be written as

g(T (χ |Q)) =
M∑

j=1

g
(
T

(
χnj

mj
|Quj

rj

))
, for any Q, 0 < M ≤ L, and χ. (6)

Lemma 3.3 (Optimal sub-quantiser): Let quantiserQ∗, among all the quantisers that
have L quantisation levels, maximise the mapped additive performance measure
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T (χ |Q) on the data set χ of size N . Let xn be the largest element in interval q of
quantiser Q∗. Then the sub-quantiser Q∗q

1 , among all the sub-quantisers that have
q quantisation levels and xn as their largest element in interval q, maximises the
performance measure T (χn

1 |Qq
1), i.e., T (χn

1 |Q∗q
1 ) = maxQq

1
T (χn

1 |Qq
1).

Proof by contradiction: By the mapped additive property of T ,

g(T (χ |Q∗)) = g
(
T

(
χn

1 |Q∗q
1

))
+ g

(
T

(
χN

n+1 |Q∗L
q+1

))
.

Since xn is always the largest element of interval q, the second term T (χN
n+1 |Q∗L

q+1),
which is the performance measure in the last L − q intervals on data {xn+1, . . . , xN},
would not be affected by the choice of Q∗q

1 .
Assume that Q̂q

1 was another sub-quantiser that quantises χn
1 into q intervals with

xn being the largest element in interval q that does better in performance than Q∗q
1 ,

that is,

T
(
χn

1 | Q̂q
1

)
> T

(
χn

1 |Q∗q
1

)
. (7)

We could create a new quantiser Q̂ by combining the sub-quantiser Q̂q
1 and Q∗L

q+1,
which has the performance measure

g
(
T

(
χ | Q̂))

= g
(
T

(
χn

1 | Q̂q
1

))
+ g

(
T

(
χN

n+1 |Q∗L
q+1

))
> g

(
T

(
χn

1 |Q∗q
1

))
+ g

(
T

(
χN

n+1 |Q∗L
q+1

))
= g

(
T

(
χ |Q∗)).

By the monotonically increasing property of g(x), the above leads to

T (χ | Q̂) > T (χ |Q∗).

This conclusion contradicts the condition that T (χ |Q∗) is the maximum performance
measure on χN

1 among all quantisers with L levels. Then the assumption made in
equation (7) must be incorrect. Thus

T
(
χn

1 |Q∗q
1

) ≥ T
(
χn

1 | Q̂q
1

)
(8)

must be true. Therefore, T (χn
1 |Q∗q

1 ) maximises the performance measure on the
subsequence χn

1 over q quantisation levels, that is,

T
(
χn

1 |Q∗q
1

)
= max

Qq
1

T
(
χn

1 |Qq
1

)
. �

Next, we establish the optimality of quantisation by dynamic programming under
the mapped additivity condition.

Theorem 3.4: If T (χ |Q) satisfies the mapped additivity condition defined in
equation (6), finding an optimal quantisation Q∗ of L levels to maximise T (χ |Q)
can be solved exactly using dynamic programming by the recurrence

T [n, q] =




0 n = 0 or q = 0

max
1≤i≤n

T [i − 1, q − 1] + g
(
T

(
χn

i |Qq
q

))
, 1 ≤ n ≤ N, 1 ≤ q ≤ L,

(9)
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and the optimal performance measure is

T (χ |Q∗) = max
Q

T (χ |Q) = g−1(T [N, L]).

Proof: By the recursive definition of T [n, q] in equation (9), we must have

T [n, q] = max
Qq

1

g
(
T

(
χn

1 |Qq
1

))
,

due to Lemma 3.3, i.e., T [n, q] must correspond to the optimal mapped performance
measure that can be achieved for the first n points over q quantisation levels.
Thus T [N, L] corresponds to the optimal performance measure for the entire data
set with L quantisation levels. Therefore, the inversely mapped value g−1(T [N, L])
achieves the optimal performance measure T (χ |Q∗) obtained by an optimal
quantiser Q∗. �

With g(x) = x and under the constraint that a decision boundary in Q must be
a middle point between some pair of consecutive distinct points, T (X |Q) as shown in
equation (5) meets the mapped additivity requirement. In addition to our definition of
T (X |Q), many problems in data mining involve performance measures that satisfy
such a condition. Examples include k-means clustering operating in any metric space,
and discretisation that maximises classification accuracy using either class purity
entropy or percentage of correct classifications.

4 Maximum likelihood quantisation using dynamic programming

As the optimality condition equation (6) holds for T (X |Q) when g(x) = x, we can
use dynamic programming to find an optimal quantisation that maximises T (X |Q).
To avoid over-fitting, we require a minimum number of k data points in each bin and
that identical ones are put into the same bin. We only set a decision boundary in the
middle of two consecutive and distinct data points. This affects the range of J(X |Q),
but it is trivial when the sample size is not too small. This restriction prevents J(X |Q)
from overflow. Let T be an (N + 1) × (L + 1)matrix, whose entry T [n, q](0 ≤ n ≤ N,
0 ≤ q ≤ L) is themaximumperformancemeasure frombin 1 to q when xn is the largest
data in bin q. Let I be an (N + 1) × (L + 1) matrix, whose entry I[n, q](0 ≤ n ≤ N,
0 ≤ q ≤ L) is the index to the smallest element in bin q such that T [n, q] is achieved.
Let T 1 be an N × N matrix, whose entry T 1[i, n](1 ≤ i ≤ n ≤ N) is the performance
measure contributed by a sub-quantiser with a single bin containing exactly xi to xn,
that is,

T 1[i, n] = T
(
χn

i |Qq
q

)
, ∀q ∈ {1, 2, . . . , L}.

The dynamic programming for finding a quantisation tomaximiseT [N, L] is described
below.

Initialisation – T [n, q] is set to zero when either no point is covered (n = 0) or
no quantisation is applied (q = 0) as in equation (10). I[n, q] is initialised as in
equation (11): I[0, 0] = 0 indicates the halting of backtrack; The −1 values indicate
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that those locations are invalid as the quantisation would be on an empty set, have
more levels than points, or have some empty bins.

T [n, q] = 0, n = 0 or q = 0 (10)

I[n, q] =




0, n = 0, q = 0

−1, n = 0, q > 0; or n > 0, q = 0

−1, 0 ≤ q < max(1, n − (N − L)), n 	= 0, q 	= 0

−1, min(n, L) < q ≤ L, n 	= 0, q 	= 0

. (11)

Feasible decision boundary index set: The indices of the feasible data for being the
smallest element in bin q form the feasible decision boundary index set

An
q = {i | i ≤ n − k + 1, I[i − 1, q − 1] 	= −1, xi−1 	= xn, I[n, q] 	= −1, xn 	= xn+1}.

The inequality i ≤ n − k + 1 guarantees that at least k data points are in bin
q; I[i− 1, q − 1] 	= −1 states that xi−1 must be feasible for the largest point in the
previous bin q − 1; xi−1 	= xn enforces that the feasible largest point in the previous
bin q − 1 must not be the same as xn, to avoid splitting identical data points into
different bins; xn 	= xn+1 is also not to split identical data points; I[n, q] 	= −1 asserts
that xn must be feasible for the largest point of bin q.

Recurrence: If An
q is empty, then I[n, q] � −1, meaning xn does not qualify for the

largest point in bin q. Otherwise,

T [n, q] � max
i∈An

q

T [i − 1, q − 1] + T 1[i, n], (12)

I[n, q] � argmax
i∈An

q

T [i − 1, q − 1] + T 1[i, n]. (13)

Algorithm 1 fills matrices T and I row by row using the recurrence equations.
The range limit of q in line 5 is equivalent tofilling the lower left andupper left corners of
matrix I with−1. The actual initialisation of the first columnof I is implicit from lines 7
to 12. Line 15 decides the feasible decision boundary set. Lines 17 and 18 implement
the recurrence equation if A is not empty. Matrix I is returned for backtracking.

Once matrix I is determined, an optimal quantisation can be retrieved by
Algorithm 2. Backtracking starts from I[N, L] and traces back to I[0, 0]. Two dummy
data points −∞ and +∞ are introduced in line 2. If a finite range quantiser is needed,
we can set them to x1 − δ and xN + δ instead, where δ is a quantity not larger than the
data resolution. When the performance measure contains the average log likelihood,
we shall use finite width intervals. Since the value of I[n, q] is the index to the smallest
point in interval q if xn is the largest point of interval q, I[n, q] − 1 must be the index
to the largest point in interval q − 1. The backtrack rewinds until q = 0. Each decision
boundary is set to the middle of two adjacent points in different intervals (line 4).

Theorem 4.1: The dynamic programming algorithm (Algorithm 1) has time
complexity O(LN2). The backtrack algorithm (Algorithm 2) has time complexity
O(L).
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Proof: O(N log N) is used in sorting the data. O(LN2) is used for filling in matrix
T and I . Brute force calculation of matrix T 1 can take up to O(N3), immediately
making the algorithm impractical to use when N is moderately large. Since T 1[i, n]
can be calculated from its neighbour T 1[i − 1, n] or T 1[i + 1, n] in constant time with
minor memory costs, only O(N2) is used for filling in matrix T 1. So Algorithm 1 has
O(N log N + N2 + LN2) = O(LN2) as its overall time complexity.

O(L) is spent backtracking the optimal intervals, since the while-loop has exactly
L iterations and within each iteration it takes constant time. �
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Theorem 4.2: The dynamic programming algorithm (Algorithm 1) has space
complexity O(LN).

Proof: In the most straightforward implementation, N(N + 1)/2 would be needed
to store matrix T 1, which can be reduced to linear space. When the nth rows of T
and I are calculated, only the nth column of T 1 is used and this column will not be
used again. Thus, during any iteration of the for-loop on n, we save only the nth
column of T 1. This will reduce the space needed for T 1 from N2 to N . We need
2LN space for matrices T and I . So the total space complexity is O(2LN + N) =
O(LN), which is the original claim. �

The dynamic programming algorithm taking sample points can be readily changed to
apply to merge counts of data already accumulated in finer-than-desired bins, because
the performance measure uses only counts of data within a bin and the bin widths
rather than the actual values of those points.

5 Estimation of recombination rate distribution over chromosomes
by quantisation

Recombination is a biological phenomenon that is of central importance to the fields
of genetics and evolutionary biology. In the nucleus of each human cell (except the
haploid gametes) each chromosome (except the sex chromosomes) comes in two copies
called homologous chromosomes, one chromosome coming from the mother and
one from the father. During meiosis (that is the formation of four haploid gametes
from a diploid cell) homologous chromosomes exchange their genetic materials in
a process called recombination. Thus, the chromosomes at the next generation do
not contain the same genetic information as the parent’s chromosomes but instead
are a mosaic of alleles from the mother’s and father’s chromosomes. The study
of recombination is important to molecular evolution because the local rate of
recombination affects the efficiency of natural selection. Recombination Rate (RR) is
defined as the number of recombination events in a unit length of chromosome in terms
of base pairs (bps), usually in centiMorgan per Mbps (cM/Mb). The RRDistribution
(RRD) function maps a location on the chromosome to an RR value. However,
observing recombination events has been limited due to the cost of experiments.
As the complete human genome physical map becomes available, an accurate
quantitative representation of the RRD becomes possible.

Recombination events are identified using both genetic and physical maps.
On a genetic map, each marker represents a unique feature. A marker has two
or multiple forms, called alleles. The alleles can be identified by polymerase chain
reactions. Locations of markers on the physical map are determined in advance.
Markers make detection of recombination events possible without sequencing the
entire genomes of generations. The resolution of the identified events increases with
the number of markers. This method is illustrated in Figure 2. The first parent has 2
markers A and B (Figure 2(a)) and the second parent has the same markers but with
different alleles a and b (Figure 2(b)). If a child has the markers as in Figure 2(c), then
at least one recombination event has occurred at some location between markers A
andB. If a child has the same alleles as their parents as in Figure 2(d), then it is unlikely
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to have a recombination event between A and B if the markers are close enough.
This method cannot detect the exact location of a recombination event. It may miss a
recombination event betweenmarkers. In addition, if the twoparents carry the same set
of alleles, no recombination event between the markers may be identified. Therefore,
selection of markers directly affects the effectiveness of recombination detection.
Typically, a good marker collection should be abundant, hyper-variable, and evenly
distributed across the genome. One such family of markers is microsatellites, which
are short sequences of motifs in tandem (Brown, 1999). The motifs can be di-, tri-, or
tetra-nucleotide repeat units. In the Marshfield recombination map (Yu et al., 2001),
over 8,000 microsatellites are used; in the Iceland recombination map (Kong et al.,
2002), there are 5,000 microsatellites.

Figure 2 Identifying a recombination event with markers. One marker has two alleles A
and a; the other has two alleles B and b (see online version for colours)

The frequency of recombination is not uniform across the genome: more frequent
near the telomere – the end of a eukaryotic chromosome – and less frequent at
the centromere where two copies of the homologous chromosomes hold together.
We consider X , the location of a recombination event, a random variable. Let p(x) be
its p.d.f. Let F (x) be its cumulative distribution function (c.d.f.).

The RRD function R(x) is in proportion to p(x) defined as R(x) = R0p(x), where
R0 is the total amount of recombination events observed on a single chromosome
of an individual. This definition is used in the Iceland RRD estimation (Kong et al.,
2002). Since its exact physical location is unknown, a recombination event between
two markers is assigned the position of the marker with larger coordinate on the
chromosome. With N recombination event locations x1, x2, . . . , xN observed, an
estimated p.d.f. p̂(x) is obtained using the Parzen windowmethod inKong et al. (2002)

p̂(x) =
1
N

N∑
i=1

k(x, xi), (14)

where

k(x, xi) =




1
∆

, |x − xi| ≤ ∆
2

0, otherwise
,

and ∆ is the bandwidth. Then they choose a sequence of M equally spaced locations
y0, 2y0, 3y0, . . . , My0 to calculate the estimated p.d.f. values. In the end, they fit splines
to these points to obtain a smooth p.d.f p(x) and then obtain R(x). The critical
bandwidth parameter ∆ is 3Mbps. The sample is drawn from 1257 meioses.
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Another RRD is defined by R(x) = R0
dF (x)

dx , used by the Marshfield RRD
(Yu et al., 2001). In this approach, it is not necessary to know the exact location of
each recombination event. They compute the empirical c.d.f. F̂ (x) from the observed
recombination events, fit cubic splines to F̂ (x), and then obtain the RRD. In this
study, only 184meioses are analysed to identify recombination events, which is amuch
smaller sample size compared to Kong et al. (2002).

The RRDs in Kong et al. (2002) are represented as continuous functions, with
empirically chosen bandwidth ∆. All the splines are saved and must be evaluated to
calculate RRD at a location.

Alternatively, we performed optimal quantisation on the genetic distances of
selected markers (Kong et al., 2002), given as the empirical c.d.f. of the recombination
events. We first obtained the control parameters wJ , wH , L, and k by a 5-fold
cross-validation. The values of wJ and wH range from 0 to 1 with a step of 0.1.
L ranges from 2 to 28 in powers of 2. k ranges from 1 to 36 in powers of 3. Second,
using the best parameters, a p.d.f. was estimated, on all the recombination events
for each chromosome. The estimated RRD functions of chromosomes 3 and X are
shown in Figures 3 and 4. Recombination is much more active around the ends
of chromosomes than the centres. Our RRDs show more fluctuations than those
shown in Kong et al. (2002), Yu et al. (2001). Since our control parameters are all
cross-validated, it is very likely that the RRDs indeed change more abruptly than
the much more smooth curves published before. To fit splines on our estimation
result could make the curve smoother, but it requires validation of the smoothness.
We further compare quantitatively the performance of optimal quantisation with
the Parzen window method. To make the comparison fair, we did not apply splines.
The evaluation is done by a 5-fold cross-validation. The performance measure is the
log likelihood of the left-out data reserved for test, using the p.d.f. estimated from
the data not using the left-out data. The average and the standard deviation of the
cross-validated log likelihood for each chromosome are shown in Table 1. The average
log likelihoods of the p.d.f. obtained by optimal quantisation are consistently higher
than those by the Parzen windowmethod. The standard deviations of both are similar,
with Parzen window results slightly smaller on most of the chromosomes. Therefore
the optimisation quantisation approach provides a better RRD estimation than that
of the Parzen window.

Figure 3 Chromosome 3 (see online version for colours)



136 M. Song et al.

Figure 4 Chromosome X (see online version for colours)

Table 1 Comparison between optimal quantisation and Parzen window

Average log likelihood Standard deviation

Chromosome Quantisation Parzen window Quantisation Parzen window

1 −19.11 −19.17 0.03 0.01
2 −19.10 −19.21 0.05 0.02
3 −18.90 −19.05 0.04 0.04
4 −18.91 −18.98 0.03 0.02
5 −18.79 −18.91 0.04 0.03
6 −18.72 −18.88 0.05 0.03
7 −18.69 −18.87 0.03 0.02
8 −18.60 −18.78 0.02 0.01
9 −18.42 −18.52 0.04 0.03
10 −18.55 −18.69 0.05 0.05
11 −18.53 −18.65 0.06 0.03
12 −18.57 −18.63 0.03 0.04
13 −18.02 −18.32 0.06 0.04
14 −17.94 −18.14 0.07 0.07
15 −17.87 −18.17 0.06 0.07
16 −18.05 −18.18 0.07 0.04
17 −17.99 −18.14 0.05 0.05
18 −18.04 −18.16 0.08 0.06
19 −17.70 −17.95 0.09 0.05
20 −17.62 −17.70 0.09 0.03
21 −17.05 −17.28 0.06 0.05
22 −16.96 −17.16 0.08 0.05
X −18.42 −18.53 0.04 0.03

6 Localised study of recombination rate within length groups of L1s

L1 retrotransposons have significantly affected the structure and function of
mammalian genomes, including the human genomes. They have been a source of
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genetic novelty and their activity accounts for at least 30% of the size of our genome.
However, their replicative success is difficult to reconcile with the potential damages
they can impose on their host’s genome. The effect that L1 elements can have on the
fitness of individuals remains a matter of debate. One approach used to understand
their impact is to look at their distribution in the genome relative to the local
recombination. The rationale is that if L1 elements of a given length are deleterious
they should accumulate in regions of low recombination.

Therefore we decided to examine how RR near an L1 element depends upon the
length of the element. A linear regression could not adequately capture subtlety of the
RR-length interaction. Given the relatively large sample size of L1s, instead of fitting
a higher order linear regression model, we analyse families of different age separately
using the classification of Khan et al. (2006). We studied five families, named L1PA2
to L1PA6, and broke elements within each family into groups based on the length
of the elements. We then looked at the trend of RR within each group. Grouping
is determined by optimal quantisation of the lengths of all L1s under consideration.
Intuitively, this method separates L1s into groups by length when there is a sudden
change in the number of L1s over unit length. We selected the number of groups to be
six, roughly capturing the overall distribution of lengthwhile assuring that the intervals
are not too small for a meaningful regression. The six length groups are shown in
Table 2. The grouping reflects a natural tendency for L1 to segregate by length.

Table 2 L1 groups by length, with length ranges, counts, and percentage

L1 groups Length range L1 count/percentage (%)

1 [100, 490] 12,226/34
2 [491, 1152] 8559/24
3 [1153, 2498] 6462/18
4 [2499, 6001] 4182/12
5 [6002, 6183] 4231/12
6 ≥6184 218/1

Aone-wayANOVA (Table 3) indicates indeed theRRmeans are significantly different
among L1 length groups. The Tukey’s Honest Significant Differences (HSD) test
reveals further details in Figure 5. Under the null hypothesis of RR mean equality
across groups, if one compares every two groups using the 5% α-level, the chance of
observing some inequality among thepairs canbemuchgreater than the anticipated 5%
type I error. The Tukey’sHSD test corrects this problem. In Figure 5, the range of each
line segment manifests the 95% confidence interval of the meanRR difference between
the two length groups labelled on the left of the segment. The vertical dashed line
marks the zero difference location. If an interval contains zero, there is no significant
evidence from the sample to conclude that the two groups have different mean RRs.
All differences are the mean RR of a group with a longer length minus that of one with
a shorter length. A major observation is that no segments have both ends above zero,
suggesting no significant trend of increasing RR as length increases. The only almost
significant negative difference between two consecutive length groups occurs from
groups 2 to 3, which accounts for other significant differences among non-consecutive
length groups. Therefore, the multiple comparison analysis pins down that the most
significant reduction in RR takes place among the L1s of intermediate length, that is
between elements shorter and longer than 1.2Kb.
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Table 3 One-way ANOVA for RR over the length groups

Degrees of Sum of Mean F
freedom squares squares value Pr(>F )

Group 5 93 19 7.5441 4.330e-07
Residuals 35,872 88,107 2

Figure 5 Tukey’s HSD test on the RR means among length groups. Numbers on the vertical
axes correspond to length groups. For example, 5–3 stands for the mean RR of
group 5 minus that of group 3
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Based on the Tukey’s HSD results, we studied the trend of RR within each length
group using linear regression on the length of L1. The intercepts and slopes of each
linear regression line, and the corresponding p-values are given in Table 4. No length
group shows a significant positive slope. We observe that length group 2 has a highly
significant negative slope. Figure 6 shows the mean RR-length scatter plot with the
regression lines overlaid.We can observe in the plot a decreasing trend of the regression
line in group 2 quite evidently. It is also quite evident subjectively that there is a
declining tendency in the mean RR as the length increases. This further analysis match
well to previous findings by the Tukey’s HSD test. Therefore the major RR reduction
occurs on the L1s of length 491 to 1152, which are not full-length L1s, but L1s of
intermediate length.

Table 4 Linear regression slopes of each group

Estimate Std. error t-Statistic Pr(>|t|)
1:length −5.537e-05 1.275e-04 −0.434 0.6641
2:length −2.446e-04 9.006e-05 −2.716 0.0066
3:length −3.409e-05 5.126e-05 −0.665 0.5060
4:length 3.042e-06 2.268e-05 0.134 0.8933
5:length 5.923e-05 4.409e-04 0.134 0.8931
6:length 3.108e-04 5.386e-04 0.577 0.5639

Figure 6 Scatter plot of mean RR vs. L1 length. The line segments are linear regressions
within each group. Only the second segment has a significant decreasing trend
(see online version for colours)

7 Conclusion

We have described a dynamic programming algorithm to quantise a random variable
to preserve maximally the p.d.f. of the original continuous variable. Although our
algorithm has a quadratic running time in sample size, it guarantees the optimality
of quantisation. The distance-based k-means algorithm for univariate quantisation,
popular simply due to its computational convenience, shall either be replaced by our
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maximum likelihood approach when preservation of the distribution of the original
continuous random variable is desired, or by a dynamic programming implementation
similar to ours that guarantees optimality. Applications of our algorithm in estimating
RR distributions and characterising L1 elements show its effectiveness in capturing
the underlying p.d.f.s of data. It can also be used to discretise other genomic features
including GC-content, gene expression rate, and non-coding element densities over a
genome.
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