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Hole-Spectrum Representation and Model-Based Optimal Morphological
Restoration of Binary Images Degraded by Subtractive Noise
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Abstract. A shape-based image representation grounded on the distribution of holes within an image
is developed, and the manner in which this representation can be used to design optimal morphological
filters to restore images suffering from subtractive-noise degradation is investigated. The image and
noise models are predicated on the existence of some class of shape primitives into which both
image and noise can be decomposed (relative to union), and this decomposition is developed within
the framework of a general algebraic paradigm for component-based filtering that does not depend
on the linear-space structure typically used in spectral representations. Both deterministic and
nondeterministic models are considered, and in each case the necessary model constraints are fully
explored. Moreover, the type of filters that are naturally compatible with the image-noise models are
analyzed. Specifically, optimal morphological filter design is studied in terms of the shape-based hole
spectrum (as linear filter design is studied in terms of the frequency spectrum). Various forms of
a design algorithm are discussed, the particulars depending on a symmetric-difference error analysis
yielding approximate error expressions in terms of the spectral decomposition and the geometry of
the underlying shape primitives. Finally, the statistical estimation procedures required for practical
implementation of the entire spectrum-filter paradigm are explained.
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The problem we wish to address can be ap-
preciated by briefly considering the Wiener fil-

1. Introduction

In the present paper we address the problem
of finding an image representation applicable to
restoration of binary images degraded by sub-
tractive noise. Qur goal is to provide a paradigm
for model-based restoration that is compatible
with the very general statistical characteriza-
tion of optimal morphological filters given by
Dougherty [1], [2]. As a general framework,
the latter is applicable to image-processing prob-
lems concerned with estimation—for instance,
restoration and compression. Although the op-
timal linear filter can best be used by relating it
to frequency content, as is done by the Wiener
filter, there remains to be found relevant image
decompositions facilitating discovery of optimal
morphological filters.

ter and its relation to optimal linear filtering.
Given a collection of observation random vari-
ables, the optimal filtering problem is to find
an estimation rule (filter) involving the obser-
vation variables that best predicts the outcome
of some other random variable relative to some
measure of goodness. If the goodness measure
is mean-square error, the optimal (best) filter is
the conditional expectation of the variable to be
estimated given the observation variables. How-
ever, in many situations the estimation rule is
constrained to some class of functions, thereby
constraining the optimization. In linear filter-
ing the estimation rule must be a linear com-
bination of the observations; in morphological
filtering it must be a morphological function of
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the observations. In linear filtering, design of
the optimal filter reduces to the solution of a
set of linear equations; in morphological filter-
ing, design involves a search over certain classes
of structuring elements [1], [2]. If we consid-
er restoring an image, then the observations
lie in some pixel neighborhood about the pix-
el whose value is to be estimated, and in both
the linear and morphological cases the general
estimation problem is pixel dependent, so that
the optimal filter is spatially variant and there
is (possibly) a different estimation rule at each
pixel. For linear filtering, wide-sense stationar-
ity of the image-noise process yields a spatially
invariant (pixel-independent) filter; for morpho-
logical filtering, strict-sense stationarity of the
image-noise process yields a spatially invariant
filter [1], [2]. In the linear case and under
wide-sense stationarity, optimal-filter design can
be simplified by transforming the problem into
the frequency domain by means of the Fourier
transform, thereby reducing design to an alge-
braic problem involving the spectra of the image
and noise. In effect, the task is to weight the
spectral components of the degraded image so
as to produce, upon inverse transforming, the
optimal linear estimate of the uncorrupted im-
age. The salient point relative to the present
paper is that spectral decomposition leads to
componentwise, frequency-based optimal-linear-
filter design. The general morphological spectral
problem is to find image representations lead-
ing to component-based optimal-morphological-
filter design, the utility being the facilitation of
filter design (the Wiener filter facilitates linear-
filter design under certain conditions). This re-
quires appropriate modeling of the morphologi-
cal problem, since here we do not have recourse
to linear-space theory.

In the absence of linear-space methods, a key
aspect of the current study is the presentation of
a general algebraic formulation of component-
pass-type filtering that serves to frame the mod-
el subsequently discussed. This formulation
is, in essence, an algebraic abstraction of low-
pass/highpass filtering (and has been presented
in a partial report on the current investigation

(3D-

Having found an appropriate spectral (com-

ponent) decomposition, we proceed to analyze
signal and noise relative to it, not only to design
optimal filters operating in the spectral domain,
but also to design optimized spatial-domain fil-
ters. For frequency decompositions, such spatial
filtering is achieved by means of the convolution
theorem for Fourier transforms; here we use
shape-based decompositions grounded on hole
distributions and derive efficient morphological
filters from these.

We have used a similar spectral approach in
a different framework [4], [5] by employing an
opening decomposition to discover an optimal
filter for a certain image-noise model. There,
however, although the Wiener analogy holds
quite well, the resulting filters do not fit the
framework of [1]. Specifically, the resulting
optimal filters are not necessarily monotonic.
The present model fits the framework and leads
to a class of filters that are closely related to
the image and noise.

Before proceeding, we will mention two areas
of current investigation that bear relation to the
present work. First, morphological optimization
has been studied by Schonfeld and Goutsias [6],
[7]. There the setting is not as general as that
discussed in [1], [2], and the optimization crite-
ria are different. Nonetheless, a key aspect of
[6], [7] is the manner in which the optimization
is applied to alternating sequential filters (see
Lougheed [8] or Serra [9]). Since these filter-
s are increasing and translation invariant, they
could be fit into the general binary paradigm
of [1]. As for the second area of investigation,
one more closely related to the present study,
a good deal of effort has gone into making
the general binary-filter-design paradigm of [1]
more tractable; the problem is to mitigate the
computational burden entailed in the search for
optimal structuring elements. We mention two
approaches used to date. Dougherty, Mathew,
and Swarnakar [10] have developed an algo-
rithm to derive the optimal binary mean-square
morphological filter from the conditional ex-
pectation, and in cases for which the optimal
morphological filter is near to being overall op-
timal, the algorithm works extremely fast. In
addition, Loce and Dougherty [11]-[13] have
facilitated filter design by using constraints that,
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in return for some slight loss in filter perfor-
mance, eliminate vast numbers of structuring
elements from consideration. A fundamental
facet of our model-based approach to filter op-
timization is that it ipso facto greatly improves
design tractability.

2. Morphological preliminaries

An image is a subset of the Cartesian grid
Z x Z, and we use two elementary morpho-
logical operations, erosion +and dilation, de-
fined by S6 A = {z : A+ 2 < S} and
S®A=U{A+z: ze S}, respectively, where
A+z={a+z:ae A}. We leave the basic
properties of the these operations to the lit-
erature [14]-[18] (see also [19]-[22] for lattice-
based approaches to mathematical morphology).
More generally, a binary morphological filter is
a set-to-set mapping ¥ that is increasing [S < T
implies ¥(S) < ¥(T)] and translation invariant
[¥(S + z) = ¥(5) + z]. The kemnel, Ker[¥], is
the class of all images S such that ¥(S) con-
tains the origin. (Note that Serra [23], in the
context of lattices, defines a morphological fil-
ter differently: the mapping must be increasing
and idempotent [¥'W = ¥]; translation invariance
is not relevant in the abstract lattice setting he
uses.)

A fundamental proposition of mathematical
morphology is the Matheron representation [14]:
every morphological filter can be expressed as
a union of erosions by its kernel elements. As
was noticed by Dougherty and Giardina [18],
[24] and Maragos and Schafer [25], [26], if cer-
tain pathological cases are excluded, a morpho-
logical filter ¥ has a basis, Bas[¥], of struc-
turing elements such that the Matheron expan-
sion is taken over Bas[¥] instead of Ker[¥]:
U(S)=U{Se E : E € Bas[¥]}. The basis is a
minimal class of structuring elements within the
kernel: for any F € Ker[¥] there exists E' €
Bas[¥] such that E' < F and there does not
exist a pair of structuring clements in Bas[¥]
properly related by set inclusion. If B is the
basis for a filter, we will often denote the filter
by ¥g. (For gray-scale and lattice extensions of
the Matheron theorem, see [18], [22], [23], [25],

[26].

In [1], mean-square-error (MSE) filter op-
timization is characterized by the Matheron
representation. Consider N binary observa-
tion random variables X[1], X[2], ..., X[NV].
Each realization of the random vector X =
(X[1], X[2], ..., X[N]) is a 0-1 N-tuple. If we
let 1 and 0 denote points of the domain that lie
within or without the point set {1,2,..., N},
respectively, then each realization z of X con-
stitutes a subset of {1, 2,..., N}, and we can
erode x by a deterministic structuring element
A = (a[l], a[2], ..., a[N]), where a[j] is O or
1. The erosion z & A is a binary functional,
and its value is either 0 or 1. For a random
vetor X and fixed structuring element A, ero-
sion defines an estimator X © A that can be
used to estimate another random variable Y.
The optimal MS erosion filter is the one de-
fined by the structuring element A minimizing
MSE(4) = E[|Y — (X & A)|].

Using the Matheron representation as a guide,
[1] defines an N-observation digital morphologi-
cal filter as a functional of the form ¥(z) =
max{z © A(i)};, where z and A(:) are deter-
ministic binary N-vectors. {A(¢)} is called the
basis of ¥. Extension of optimality to N-
observation morphological filters involves mini-
mizing MSE(¥) = E[|Y —¥(X)|?] over all pos-
sible choices of IV-observation morphological fil-
ters ¥. Since ¥ is fully determined by its basis,
finding the optimal N-observation filter reduces
to selecting an optimal basis.

3. An algebraic paradigm for component fil-
tering

We require a class S of signals, and with each sig-
nal f in § there must be an associated n-tuple
&(f) = [fi], called the spectrum of f, whose
components come from some set C of objects
(which need not be numbers). This association
forms a mapping

@ : f—=o(f) =1, fa ..., ful €y

from § into C", and, since [f;] must serve as a
representation of f, we demand that there exist
an inverse mapping @71
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For any two signals f and g in S, there is
defined a binary operation (), not necessarily
commutative, such that f()g need not lie in
S. If f()g lies in S, then we say g is weakly
compatible with f. Weak compatibility takes
the place of linear-space closure, but more is
required: some stronger condition must serve
in lieu of basis-coefficient linearity.

To proceed further, we assume there exists an
operation ® in C, and for any two elements in
C" we induce ® componentwise by

[ar] ® [Bk] = [ar ® bi]. @)

We say g is strongly compatible with f if it is
weakly compatible and

2(f()g) = [fe] ® [9x]. ©)

S( f) denotes the class of strongly f-compatible
elements of S.

We now have sufficient structure to provide
an algebraic characterization of component fil-
tering. First suppose g is strongly f-compatible
and that f and g do not share nonnull compo-
nents, i.e., that the signal and noise components
are separated. After rearranging the compo-
nents, if necessary, there exists an index g such
that fi = 0 for k > g and g; = 0 for k£ < ¢q (note
that we could have interchanged the ordering
so that f is null for small k& and g, is null for
large k). We define the function @ on C® by

Q([ay, az, ..., a.]) = [a1, a2, ...4,, 0,0, ...,0].
(4)
By assuming f{)g to be a degradation of #, total
restoration is achieved by the mapping ¢71Q9.
Rather than filter in the component domain,
we might, as with convolution and frequency,
desire a spatial-domain filter that accomplishes
the same task as Q. Such a filter would be
a mapping ¥ that completes the commutative
diagram.

@
fOg = [fr®g]
vl I < ()
I = [fi]
]

that is, ¥ = $~!'Q@. From a strictly algebraic
perspective, ¥ always exists as #-1Q®; however,
what we really desire is that ¥ come from some
class of filters. Specifically, we require ¥ to be
a morphological filter of some given kind. Even
with signal-noise separation, ¥ in the desired
form might not be obtainable exactly, so we
will have to make do with some approximate
completion of the diagram.

More generally, the nonnull components of f
and g are not disjoint. Thus, the mapping Q
of (4) does not exist (as formulated). Instead it
takes the form Q = [gx], and filtering is accom-
plished by Q([ax]) = [gr(ar)], where g is the kth
component function of @. This is analogous to
the frequency form of the Wiener filter, in which
case qr(ax) = wiay, Where wy is the weight and
ay, is the frequency component. To measure the
goodness of @, there must exist some error mea-
sure e between signals. If signals are assumed to
be random functions, goodness of Q is measured
by the expected value Efe(f, 271Q®(f()9))].

4. The hole spectrum

Our goal is the development of a generalized
spectral (canonical) representation that models
holes in an image in a manner conducive to
filling noise-created holes by a union of erosions.
We begin by postulating a list of primitive shapes
that will be assumed to generate both noise and
generic holes. We consider a family of images,
called shape primitives: P = {Ny, Ng, ..., N,}.
Each N; is assumed to be path connected. If §
is any image, (S} denotes the minimal rectangle
containing S. S is said to be P-representable if
there exist points z;; such that

0

V5!
[

(S)—U{Nj+mjkfj=1, 2,...,n;
k=1,2, ..., 5()}
= (§)-UN;eX;,

where X; = {1, zj2, ..., Zj ()}

(ii) If C is any connected component of {S)—
S, then there exists a unique pair (4, k)
in the index set of the union such that
C = N; + z;. Moreover, for any other
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index pair (r, s), N; + z,, is disjoint from

Condition (ii) imposes a minimality condition
on the union in (i), thereby making the rep-
resentation of (i) unique. S is the class of
P-representable images, and henceforth we as-
sume all images to be P-representable. A hole
is any connected component of (§)— 8. It
need not be enclosed by pixels in S; rather, it
may be a penetration of the minimal containing
rectangle (5).

We postulate the existence of a subclass of
P,N = {N;, Np, ..., N;}, 1 < p < n. The pur-
pose of N is to be a subfamily of shape primitives
that serve as noise generators; specifically, we
limit the noise holes of S to be those holes in
() created by terms in (i) of the form N; +a,
where N; lies in N. It might be that there is
no limitation and p = n. We call N the noise
class. Note that generic holes, those belonging
to S properly and not having been created by
noise, can arise from shapes in N.

For each j, we assume there exists some en-
clsoure set Mj; containing N;. The purpose of
M; is to form a border M; — N; (see figure 1),
so that the filling of a hole created by N; can
be examined in terms of erosions applied to the
border. The extent to which M, is greater than
Nj is a modeling question having to do with the
nature of generic holes and constraints on the
noise.

In regard to representation (i), the hole spec-
tfrum of a P-representable image S is defined
by

H[S] = [X, Xo, ..., X,]. (6)
H[S] and (S) uniquely characterize S. The
n-tuple

h[5] = [s(1), 5(2), ..., s(n)] (M

is called the hole-amplitude spectrum (HAS) of S.
It gives the number of times each shape primi-
tive N; is translated to form the representation
(i). The set (S)—.S consists of “hole-like” com-
ponents, is given by the union representation in
(i), and is characterized by the hole spectrum.

Our filtering concern is with the image §
corrupted by subtractive noise, i.e., new holes
are created by the noise. If all shape primitives
are assumed to lie in P, a noise image N is
postulated to be of the form N = (§) — N*,
where

(i) N* = U{N; + 26 : 5= 1,2,....p; k =
1.2, ,t(j)} = UN; @Zj, where Z; =

{Zjl, zjz, ey zj‘t(j)}.

The noise-corrupted image is defined to be SN
N. Since
SAN =5~ N~ €))

the noisy image results from subtracting translat-
ed noise patterns from the uncorrupted image.

We wish to view SN N as the noisy version of
S; however, we are faced with a serious hurdle:
we must be assured that SNV is P-representable.
Thus we must put constraints on the union form-
ing N*. Put crudely, we must be careful that the
intersection does not create holes that are not
fit tightly by single translates of the Nj, a con-
dition required for P-representation. The prob-
lem here is the lack of a vector-space closurelike
property. A practical way around the difficulty
is to define a noise image of the type in (iii) to
be weakly compatible with § if (SNN) = (8)
and SN N is P-representable and to limit our
formal analysis to weakly S-compatible noise
images. Relative to the algebraic paradigm of
the preceding section, intersection corresponds
to the abstract operation (), with S being the
P-representable images. The purpose of the re-
quirement (SN N) = (S), which says that the
minimal enclsoing rectangle is not diminished,
is to avoid reformulation of the representation
(i), which might be required to maintain the
uniqueness of the hole-spectrum representation
if (SNN) were a proper subset of ().

Even if N is weakly S-compatible, there is
another potential problem with our representa-
tion theory. In subtracting N* from S we may
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create interaction holes, which are created by en-
larging generic holes during noise intersection.
To appreciate the undesirability of such holes,
consider the addition of a signal with noise in
the frequency setting. Owing to the linearity of
the basis coefficients, the spectrum of the sum
is obtained by adding basis coefficients compo-
nentwise. We would like to have an analogous
process with regard to hole spectra: coefficients
for SN N should be formed by unioning signal
and nosie coefficients. Relative to the algebraic
paradigm, we would like (3) to hold with in-
tersection in place of () and union in place of
®. The following conditions on the noise will
guarantee both weak compatibility and the type
of noisy-image spectra we desire:

(iv) For each N; in N, the border M; — N; is
strongly path connected.

(v) If N; + zjx and N, + z, are translates in
the union forming N*, then

(Nr + z) N (M + 2z) = 0.

(vi) For each translate N; + z;;, forming N*,
Mj + zjp < S.

Condition (iv) makes the borders sufficiently
impenetrable so that conditions (v) and (vi)
accomplish their desired ends. Condition (v)
is a separation condition assuring that the P-
representability of SN N is not destroyed by
overlapping or touching noise holes. Condition
(vi) says that we ignore noise-primitive translates
that miss S altogether (certainly realistic) and al-
so that noise enclosures cannot hit the boundary
of S, which could destroy the P-representability
of SN N or create interaction holes. Note an-
other key consequence of the noise conditions:
no translate N, + z,, forming N can “get lost”
as a subset of some translate N; + z;; in (i), or
vice versa. If a noise image of the form given
in (iii) satisfies conditions (iv), (v), and (vi), it is
said to conform to S. Under these conditions,
the hole spectrum of the noise is

H[N] = [21, Za, ..., Zu). 9)

Consider the hole spectrum of an image SNN
obtained from S by comformable intersection

noise. With N* given by (iii), we need a rep-
resentation of the generic holes. By (i), these
holes comprise (S) — S, which is of the form

(§)- S =UN, e X, (10)

If we assume that S is P-representable and that
N conforms to S,

SNN

Il

[(S)—-({S)-8)]-N"
(§)—UN;®& X; —UN,; @ Z;
(S)—-UN;®(X;UZ;).  (11)

Its hole spectrum is

H[SNN] = [X,UZ,, XoUZs, ..., XoUZ,]. (12)

Relative to (3), (12) can be rewritten as
H[SNN] = H[S]U H[N], (13)

so that N is strongly compatible with S. In sum-
mary, if N conforms to S, then N is strongly
compatible with S and we can proceed with com-
ponent filtering. Of great practical importance
is that the hole-amplitude spectrum components
are combined by addition:

AISOAN] = [s(1) + (1), 5(2) + £(2), ...,

s(n) + t(n)]. (14)

Let us now consider the spectral approach to
noise filtering. Suppose there exists a separation
index g such that s(j) = 0 for j < gand ¢(j) = 0
for j > g, so that the signal is separated from the
noise and the relevant spectra take the forms

H[S]
H[N] =

[G! ®5 LG ! ®1 -Xq+l1 Xq+2» [RRX Xn]:
[le ZQ; seey Zq, @, @, veey w]. (15)

In the spectrum domain the noise is fully filtered
by the function

Q([}/J.)Y’Z;:Yn]) = [ma @,---,@, Y:1+l:

Yoz, Yal  (16)

since Q(H[S N N]) = H[S].

When signal and noise are not separated, we
desire a function @Q that best restores the hole
spectrum of § from SN N, where bestness is
defined relative to some criterion of goodness.
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Since our desire is restoration in the spatial do-
main, a good measure of error is the symmetric
difference

e[Q = c[H[QUH[SNN])]-S]

+e[§ — H[Q(H[S n N])]], (17)

where ¢ denotes the number of pixels in a set.
This approach is well defined because we have
assumed an image is reconstructable from its
hole spectrum, thereby making H ! well defined.

5. Spatial-domain filters

In analogy to the frequency-spectrum setting,
we would like some spatial-domain filter that
can, to one degree or another (and in a man-
ner analogous to convolution), accomplish the
task of Q. In the present setting we desire a
morphological filter ¥ such that (SN N) = S.
The problem is to find ¥ so as to complete the
following commutative diagram:

H
SNAN — H[SNN]
v | L Qe (18)
S - H[S]
H

which corresponds to diagram (5). Whether we
are in the separated or nonseparated case, no
filter ¥ can be expected to complete the diagram
exactly, so we use the measure of goodness

e[¥] = c[S — (SN N)] + c[T(SNN) - 5], (19)

which is simply a reformulation of the spectral-
restoration error e[@] of (17). Since we can-
not expect to complete the diagram exactly, we
should not expect e[¥] to equal e[Q], although
ideally they would agree.

The most general problem, whether or not the
noise and signal are separated by some index,
is to seek ¥ among all morphological filters;
however, on the basis of our model, we will
seek W from a subclass of filters. We proceed
lo outline the model-based paradigm suitable to
sbserved images SN N.

Although we could search for a suitable fil-
ter ¥ among all possible morphological filters,
this would mitigate the purpose of constructing
an appropriate noise model. Thus, along with
the class P of shape primitives, we postulate
the existence of a class E = {Ey, B, ..., E,}
of structuring elements. Since these elements
must restore images suffering subtractive-noise
degradation, to be of use they must satisfy some
conditions that make them suitable for the task
at hand. Hence we require the elements of E
to satisfy the following two conditions:

(vii) For any N; lying in N,

U{(M—Nj)eEi =1, 2, ...,m}>Nj.

(viii) For ¢ = 1,2, ..., m, E; does not contain
the origin and there exist activated pixels
p1 and p; in E; such that the origin lies
between p; and ps.

Condition (vii) guarantees that holes created
by subtracting noise primitives can be filled by
eroding by elements of E, and condition (viii)
assures that eroding S or a subset of S by an
element of E yields an output that lies within
(8). This latter condition is reasonable since
SNN<S.

For any image S and family B of structur-
ing elements, we define the morphological filter
w(S) by

¥(S) = SU[U{SO E, : BExeB}.  (20)

Since S is equal to S eroded by the origin, ¥
is a union of erosions, and as such it is a mor-
phological filter. There is no basis minimality
condition imposed on E; that is, it may be that
there is an element of E that is a proper subset
of another element of E. Thus if B is selected
from E, it may not be a basis; if not, simply
eliminate redundant structuring elements. De-
fine an image S to be B-closed if B is a family
of structuring elements for which ¥g(S) = &S.
Whether S is B-closed or not, we refer to Yg(S)
as the B-closure of S. E-closed images are of
special interest because if SN N is a noisy im-
age, B is a subclass of E and we apply ¥y, then
Yg(SNN) < S, so that ¥ cannot create error
pixels outside of S so long as § is E-closed.
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Note that by (viii) the E-closure of S is a sub-
set of (S}, so that § < Pg(5) < (5). The
B-closure of S need not be B-closed: Wg(S)
is not necessarily equal to Wg(¥s(S)); that is,
¥ is not generally idempotent. Nonetheless,
for any integral power k, ¥5(S) < (S). If we
construct E in a manner compatible with filling
holes created by noise primitives, filters of the
form ¥y, B < E, comprise a potentially fertile
class.

If we use the symmetric-difference restoration
error, then error is basis dependent and is given
by

e[B] = c[S—T(SNN)]+ [T (SNN)—S]. (21)

Qur problem is combinatoric in that we must
search for the best among all subsets of E that
are filter bases. As will be subsequently dis-
cussed, such a search fits neatly into the general
filter methodology developed in [1], [2]. If E
has been selected in a manner highly compati-
ble with filling holes created by primitives in N,
then we have accomplished a good deal because
the general search problem of [1] is dramatically
reduced.

6. The nondeterministic setting

In moving to the nondeterministic setting, we
need to reinterpret the foundations of the hole-
spectrum theory in a probabilistic light. Re-
garding the signal and noise assumptions, SNN
is a random images formed from intersecting
two random image, S and N. To apply our
theory we make the modeling assumption that
for each realization of SN N the realizatioin
of N conforms to the corresponding realization
of S. In the random model the hole spectrum
is an n-tuple of random sets, and the HAS is
a random n-vector. For a given basis B we
consider the expected value of the error (21),
namely, E[e(B)]. Optimality is achieved by find-
ing B that minimizes E[e(B)]. Note that E[e(B)]
corresponds to E[e(¥)], where e(¥) is given in
(19), and hence to E[e(Q)], where e(Q) is given
in (17). The latter point is important, since,
just as with linear frequency-component opti-
mization, there is a relation between FE[e(Q)]

and E[e(¥)]. Ideally, if the commuting dia-
gram (18) were completed, then we would have
E[e(Q)] = E[e(®)].

We now consider the manner in which our
theory relates to the general MSE optimization
theory developed in [1]. Because that theory
treats window observations as a collection of
random variables to estimate another random
variable, the “true” value of the image at a given
pixel, it yields morphological filters given by
erosion expansions for which the basis elements
are pixel dependent; that is, the optimal filter is
spatially variant. As discussed in [1], the filter
becomes spatially invariant if the image-noise
process is stationary.

To proceed with a comparison of the hole-
spectrum approach and the general MSE ap-
proach of [1], we suppose SN/ to be stationary
as a random process. Applying the methodol-
ogy of [1] to our noise model, at an arbitrary
pixel = mean-square error is

MSE[z] = E[[#(SN N)(z) - S()I*], (22)
where S(z) = 1 if = lies in S and S(z) = 0

otherwise. If we let P[|] denote conditional
probability, MSE can be rewritten as

MSE[z] = P[#(SNN)(z)=1|5()=0]
P[5(z) = 0]
+P[@(SNN)(z) =0|8(z) = 1]
P[S5(z) = 1]

= Plze¥(SNN)-S]
+Plze S—¥(SNN)].  (23)

If we let A denote the number of pixels in the
image, by stationarity we obtain A(MSE[z]) =
E[e(¥)]. Thus minimization of E[e(¥)] is equiv-
alent to MSE minimization.

Because we do not require stationarity to ob-
tain a spatially invariant filter, herein we will
always obtain a global basis. Moreover, where-
as in [1] the restriction was that the structuring
elements must lie in some observation window
about z (in analogy to a windowed convolution),
here we restrict our attention to a set of model
elements. Such constraint is discussed in [1]
relative to the general statistical approach. It
should be noted that although we have dropped
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a local-estimation approach common to basic
statistical estimation, thereby circumventing sta-
tionarity questions, we have paid a price. First,
we have given up hope of obtaining gener-
al probabilistic distributional characterizations.
Second, we have placed strict constraints on the
signal, the noise, and their interaction. Third,
we have restricted our attention to filtering a
certain type of noise, rather than presenting a
theory that applies equally well to any type of
noise filtering, compression, or general restora-
tion. Qur gain, however, is that when the mod-
el is (sufficiently) appropriate we have a filter-
design methodology that is intuitive, avoids the
taxing statistical analysis required in the more
general approach, is not sensitive to deviations
from stationarity, and is computationally more
efficient than the general approach in [1].

7. The fill matrix

A principle motivation for component represen-
tation by the hole spectrum is the development
of fast algorithms to find statistically efficient
morphological filters. Relative to the hole spec-
trum, our technique is to find “good” structuring
elements in E. When a structuring element E;
is used to help fill a noise hole created by a
noise primitive Nj, it accomplishes its end be-
cause [(M; — N;) + z;x] © E; contains pixels of
§—(Nj + zj). If S is {E;}-closed, then there
is no overfilling; otherwise, [S — (Nj+zz)]8 E;
quite possibly contains pixels not originally in S.
Thus if S is E-closed, no overfilling can arise;
typically, however, S will not be E-closed. To
help analyze overfill errors we introduce a fill
measure for structuring elements.

Fori=1,2,...,mand j=1,2,...,n, de-
fine the fill ratio r;; by

rij = c[N;] 7 e[(M; — Nj) @ E)NN;]. (24)

These ratios form the fill marix R = [ry]
with respect to P and E. The rows corre-
spond to E,, Fs, ..., E, and the columns to
Ny, Ny, ..., N,. Each r;; gives the proportion
of a “hole” in the enclosure Mj created by N;
that is filled when eroding by E;.

Consider a noise-corrupted image T = SN N,
and suppose there exists a separation index g.

Then, relative to T the fill matrix takes the form
Rr = [Ny : Gr]. There are ¢ columns in the
submatrix Nr corresponding to the shape prim-
itives contributing to N, and there are n — g
columns in the submatrix Gp corresponding to
shape primitives contributing generic holes. If
p = g, then Nr corresponds exactly to N, where-
as Gr corresponds to P — N. Appreciation of
the fill matrix is straightforward in the separated
case. If j < ¢ and Ti; > Tk, then more of a
noise hole created by N; is filled by E; than by
Ey; thus if all other factors are ignored, E; is a
better contributor to a filter basis than is E;. If
J > g and rj; > ry;, then more of a generic hole
created by N; is filled by E; than by Ej; thus
if all other factors are ignored, Ej is a better
contributor to a filter basis than is E;.

8. Filter design in the E-closed case—signal
and noise separated

In developing algorithms we first consider the
separated case under the assumption that S is
E-closed. Since there is no overfilling, the fill
matrix takes the block form Rg = [Ny : 0],
and total restoration of S results from the filter
Yg. Rather than stop here, we desire a con-
venient method for using fewer than all of the
structuring elements of E in a fully restoring
basis.

We proceed in the following manner. Find a
subset E[1] of E such that

W{(M; - N))© E; : E;€ E[1]} > Ny (25)

If we let N[j] denote the union of the N; trans-
lates in the union forming N*, then under the
model conditions

Pp(S — N[1]) = 5. (26)

We next extend E[1] to E[2] by adjoining ele-
ments so that

U{(Mg - Nz) OF; : E; e E[Z]} > Na. (27)
Under the model conditions
Ppp (S — (N[LJUN[2]) = S. (28)

Note that it is certainly possible that E[2] =
E[1]. We proceed inductively to form an
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increasing set of structuring-element classcs
E[1] < E[2] < --+ < E[n] such that g, (S -
N) = § for total restoration.

Because there is no assumption that the struc-
turing elements of E are not redundant (and,
indeed, we do not want to make such an assump-
tion), there can exist E; and Ey in E such that
E; is a proper subset of Ey. Hence E[n] might
not form a legitimate filter basis. This problem
can be corrected at each step of the algorithm
by making certain that E[k], k= 1,2,...,n, is
nonredundant, or it can be corrected at the end
by eliminating redundancy from E[n] to form a
basis B, and the resulting filter is Wp.

A second point concerns the size of E[n]
or of the resulting basis B. Because there is
no “looking back” in the algorithm as posed,
there is no guarantee that the resulting basis
will contain the smallest possible number of
elements. Since, for the present, a central aim is
to avoid combinatorics, we will content ourselves
with a stepwise algorithm.

9. Filter design when the image is not E-
closed —signal and noise separated

Let us now drop the assumption that § is E-
closed. No longer can we be assured of finding
an ideal filter, one that gives full restoration.
The data of the fill matrix facilitate a detailed
study of the problem. Consider a subclass (po-
tential basis) B from E. Let

c[N; — Tg(M; — Nj)]

c[N;] — e[¥(M; — N;) N N;] (29)
for j < ¢q. Then e;, to be called a noise-error
term, counts the number of pixels in N; that are

erroneously not filled by ¥g. For j > g, define
the generic-error term

ej = c[¥s(M; — N;) N Ny, (30)

e; =

which counts the number of pixels in N; er-
roneously filled. If we assume the enclosures
M; are sufficiently large, so that filling the hole
created by N; + zj, is accomplished only by
structuring elements fitting in (M; — N;) + zj,
then

e[B] = h(l)e;+ -+ h(g)e,

+h(g + 1)egr; + - + h(n)e,
= en[B] + eg[B], (31)

where h[S N N] = [h(1), ..., h(n)] is the hole-
amplitude spectrum of SN N. A key point
is that the e; error terms depend only on the
basis, the shape primitives, and the enclosures.
The coefficients in the expansion are the HAS
components.

In the E-closed case, ¢; = 0 for j > g. When
S is not B-closed, there is a price to pay when
constructing the basis B: some or all elements
E; create overfilling that results in some of the
ej, j > g, error terms being nonzero. Because
the problem is finite, we could proceed com-
binatorically to minimize e[B] exactly; however,
our goal is a satisfactory stepwise algorithm.

A conflict regarding the enclosures occurs in
minimizing e[B]. The error term e; depends not
only on N; but also on the enclosure M;. If the
enclosure hypothesis stated before (31} is not
satisfied, then occasionally structuring elements
in B can fill pixels in an Nj-created hole by
fitting in the larger set § N N, whereas they
do not fit in the translated copy of M; — N;.
In such instances the actual error terms may
differ: those for noise holes are less and those
for generic holes are greater. Thus the spectral
equation for e[B], (31), is only an approximation.
Accepting this, let us assume that no pixel in a
hole is filled by two structuring elements. If the
elements of E are selected in such a manner that
each corresponds to a given noise pattern and
is not adept at fixing other noise patterns, then
the assumption is appropriate. Practically, the
assumption imposes a design constraint on E.

Given the preceding codicil, we can find useful
operational formulae. First, consider a generic-
error term e;, j > g. For notational ease assume
that B consists of E;, Es, ..., E,.. Then

Z c[((M; — N;) © E;) N N;]
> e Ny, (32)

i=1

€j

Thus

eg[B] =

> RG) ZT:‘;’C[NJ']

j=q+1
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= 3 rGrmG)N;],  (33)

J=gq+1

where we have let 7g(j) denote the sum down
the jth column of the fill matrix over the ry;
corresponding to structuring elements in B that
are in the jth column. Next, consider a noise-
error term e;, 7 < ¢

T

c[Nj] = ) e[((M; - N;) & E;) n Ny

i=1

c[V;] (1 -3 ?"ij) . (34)

i=1

I

S5

Thus

EN[B}

I

> A N;] (1 - X )

F=1 i=1

> BN (L ~r8(3).  (35)

In sum, the error accruing because of overfilling
and underfilling by the basis B is expressed in
terms of the HAS, elements of the fill matrix,
and the areas of the shape primitives.

The preceding expressions for eg(B) and
en(B) have been obtained under a strong non-
interactive filling assumption. If we propose to
use them in an approximate sense, we must be
careful. On the basis of the noninteractive as-
sumption, 0 < rg(5) < 1 for all 5. But if more
than a single structuring element can fill pixels in
a hole, then the column sums rg(j) overestimate
the filling by ¥5. Thus we get an overestimate of
the error eg(B) and an underestimate of the er-
ror ey(B). Keeping this in mind, we can use the
error-estimate formulae for filter design; their
strong advantages are their simplicity and their
close relation to the HAS.

We demonstrate application of the formulae
under the assumption that all noise holes are
fully filled; this assumption is apt if the image
does not possess too many generic holes and
those that it does possess are large in comparison
to the noise holes (and structuring elements in
E). To proceed we simply eliminate en[B] by
using a basis-finding algorithm that fills all noise
holes. Thus our optimality is relative to only

allowing overfill errors, and total error is simply
e[B] = eg[B]. Note that eg[B] is bounded in
terms of the B-closure of §, and more generally
by the E-closure of S, namely,

eqlB] < c[Zn(5) - 5] < c[¥e(S) - S],  (36)

thus quantifying our comment regarding the
relative sizes of noise and generic holes. As
we have seen previously, if S is E-closed, then
restoration is complete.

We describe a stepwise algorithm. In all steps,
ec[B] is the approximation of (33). Select a
subset E[1] of N so that inclusion relation (25)
is satisfied. Do this with the constraint that
eg(E[1]) is minimized. Next, adjoin enough
elements to E[1], thereby forming E[2], so that
inclusion relation (27) is satisfied and eg(E[2])
is minimized. Continue in a stepwise fashion
until E[n] is obtained. Redundancy elimination
to obtain a basis B can be treated analogously
to the E-closed case. The stepwise form of the
algorithm with no looking back may not produce
the best filter, but the savings in design time over
a combinatoric approach can be significant.

10. Filter design in the nondeterministic set-
ting

Thus far we have considered filter design only in
the deterministic setting, a modeling assumption
that is often not realistic. In the nondetermin-
istic case, we will assume S is a random image
possessing L realizations S, Sy, ..., Sz, where
the probability of Sy is p, and R[Sy] = [he(5)]
is the HAS of S,. S has the random-vector
HAS h[5] = [hs(j)]. Note that

z
Elhs(i)] = > pehsi(d). (37)
k=1
The error decomposition (31) now takes the
expected-value form
Ele(B)] = Elen(B)] + Elea(B)]. (38)

Since eq depends on the signal realization, (33)
needs to be reinterpreted in this light. Let
ec[B; S¢] denote the overfill error relative to
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basis B and the signal realization S;. Equation
(33) applies directly to eg[B; Si]. Thus

i
> preclB; Si]

Elec(B)] =

k=1
I n

= Zpk Z hsi(3)re(5)e[ V5]
k=1 j=g+i
. %

= > re(d)e[N;] D prhse(d)
j=q+l el

= 2 Blas@rs(Gi)elNi]. (39)

With N random, analysis of the underfilling
error ey is a bit more subtle. Even if the
physical noise process is independent of the sig-
nal process, the manner in which we have de-
fined the canonical representation depends on
the noise realization conforming to the signal
realization. Thus, probabilistically, the noise
process is not independent of the signal. To
that end, let N, = N|S;, the noise process given
Sk, and let h[N;] = [hni(7)] denote the HAS
of N,. Because the noise is random, its HAS
h[N] = [hn(j)] is a random vector. Moreover,

L
Elhn()] = >_ pBlhwi(i)]- (40)

k=1

Let ex[B; Sx] denote the underfill error rela-
tive to basis B and the signal realization Si.
With E[hni(5)] in place of h(j), (35) applies
to en[B; Si], the difference being that it now
gives Eley(B; Sx)]. Proceeding similarly to the
E[eq(B)] case, we obtain

Elen(B)] = > E[hn(i)]c[N;](1 - r8(3)). (41)

i=l

There are a number of ways to use the fill
matrix in the nondeterministic setting. Two ob-
vious options are filling all noise holes and using
the fill-matrix data to fill or not to fill a noise
hole. Other options involve the amount of in-
formation used and the degree of looking back.
At this point we give an algorithm that makes a
fill decision but, to achieve tractability, ignores
interaction and does not look back.

Begin by considering the first column of the
fill matrix, corresponding to the noise primitive
N;. Read down the column, and find a subset
E[1] of E that fills NN;-created holes, while at
the same time minimizing Fleg(E[1])]; however,
delete from E[1] any structuring element E;
for which the expected underfill error resulting
from not using E; does not exceed the expected
overfill error resulting from using E;. Having
found E[1], proceed to the second column and
adjoin enough structuring elements to E[1] to
form a set E[2] that fills N-created holes, while
minimizing Eleq(E[2] — E[1])]; however, delete
from E[2] any E; in E[2] — E[1] for which the
expected underfill error (relative to N;) resulting
from not using E; does not exceed the expected
overfill error from using E;. Proceed inductively:
having found E[j], j < g, form the set E[j + 1]
by adjoining enough structuring elements to E[j]
so that E[j + 1] fills N,.;-created holes, at the
same time minimizing

Elec(E[j +1]-(E[1]JVE[2]u- - -VE[])]- (42)

Delete from E[j + 1] any newly adjoined E; for
which the expected underfill error (relative to
N;41) resulting from not using E; does not ex-
ceed the expected overfill error resulting from
using E;. If necessary, redundancy can be elim-
inated from the terminal class E[n] to obtain a
basis B.

11. Nonseparated signal and noise

The algebraic filtering paradigm represented
by (4) and the commuting diagram (5) de-
pend on signal and noise separation. As
noted subsequently in section 3, in the non-
separated situation the filter @ takes the form
Q[(at)] = [gr(ar)], which is analogous to the
frequency form of the Wiener filter. In [4],
[5] we discuss a binary approach to the Wiener
filter, which, put simply, results in binary filter
weights, so that a frequency is either left in or
removed. Thus if the frequencies are reordered,
one can view the filter as lowpass: if there are
g nonzero weights, reorder the orthonormal ba-
sis with the frequencies corresponding to these
nonzero weights listed first. Once this is done,
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the binary Wiener filter takes the form of (4),
with g, =1fork=1,2,...,q.

In [4], [5] we show that under a general filter
paradigm optimal binary filtering can be viewed
in the manner just described for the binary
Wiener filter. To adapt the Weiner paradigm
to the abstract setting of (2) and (3) we need
to assume there exists a second operation A
in C and that with respect to A there exists a
null element 0 such that 0 A a = 0 and a unit
element 1 such that 1 A a = a. Interpreted
with reference to (3) and (4), where f{)g is
the degraded image, we desire a filter @ given
componentwise by Q([ax]) = [qx A ax], where g
is either 0 or 1. If we make the supposition
that the signal error e satisfies the relation

T

e(f, 9) =Y elfi, o), (43)

k=1

then restoration error is measured by

Ele(f, 27'Q(f()9))]

n 44
= > Ele(fi, %A(fe ® g1))]. o

k=1

The error is minimized by selecting

{ 1 if Ele(fx, fr ® g&)] < Ele(fx, 0)],
gk =

0 otherwise.
(45)
In the usual Hilbert space setting, e is the inner
product.
Relative to the degraded-image hole spectrum
H[S N N] of (12), the function Q = [Q,] is
defined by

QX L Z;)) = [@; N (X; U Z)], (46)

where @Q; is a subset of Z x Z. Under binary
optimization with A being intersection, Q; =
ZxZorQ;=0. According to (45), Q; = ZxZ
and if and only if

Ele[(X; U Z;) @ Nj — X; © Nj]] < E[c[X; & fz’j]])»
47
which under the modeling assumptions reduces

to
Elc[Z; @ N;]] < E[e[X; @ N;].  (48)

Since c[Z;®N;] = hy[j]c[N;] and since a similar
expression applies to X; @ N;, we deduce that

@ /] otherwise.

{ Zx Z it Elhn(7)] < E[hs(5)],
(49)
Having arrived at an optimal solution relative
to the spectral representation, we need to find
a filter to produce it. In the frequency case the
Wiener filter can be implemented either by us-
ing the Fourier transform to enter the frequency
domain or by applying a convolution. In [5] we
show that an operation involving morphologi-
cal opening and set subtraction can be used to
obtain optimization relative to the opening spec-
trum and that this operation gives the precise
result under the modeling assumptions. Here,
however, the problem is much more difficult.
Unless we place unreasonable restrictions on the
model, we cannot escape the overfill-underfill
conundrum. Nonetheless, we can proceed by
reordering P so that E[hn(j)] < E[hs(5)] if and
only if j < ¢ and then proceed under this re-
ordering as though hy(y) = 0 for j < ¢ and
hs(j) = 0 if j > g. The net effect will be
to implement the binary Wiener paradigm in
the spectral domain and then apply the forego-
ing separated-image-noise filter construction to
achieve a morphological (and implementable)
form of the filter. Optimal reconstruction will
be achieved only if the filter-design algorithm
produces no errot, but this is precisely the prob-
lem we have already confronted.

12. Statistics

In the foregoing hole-spectrum methodology
various statistical estimation procedures must
be used. We will discuss these in the context
of the nondeterministic setting with the under-
standing that relevant simplications can be made
whereever there is determinism. Note that as
part of the estimation procedure we need to
estimate P and N, although in many practical
circumstances it might be reasonable to assume
we know P — N and therefore need to estimate
only N to obtain both P and N. Here we will not
make such a modeling assumption, so that we
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might explain statistical estimation in full. In a
similar vein, it might be presumed that we know
the L realizations of S; however, here again we
assume not and will provide a procedure to ob-
tain these. Throughout the statistical discussion
we will assume the modeling assumptions hold.

Beginning with the signal S, let us randomly
observe it W times to obtain the random sample
25 = {8, 8%, ..., S¥}. Given that W is suffi-
ciently large, we can assume that all realizations
S, S, ..., Sy of S occur at least one in 2. By
matching we can deduce these from the obser-
vations. Moreover, by counting occurrences in
s and dividing by W we obtain estimates for
the realization probabilities p;, p2, ..., PL.

A more interesting problem is to obtain the
hole-amplitude spectrums of the S-realizations,
as well as the expectation of the random HAS
h[S] of S. In fact, the procedure to obtain
these involves finding the generic-hole primitives
of P. Let S; be any realization of §. Given
our assumption regarding separation of generic
holes, we can apply a customary morphological
component-filling algorithm to find the generic
holes in (S} —S;. (see [18], Example 4.6, p. 119).
If we do this for k=1, 2, ..., L, we will have
the primitives in P —N. Morcover, we will have
found hg(y) for k= 1,2, ..., L and for all j,
as well as ¢[N;]. By equation (37) we will have
also found the expectation of the random HAS
for S. What of the enclosures M; pertaining to
P-N? If we have copies of 5y, Ss, ..., S, these
can easily be obtained by finding boundaries of
the relevant IV; in the relevant S;. Three points
should be noted: (a) the depth of the boundary,
whether it is one, two, three, or more pixels
wide, is a modeling question; (b) boundaries can
be found by using conditional dilation relative
to (S); (c) if a particular N; requires different
enclosures in different realizations, or even in
the same realization, P must be reorganized
(expanded) so that each of the hole-enclosure
pairs are represented in P and the probabilities
pi need be adjusted in accordance with the
reorganization.

The problem of noise estimation is even more
interesting. Although the shape primitives com-
prising N can be obtained by observing the noise
independently of the signal, the expectation of

the noise HAS cannot be so estimated because,
as may be seen in (40), E[hn(j)] is expressed in
terms of the conditional expectations E[hnx(7)].
Thus we need to observe the conditional pro-
cesses N, = N|S;. Given that we estimate
E[hnk(5)] for k =1,2,..., L and for all j by
making the appropriate observations, we can
then find E[hy(5)] by (40).

Unfortunately, proceeding in strict accordance
with the probabilistic assumptions when we are
dealing with noise estimation is highly problem-
atic. The difficulty is that the modeling as-
sumptions cannot be expected to be completely
satisfied in practice, thereby making strict ob-
servation of Ny = N|S; practically impossible.
Consequently, pragmatic estimation will likely
require foregoing (40) and estimating E[hn(4)]
by simply counting components in independent
observations of the noise. Such an experimental
design should provide reasonable estimation so
long as the noise components are not too large
relative to the generic holes and they are not
too dense.

13. Examples

In this section we illustrate various aspects of
the hole-spectrum theory with some numerical
examples.

Example 1

In this example we illustrate the spectra con-
cepts. Let P = {N;, Na, ..., Ny} in figure 2,
and let S; and 5; be the images in figures 3
and 4, respectively. The hole-spectra and hole-
amplitude spectra of these images are

H[S] = [0,0,0,000 {(-7,8)},
{8, 8}, {8 -1}
{(=7, =N} {0, 0)},
0,0,0,0,0,0,0,0, 0],
H[S:) = [0,0,0,0,0,0,0,0,0,0,0,

{(~10, 10)}, {(10, 10)},
{(10, -10)}, {(~10, ~10)},
{0, )}, {0, )}, (8, O},
{0, -8)}, {(-8, O},
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Fig. 2. (continued)
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Fig. 3.

R[5,] = 1[0,0,0,0,0,0,1,1,1,1,1,
0,0,0,0,0,0,0,0, 0],
h’[S2] = [Os 01 0! 0: O: 03 0, 03 0» 0, 0,

1535 15 15 1: 1,71, 1, 4]

The noise image N in figure 5 conforms to S,
and its spectra are

H[N] = [{(3) 4): (3’ 8)! (_41 1)}1
{(71 1)}* {(Wla 6)},

{(3’ _3)! (1! “7)3

(_7a 2)}= {(5= "'2)}1
0,0,0,0,0,0,0,0,0,0, 0,
0, 0, 0, 0],
[3,1,1,3,1,0,0,0,0,0,
0,0,0,0,0,0,0,0,0, 0].

h[N] =

Figure 6 shows the noise-corrupted image $;NN.
Its spectra are

Il

H[S; N N]
h[S; N N]

H[S]U H[N],
h[Si] + h[N] = [3, 1, 1, 3,
1,0,1,1,1,1,1,0, 0, 0,
0,0,0,0,0,0].

Fig. 4.

Example 2

In this example we illustrate the fill matrix and
the various forms of the filtering algorithm. We
use structuring-element set E = {Ey, ..., Fg} of
figure 7, and we let S be a random image with
the realizations S; and S; of figures 3 and 4;
their spectra are given in Example 1. The fill
matrix for S relative to P and E of figures 2 and 7
is given in Table 1. Note that it is partitioned be-
cause, relative to IV, ¢ = 6 is a separation index
for both S} and S,. We now examine the filter-
design algorithm under various assumptions on
S and N, in each case assuming the noise N is-
random and conformable.



274

Dougherty and Haralick

Fig. 5.
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Table 1.
1 2 3 4 5 6
1 1.0 0 0 O 0
2 01 0 0 O 0
30 01 0 0 155
4 0 0 G 1 0 15
51 0 1 1 0 25
6 0 1 1 1 0 2/
7 1 1 1 0 122 1/5
8§ 1 1 0 1 172 1/5
8 9 10 11 12
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
5 0 1/25 0 1/8 0
125 0 125 18 0

&8 o oodSaa

Fig. 6.
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Case (a). S is deterministic, S = S;, and

ETR[N]]

[21 21 21 21 0? 01 O) 01 01 0?
0,0,0,0,0,0,0,0,0,0].

Scanning down column 1 of the fill matrix, we
see that, since ri; = 1, By fills N; holes, and,
since r; = 0 for j > 6, therec is no over-
filling. Thus E[1] = {E;}. Scanning down
column 2, we see that similar reasoning ap-
plies to Ea(res = 1 and rp; = 0 for j > 6),
so that E[2] = {E, Es}. Proceeding, we
find that T3y = Tgq4 = 1, E[3] = {El, Eg, Eg},
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E, E, E; Eg e Eq
| i
EZ Eg
Fig. 7.

E[4] = {E\, E», E3, E,;}, and there has been no
overfilling. Since E[hyn(7)] = 0 for j > 4, the
algorithm can terminate with

B = E[6] = E[5] = E[4] = {E\, Es, E3, Eq}

and full restoration (MSE = 0) under the mod-
eling assumptions. Note that {F,, Es} is also a
fully restoring basis; however, it does not result
from the algorithm because there is no looking
back to find a basis with a minimal number of
elements.

Case (b). S is deterministic, S = S;, and

E[R[N]|=1[2,2,2,2,1, %, 0.0 0y 0.
The algorithm proceeds exactly as in case (a)
up through Ef[4], but now E[hy(5)] = 1. Al-
though we could fix any noise hole created by
Njs by adjoining E; and Eg to E[4], by examin-
ing 77,7, 7,9, and 77 11, we see that adjoining E
creates more overfilling error (in the expected-
value sense) than it corrects noise error. Indeed,
the overfill error due to E7 is

> hs(G)rese[N;] = 4,
3=7,9,11

whereas the expected restoration of Ns-created
holes by Ey is only hx(5)rs 5¢[Ns] = 2. Similar

reasoning applies to using Es, so that F[5] =
E[4]. Ng-created holes are # filled by using E
and Fg. Although using F7 in addition will fully
fix Ng holes, again the cost is too high, and so
too it is for Eg. Thus we adjoin E5 and Ej to
E[5] to form

B = E[6] = {E\, E;, E3, Ey, Es, Eg}.

As constructed, ¥ does no overfilling and yields
MSE= 0.0125.

Case (c). S is deterministic, S = §;, and

BR[N] = [2,2,2,2,3,1,0,0,0,0,
0,0,0,0,0,0,0,0,0, 0].

Again the algorithm proceeds as in case (a)
through E[4]. It differs from case (b) because
the underfill error from not using E; to fill Nj-
created holes is now 6, which is greater than the
overfill error, which is still 4. Thus it proceeds
with E[S] = {El, Es, Ej, E4, E’;r, Es} and B =
E[6] = E. Note that Ng-created holes are now
fully fixed, since E; finishes the job of E; and Fj.
The resulting mean-square error is MSE= 0.02.

Case (d). S is nondeterministic, and realizations
S, and S, possess equal probability. Thus its
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HAS is given by

1

2!

If the noise HAS is used from case (a), then
the algorithm proceeds exactly as in case (a).

1
h[S] - [Os 01 03 0: 01 01 _2'1 "2'"1 ey

Case (e). S is the random image of case (d),
and N has the HAS of case (b). Thus the
algorithm runs E[1] = {E,}, E[2] = {E\, E:},
E[B] = {El, Ez, E3}, and

B = E[6] = E[S] = E[4] = {El, Eg, Eg, Eq}

with MSE= 0.015. Note that, as opposed to the
deterministic situation in case (b), here we must
be concerned with Sp, so that using F5; and Ejg
to fix holes created by N; can create overfilling.
Since the expected number of error pixels fixed
by Ejs is 1 and the expected number of overfilled
pixels is

P(S) > hsa(G)rs N =2,

§=16,17,20

Es is not adjoined to E[5] in forming E[6].
Note also that E7 is not adjoined to E[4] in
forming E[5] because the expected underfilling
errors due to not adjoining equals the expected
number of overfilling errors due to adjoining,
ie., 2.

14. Conclusion

The image representation developed in the
present paper facilitates model-based optimiza-
tion for a certain class of image-noise processes
over a relevant class of morphological filters,
namely, those that fill holes. Relative to the
general theory of morphological optimization
developed in [1], [2], the present approach is
akin to the Wiener-frequency design pertaining
to optimal linear filters. In place of design by
means of frequency components, there is de-
sign by means of shape-based hole spectra. The
loss of generality relative to the theory of [1] is
compensated for by a resulting design procedure
that is both intuitive and more computationally
tractable. A drawback of the present theory, as
opposed to the linear orthonormal-system-based

approach, is that there nceds to be a greater
number of model constraints for the theory to
apply with full rigor. Owing to the nonlinear-
ity inherent in shape-based decomposition, this
should not be surprising.

Based on the shape-based spectral decompo-
sition, various algorithms for designing spatial
morphological filters have been suggested; the
most general one applies to nondeterministic sig-
nal and noise. These algorithms employ the fill
matrix and are facilitated by overfill and under-
fill error estimates. They also require statistical
estimates for various parameters, and we have
discussed appropriate estimators. Actual imple-
mentation of the algorithms will depend on a
number of tradeoffs. For instance, there must
be a suitable method of constructing E based on
the noise primitives because the goodness of any
optimal filter designed with the hole-spectrum
paradigm will depend on E. Moreover, the var-
ious tradeoffs between overfilling, underfilling,
and design time require investigation.
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