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Abstract—Automatic gradient threshold selection for edge detection is a non-trivial task due to the presence
of image noise. This problem is posed within a statistical framework based on a cubic facet model for the
image data and a Gaussian model for the noise. Under these assumptions, two statistics which are functions
of the gradient strength and facet residual error are derived. Experiments show that thresholds on these
statistics produce results which are superior to those obtained by the best subjective threshold on the
gradient image. A Bayes decision procedure is developed which makes threshold selection automatic.
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1. INTRODUCTION

The computation of the gradient of a digital image is
usually one step of image processing tasks such as edge
or corner detection. Typically, edge candidates are
taken from pixels whose gradient strength is signific-
antly different from zero. One of the most effective
ways of detecting edges and corners in digital image
data is by finding zero-crossings of second directional
derivative of the underlying graytone intensity
surface.**” These zero-crossings have associated with
them non-zero gradient strengths. The presence of
noise in real image data causes the occurrence of
spurious zero-crossings. We are faced then with the
problem of distinguishing between zero-crossings
which arise due to the presence of a true edge or corner
and zero-crossings which arise due to the presence of
noise. In practice, this problem is handled by
considering only =zero-crossings whose gradient
strength is significantly different from zero.

Our approach to this problem is based on the facet
model for digital images.>” The basic philosophy of
this model derives from recognizing that the discrete
set of values which form the digital image are the result
of sampling and quantizing a real-valued function, f,
defined on the domain of the image which is a bounded
and connected subset of the real plane. Thus, any

* To whom correspondence should be addressed.
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property associated with a pixel or a neighborhood of
pixel values should be evaluated by relating it to the
property of the corresponding gray tone surface f
which underlies the neighborhood. This involves
estimating the surface function f locally, from the
neighborhood samples available to us. The most
natural way of accomplishing this is by assuming a
parametric form for f and then estimating its
associated parameters.

In this paper we are concerned with that property of
a pixel called gradient strength which is defined as the
Euclidean norm of the first partial derivatives of the
graytone intensity surface evaluated at the pixel
position. An assumption about the nature of the noise
enables us to put the problem of choosing a suitable
gradient threshold in a statistical framework. We
assume the noise to be Gaussian with zero mean and
variance o2, We derive two statistics which are
functions of the gradient strength and the facet residual
error of fit. We show that:

(1) Thresholds on the statistics derived in this paper
produce results which are superior to those obtained
by the best subjective threshold on the gradient image.

(2) Threshold selection can be made automatic by
applying a Bayes decision method.

The analysis presented in the following sections are
valid for a facet model of arbitrary order although the
experiments were performed with a cubic facet model.
Section 2 shows how the statistics are dsrived and
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poses the problem of selecting a suitable threshold as a
hypothesis test problem. Section 3 shows how the
thresholding can be made automatic by posing the
problem as a Bayesian decision problem. Section 4
presents the experimental results. The appendix
provides the mathematical analysis required to derive
the statistical distributions of the Euclidean norm of
any subset of facet parameters or partial derivatives,
and the distribution of the total facet residual error.

2. GRADIENT THRESHOLD SELECTION AS A
HYPOTHESIS TEST

Let p, and p, denote the true but unknown values of
the first row and column partial derivatives of the
underlying graytone intensity surface at a pixel
position. Let fi. and i, denote their estimates based
upon a neighborhood of K values. According to the
results of the appendix j, and g, are normally
distributed and:

E[A]=u

E[A] = n,

VAl = % (1 -
VI = o’

E [ﬁrﬁc} = Kl
where k is a constant whose value depends on the
neighborhood size and the basis functions used to
estimate the graytone intensity surface.

Consider testing the hypothesis that g, = u =0
(zero gradient). This hypothesis must be rejected if
there is to be a zero-crossing of second directional
derivative. Under this hypothesis:

&+ fe
ka?
has a y3 distribution.
Also, from the results of the appendix, the total
residual error §? normalized by the noise variance
§%/a” has a y% _y distribution, where N is the number

of basis functions or the number of facet parameters.
Hence,

o o 4

kS2AK — N) @

has a F, x_y distribution and the hypothesis for zero
gradient would be rejected for suitable large values of
x1. The value of the threshold for x; is chosen to
correspond to a given significance level of test.
Notice that the statistic defined by equation (2) may
be regarded as a significance or reliability measure
associated with the existence of a non-zero gradient. It
is essentially proportional to the square gradient
normalized by S?/(K — N) which is a random variable
whose expected value is 62, the variance of the noise.
This scaling of the gradient by a local estimate of the
image noise makes optimum selection possible by a
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fixed threshold procedure.

If the noise variance is known to be constant
everywhere throughout the image domain a better
estimate for it is possible by averaging the total
residual errors 52 over M non-overlapping neighbor-
hoods. Let this average be denoted by E?, then ME?/o?
has a xﬁm{_m distribution and

_ @+ a2

T KEYK —N) 3

has a F; y _ y distribution and the hypothesis for zero
gradient would be rejected for suitable large values of
X2. Again, the threshold on x; is chosen to correspond
to a given significance level of test.

3. GRADIENT THRESHOLD SELECTION AS A BAYESIAN
DECISION PROBLEM

This method derives from considering any image
point to be in one of two states: zero gradient strength
or non-zero gradient strength. We denote these two
states by z and nz, respectively. Let x be a continuous
random variable test statistic whose distribution
depends on the pixels’ state. We define x as:

L@+ @
kS*/(K — N)

As previously seen, for pixels with zero gradient
strength x has a F, x_ distribution.

A simple Bayes decision rule with a unity gain
function is:

Q)

Decide {zero gradient sz(zjx) - P.(nz\x) (5)
non-zero gradient, otherwise

and the probability of error associated with this
decision is:
P(nz|x)

P(errorx)={ if P(_Z|X)>P(nz|x)
otherwise
or equivalently
P(error|x) = min {P(z|x), P (nz|x)} (6)

‘We can express the decision rule and probability of
error in terms of the distributions of x by using Bayes
rule.

Pzl — PEI1DPE@
P(x)

P(nzlx) = P(x|nz) P(nz)
P(x)

The decision rule then becomes

Decide {zero gradient if P(x|z) P(z) > P(x|nz) P (nz)

non-zero gradient, otherwise
(7)
and the probability of error becomes
P{error|x) = TP {P(x|2) P(z), P (x|nz) P (nz)} - ®

P(x)
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The density function P (x|z) is known to be Fyx_y,
P(x) 1s the mixture distribution and can be estimated
from a histogram of the gradient image. Then P (x|nz)
can be obtained as follows:

P(x) = P(x, z) + P(x, nz)

®)
= P(x!z)P(Z) + P(x'nz)P(nz)
and from here
P(x|nz) = [P(x) — P(x|z) P(z}]
P (nz)
Plxing = PR —PEIAPE]
[1 - P(z]]

The total probability of error is given by:
P(error) = Y, P(error|x) P(x).
Using relations (8) and (10):

P(error) = Z min {P(x|z) P(z), P(x|nz) P (nz)}

P(error) = ). min {P(x]z) P(z), P(x) — P(x|z) P(2)}
) (1)

Since the prior probability P (z) of zero gradient is
not known it must be user specified. For many images
values of 0.9 to 0.95 are reasonable. Another method of
choosing P (z) is obtained by observing from equation
(9) that:

forallx P(x)= P(x|z) P(z).
Then
P(x)

P(x|z) >0, P(z) < P(xIZ}.

for all x,

A suitable value for P(z) is therefore:
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min Pz

P(z) = ;
xPxiz>0 P(x|z2)

(12)

Once P (z) has been specified, a suitable threshold x,,
can be chosen from (7) by solving

P(xu|2) P(z) = P(x;|nz) P(nz) (13)

We assume that only one intersection point x,,
exists. The same analysis can be carried out with the
statistic defined by equation (3) if the noise variance is
known to be constant throughout the image domain.

4. EXPERIMENTAL RESULTS

Test images

Two artificially generated images TEST1 and
TEST2 were tested. They are shown in Fig. 1. Their
size is 100 x 100 pixels and they consist of four bright
circles on a dark background. The diameter of the
circles is 25. The edge contrasts for each of the four
circles are 9, 18, 27 and 50. The edges are ramp edges
whose width is 5 pixels. The noise is additive Gaussian
with zero mean. The standard deviation of the noise for
TEST1 is 5. The standard deviation of the noise for
TEST?2 changes from circle to circle and their values
are 5, 10, 15, and 28 which keeps the signal to noise
ratio constant at about 20 log (9/5) or approximately
5DB.

The first partial derivatives of the graytone intensity
function at every pixel position were computed by
fitting a cubic polynomial surface defined in the row
and column coordinates of a 9 x 9 neighborhood
centered about the pixel. Figure 2 shows the gradient
images computed from the Euclidean norm of the first
partial derivatives and Fig. 3 shows the result of
applying a constant threshold to the gradient images.
The thresholds for each image were found interactively
with subjective quality as the selection criteria. Notice

Fig. 1. The original test images TEST1 and TEST2.
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Fig. 2. The gradient images computed from a 9 x 9 cubic facet applied to the test images. (a) TESTI, (b) TEST2.

the inability of this procedure to perform well
everywhere in TEST2 due to the changing nature of
the noise variance.

The Fy v - test statistic

In this case the test statistic defined by equation (3)
is used for both the hypothesis test method and the
Bayesian decision method of automatic gradient
threshold selection. This statistic was derived under
the assumption that the variance of the noise remains
constant throughout the image.

Figure 4 shows images of the test statistic x and Fig.
5 shows the results of a 1% and 5%, significant level
hypothesis test. Figure 6 shows the histograms of the
mixture distribution P(x), and the conditional
probability distributions given zero gradient P(x|z)
and non-zero gradient P (x|nz). The prior probability
of non-zero gradient P (nz) was computed automatic-
ally using equation 12. These prior probabilities were
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Fig. 3. A user selected subjective threshold applied to the gradient images. (a) TESTI, (b) TEST2.

found to be 0.22 for image TEST1 and 0.45 for TEST2.
We can compare these values with the true prior
probability of non-zero gradient computed as
4(3.14) D (W)/10,000 where D is the diameter of the
circles and W the width of the non-zero gradient
region. This yields a value of 0.157 for P (nz). Notice
that since TEST2 does not meet our assumption of
constant noise variance, the error in its estimate of
P (nz)is much bigger than that in TEST1. The values of
the computed threshold for the test statistic x were
found to be 3.94 for TEST1 and 3.4 for TEST?2. Finally,
Fig. 7 shows the images of the threshold of the test
statistics.

The F,k _y test statistic

In this case the test statistic defined by equation (2)
is used for both the hypothesis test method and the
Bayesian decision method of automatic gradient
threshold selection. This statistic is valid under both
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Fig. 5. The results of a 1 and 5%, significant level test on the test images. (a) TEST1, 5%, (b) TESTI, 1%, (c) TEST2, 5%, (d)
TEST?2, 1%, Statistic used is Fa rx _ n-
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Fig. 8. The test statistics F, _y. (a) TESTI, (b) TEST2.
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Fig. 9. The results of a 5% and 1% significant level hypothesis test on the F, x _ statistics. (a) TEST1, 5%, (b) TEST1, 1%, (c)
TEST2, 5%, (d) TEST2, 1%,

constant or changing noise variance conditions.

Figure 8 shows images of the test statistic x and Fig,
9 shows the results of a 19 and 5% significance level
hypothesis test. Figure 10 shows the histograms of the
mixture distribution P (x) and the conditional proba-
bility distributions given zero gradient P(x|z) and
non-zero gradient P(x|nz). The prior probability of
non-zero gradient P(nz) was comuted automatically
using equation 12. These prior probabilities were
found to be 0.24 for image TEST1 and 0.23 for TEST2.
Notice that in this case since TEST2 does not meet the
assumption on the nature of the noise variance its
estimate of P(nz) is in closer agreement with the true
value of P (nz). The values of the computed threshold
for the test statistic x were found to be 3.93 for TEST1
and 3.21 for TEST2. Finally, Fig. 11 shows the images
of the threshold of the test statistics.

Comparison with other methods
As a comparison with other methods of threshold-

ing the gradient image we used the running mean
method. Each pixel in the gradient image was
thresholded in proportion to the mean of the gradient
values on a local 20 x 20 neighborhood around the
given pixel. The results are shown in Fig. 12 for a
variable threshold of 1.5 times the running mean, The
value 1.5 was found interactively for best subjective
results, Notice that this method performs as well as the
methods that use the F,_y statistic, although user
interaction is required to select the best value for the
constant of proportionality (1.5 for the test images) as
opposed to the Bayesian decision method which
requires no interaction.

5. CONCLUSIONS

Several conclusions can be drawn from the
experimental results of the previous section:

(1) Thresholds on the F,x y and Fjuk_n test
statistics produce similar results to that obtained by a



OscaR A. ZuNiGa and ROBERT M. HARALICK

30

00

kA Lila‘ b I-!llaﬂ pa’

IJ w,F threshold

—_—

IV L PRI T

- .
nJ

'F " PR i ."’ | RS ul;'
)RUNNING NEQN _ w)RUNNING MEAN

Fig. 12. The running mean threshold applied to the gradient images. (a) TESTI, (b) TEST2.
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best subjective user interactive threshold on the
gradient image, when the noise variance remains
constant throughout the image.

(2) A threshold on the F,,_, statistic produce a
clearly superior result to either a threshold on the
Fy - statistic or to the best subjective user
interactive threshold on the gradient image, when the
noise variance changes from region to region in the
image.

(3) The Hypothesis test method of gradient
threshold selection is inferior to the Bayesian decision
method in the sense that the optimal value of
significance level of the test cannot be known in
advance and thus user interaction is required. No user
interaction is required by the Bayesian decision
method, except the choice of neighborhood size which
is required in all the methods tested.

These conclusions are valid under the controlled
nature of our experiments where the test images meet
the image and noise model assumptions. Further
research is necessary to determine the sensitivity of
these methods to a departure in the model
assumptions.

SUMMARY

The computation of the gradient of a digital image is
usually one step of image processing tasks such asedge
or corner detection. Typically edge candidates are
taken from pixels whose gradient strength is signif-
icantly different from zero. One of the most effective
ways of detecting edges and corners in digital image
data is by finding zero-crossings of second directional
derivative of the underlying graytone intensity surface.
These zero-crossings have associated with them
non-zero gradient strengths. The presence of noise in
real image data causes the occurrence of spurious
zero-crossings. We are faced then with the problem of
distinguishing between zero-crossings which arise due
to the presence of a true edge or corner and
zero-crossings which arise due to the presence of noise.
In practice this problem is handled by considering only
zero-crossings whose gradient strength is significantly
different from zero.

Our approach to this problem is based on the facet
model for digital images. The basic philosophy of this
model derives from recognizing that the discrete set of
values which form the digital image are the result of
sampling and quantizing a real-valued function, f,
defined on the domain of the image which is a bounded
and connected subset of the real plane. Thus, any
property associated with a pixel or a neighborhood of
pixel values should be evaluated by relating it to the
property of the corresponding gray tone surface f
which underlies the neighborhood. This involves
estimating the surface function f locally, from the
neighborhood samples available to us. The most
natural way of accomplishing this is by assuming a
parametric form for f and then estimating its
associated parameters.

501

In this paper we are concerned with that property of
a pixel called gradient strength which is defined as the
Euclidean norm of the first partial derivatives of the
graytone intensity surface evaluated at the pixel
position. An assumption about the nature of the noise
enables us to put the problem of choosing a suitable
gradient threshold in a statistical framework. We
assume the noise to be Gaussian with zero mean and
variance o®. We derive two statistics which are
functions of the gradient strength and the facet residual
error of fit. We show that:

(1) Thresholds on the statistics derived in this paper
produce results which are superior to those obtained
by the best subjective thresheld on the gradient image.

(2) Threshold selection can be made automatic by
applying a Bayes decision method.
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APPENDIX: STATISTICAL DISTRIBUTIONS OF THE NORM
OF FACET PARAMETERS, PARTIAL DERIVATIVES AND
FACET ERRORS

In this appendix we derive the distributions of the norm of
any subset of facet parameters or partial derivatives, and the
distribution of the total facet residual error. We assume the
noise to be Gaussian with zero mean and known covariance
matrix Z. In order to proceed we will make use of three
theorems [requently used in multivariate statistics. Proofs of
these theorems can be found in Graybill.”

Theorem 1

Let x be a K x| randem vector with a Ny I)
distribution, that is the elements of x have a multivariate
normal (Gaussian) distribution with mean vector p and
covariance matrix X. Then (x —pu) Z '(x—p) is a
chi-squared variate y? (K) with K degrees of freedom.

Theorem 2

Let x be a K x 1 random vector with distribution N (g, ).
Consider the m linear functions on the elements of x defined
by y = Bx, where y is an m x 1 vector, m <. K and B is an
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m x K real matrix of rank m. Then y has a distribution N (B,
BZR).

Theorem 3

Let Q =Q:1+...+Q,_, + @, where Q, @, ..., Q, are
L + 1 random variables that are quadratic forms in any
multivariate normal variables. Let Q be a y(r) variate, let Q;
be ¢*(r),i=1,..., L — 1 variates, and let Q, be non-negative.
Then the random variables Qi, ..., @, are mutually

independent and hence @, is a y*(rp=r—ri—...—r.)
variate.
The model
The image data model is described by
Fa+n=x (1)

where F is a K x N basis matrix, o is an N x 1 parameter
vector, xisa K x 1 observation vector,and pisa K x 1 noise
vector. We assume the noise to be Gaussian with zero mean
and known covariance matrix Z, that is » has a multivariate
N (0, L) distribution.

The minimum variance unbiased estimate & of the true
parameter vector a (an estimate that minimizes (x — x)’
=~ '(x — %) is known to be:'"

& = Px, (2
where
P=(Fx'F)'Fz-! (3)
Distribution of the parameter vector
Replacing equation (1) in equation (2) we obtain

4 =P(Fa+n)
= PFa + Py
=a+ Pn,
therefore
& —o=Pn (4)

Since n is N (0, ), applying theorem 2 we conclude that
(@ — «) is N (0, PLP").
Using equation (3) PZP’ reduces to
PP =(F'Z7'F)7),
therefore
@ —w)is N[O, (FZ 'F)~'); (5)

that is, the parameter vector ¢ has a multivariate normal
distribution with mean « and covariance matrix (F’Z~'F)~".

Distribution of the norm of the parameter vector
Using equation (5) and applying theorem 1 it follows that

(& —a)y (F'Z ' F)(8 — o) is x*(N), (6)

a chi-squared variate with N degrees of freedom.

This result also applies to the norm ol any subset of
clements of (& — «), as follows. Let «,, be an m x 1 vector
obtained by selecting m elements of &, 1 <m < N. Moreover,
let F,, bea K x m matrix containing the m basis vectors of the
basis matrix F which correspond to the m elements selected
from e. It then follows that

(4, — o) (FLZ7 ' F ) (&, — a,) is x*(m), (7

a chi-squared variate with m degrees of freedom.

Distribution of the total residual error
The residual error vector e is given by:
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e=x—2X
=x—Fd
=Fe+n— F&
=n—F@—uq).

The total residual error is therefore:
X le=—F@R—2)Z'(1— F@&—a)
e le =T =28 —)F'T '+ (& - ) FL"'F(& — a).
(8)
From equations (3) and (4) we obtain:
FE = (FE7 F)(& — ).
Substituting this expression in equation (8) yields
e le=yE - (@ —a)f (FZ'F)(@ — a) )
Since by assumption 5 is N (0,Z), applying theorem 1 it
follows that:
727" is r*(K),
a chi-squared variate with K degrees of freedom.

Finally, using equation (6) and applying theorem 3 we
obtain the result:
ez le is (K — N), (10)

that is, the total residual error is a chi-squared variate with
K — N degrees of freedom.

Distribution of the partial derivatives

We assume that F is a polynomial basis matrix. It then
follows that each partial derivative at (0, 0) in the row and
column directions is given as some linear combination of the
elements of the parameter vector.

Let p be an m x 1 vector containing any m partial
derivatives, 1 <m < N — 1. Let B be the m x N linear
combination matrix, Then,

u=Bax and j = Bd.
Also

(11
Using equations (11), (5) and applying theorem 2 we find that:
(i — ) is N[0, B(FZ 'F) ' B (12)

f—p =BG —a).

Some special cases of interest

Independent, equally distributed noise. In this case 1 is N (0,
¢21) and the minimum variance estimate of o becomes a least
square estimate.

G=(FF)y"'Fx.
Qur previous results, (5), (7), (10) and (12), reduce to:
(@ —a) is N[O, e¥(F'F)™"]
(&, — &) (FLF )&, — a)fa? is y*(m)
e'efa? is y*(K — N)
(i — ) is N[0, c2B(F'F)"'B'].

Independent noise, orthonormal basis. Our previous results
further simplify to

d&=Fx
(4@ —a) is N(0,62I)
(&, — o) (&, — a,)e? is x3(m)
e'‘efa® is ¥} (K — N)
(4 — ) is N0, 62BB’).
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