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A region growing scheme based upon the facet model (R. M. Haralick, Computer Graphics
Image Processing 12,1980, 60-73; R. M. Haralick and L. T. Watson, Computer Graphics Image
Processing 15, 1981, 113-129) is presented. The process begins with an initial segmentation
which preserves much of the detailed resolution of the original image. Next a region property
list and a region adjacency graph corresponding to the segmented image are constructed.
Global information is then used to merge atomic regions. The region growing algorithm is
based upon extensions of the facet model, but it is a higher-level algorithm which treats regions
as primitive elements. The basic algorithm and several variations are described, including a
version that uses a threshold on the amount a property vector is allowed to change to control
the region growing process. The convergence of this thresholded facet iteration is also proved.
Finally, the results of comparative experiments are presented.

1. INTRODUCTION

Image segmentation, the process of partitioning a digital image into regions, is
important in nearly every application of image processing and pattern recognition.
In particular, classification and description of the original scene are usually carried
out in terms of regions and properties of the segmented image.

Region growing plays an important role in pictorial segmentation. A survey in this
area is given by Zucker [15]. Here we briefly summarize Zucker’s paper. The earliest
major approach to region growing was the work of Muerle and Allen [10]. In their
approach, gray level information was used in the growing process; regions were
joined on the basis of similarity in the local statistical distribution of the gray levels.
Brice and Fennema [1] developed a more global approach. Region merging was
guided by the successive application of two heuristics: phagocyte and weakness.
These heuristics use boundary information between pairs of adjacent regions.

In Pavlidis’ work [7], functional approximation was adopted as a mathematical
foundation for region growing. A two-dimensional picture is sliced into thin strips.
Each strip is partitioned into segments and segments are approximated by polynomi-
als. These approximated segments can now be merged into regions by comparing the
coefficients of adjacent segments. The “split and merge” principle, proposed by
Pavlidis and Horowitz [6], is another method using functional approximation. A
two-dimensional picture is segmented into regions which are described in terms of
an approximating function. Adjacent regions having similar approximations are
merged while those regions that have large error norms are split. The process
employs the pyramid data structure [12].
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Another region extraction method has been proposed by Milgram [9]. In his work,
candidate object regions are extracted by thresholding the image in a region
dependent way. Candidates are then accepted or rejected based on the coincidence
of an edge map with the region boundary. Regions that best match the edge map are
used to describe the objects in the image.

In the next section, we will discuss a facet model based region growing technique.
Ideas related to the facet model first appeared in the papers of Davis et al. [2] and
Tomita et al. [13]. Davis et al. suggested a method of region extraction by first
averaging the picture and then thresholding it. This method will work well only if the
picture contains regions for which the average gray levels lie in no more than two
disjoint ranges. Tomita et al. proposed an improved method which finds the most
homogeneous neighborhood among five rectangular neighborhoods containing a
given pixel. The procedure gives the pixel the average gray level of its best-fitting
neighborhood. This process can be repeated iteratively. Unfortunately, it does not
yield good results for regions with complex shaped boundaries.

Recently, Nagao ef al. [11] proposed an edge preserving smoothing algorithm
which looks for the most homogeneous neighborhood around each pixel in a picture
using an elongated rectangular neighborhood, and then assigns to each pixel the
average gray level of the selected neighborhood area. Results showed that it removes
noise in a flat region without blurring sharp edges or destroying the details of the
boundary of the region. Haralick and Watson [3] and Haralick [4] generalized the
facet model idea by using higher-order polynomial fitting functions and provided a
unified view of edge and region analysis. The facet model is described in the
following section.

2. INITIAL PROCESSING

The facet model [4] assumes that the image domain is composed of connected
regions called facets. In the ideal image, the gray tone intensities for each facet are a
polynomial function of the row and column coordinates of the pixels in the facet. To
make the definition precise, let the spatial domain of an image be partitioned into K
facets, { F(1),...,F(K)}. For every pixel (r, ¢) that belongs to facet F(k), the ideal
image gray tone at (r, c) is represented by

i

N
glr.c) = Z E aij(k)*rj*ciij (1)
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where the g, ’s are constants. In particular, the flat facet model assumes that the gray
level is constant in each ideal region. That is, N is assumed to be zero.

In [4], an image restoration procedure based on the slope facet model was
suggested. In the slope facet model, the polynomials are assumed to have degree one;
therefore each ideal region has a gray tone surface which is a sloped plane. For the
general facet model, the restoration is done by fitting polynomials to the neighbor-
hoods in an image. Given a square neighborhood R X C, the gray tone g(r, c) of
each pixel (r, ¢) € R X C is hypothesized to satisfy an equation of the form

glr,c)=% }i a, 7%+ n(r,c) (2)

i=0,=0
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FIG. la. A 64 X 64 aerial image of a trailer park.

where the a;;’s are coefficients of the best fit and n represents noise. A least squares
procedure can be used to determine the constants a,; that minimize

=% || T Taprre - g(r0)] | 3)

reR ceC||i=0j=0

For a square window of size M, each pixel is contained in at most M? windows.
For each pixel in the image, we can find the window that gives the best least square
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FiG. 1b. The initial segmentation of the image of Fig. 1a based on the flat facet model. There are 1304
regions.
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[

FIG. 1c. The initial segmentation of Fig. 1a based on the slope facet model. There are 350 regions.

fit, and replace the intensity of the pixel in the input image with the intensity of the
best fit in the output image. The procedure can be iterated by using the output image
as the new input; its convergence was proved in [3].

The facet model tells us that regions are connected sets of resolution cells whose
gray tones belong to the same polynomial surface. Given the output of the above
iterative scheme, the F statistic can be used to determine the significance of having
an edge between two such polynomial surfaces. A segmented image can be produced
using an F-statistic threshold which depends on the desired significance of the F test
[4]. Figure 1a shows an aerial image of a trailer park. Figures 1b and ¢ show the
segmentations based on the flat facet model and the slope facet model, respectively.

Once the initial segmentation has been produced, properties of the initial regions
are computed. Among the set of properties measured for each region, the following
properties are used in our experiments.

(1) Size is simply the number of pixels in a region.
(2) Mean gray level is the average gray level intensity in a region.

(3) Elongation is a measure of the shape of a figure. It is obtained by finding the
covariance matrix M of the distribution of (» — 7, ¢ — ¢) where (r, ¢) represents the
coordinates of a pixel in region R, and (7, ¢) is the center of mass of R.

The matrix M is defined by

Y (r—F) Y (r—F)*c-¢)

(r,c)ER (r.e)eR

Y, le=er=F) Y (c-¢)

(r.c)ER (r.¢)ER
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and (7, ¢) for a region R is given by

Two eigenvalues can be obtained from the matrix M. Elongation is defined as the
ratio of the larger eigenvalue to the smaller.

Besides the property vector, a region adjacency graph [8], which gives topological
information about the regions, is also generated for a segmented image. Two regions
R1 and R2 are said to be adjacent for a segmented image if there exists some pixel in
R1 such that its 4(8)-neighborhood intersects R2. The region adjacency graph has
nodes corresponding to regions and edges that connect together nodes representing
adjacent regions.

3. A REGION GROWING ALGORITHM

The problem with using any of the above initial segmentations as input to a
higher-level algorithm attempting to recognize objects in the scene is that the regions
are too small to be meaningful. This problem motivated us to develop our region
growing scheme that starts with the F-test segmentation as an initial segmentation
and produces a new segmentation having larger, hopefully more useful regions. Such
a procedure could be repeated any number of times producing a sequence of rougher
and rougher segmentations. The final result or the entire sequence of segmentations
might prove useful to a higher-level process.

The initial segmentation was produced by grouping pixels using an iterative
scheme. We can extend this idea to that of grouping regions using a similar iterative
scheme. Basically each region is represented by a property vector. At each iteration,
the property vector of a region can be replaced by some function of the property
vectors of the regions constituting its best fitting neighborhood. After convergence of
the iterative procedure, connected sets of regions with similar revised property
vectors become the new regions.

The merging algorithm has two phases. In phase 1 the properties of each region
are updated based upon the properties of its region neighborhood. In phase 2
adjacent regions which have similar updated property values are merged together.
We now describe the algorithm and its several variations in detail.

3.1. Phase 1
Suppose that the image spatial domain has been divided into N nonoverlapping

regions labeled r(1),...,r(N) with corresponding property vectors pEQ),...,pH(N).
Define the neighborhood of region r, NBD(r), by

NBD(r) = {r’|r"is adjacent to r }.

Suppose for some region r that NBD(r) = {r'(1),...,r’(m)}. Then r is also an
element of NBD(r'(j)) for j = 1,...,m. Thus r participates in m different neighbor-
hoods.

For a given neighborhood X, we define the variance of X, var(X), by

var(X) = 3, [I(p(J) - p(XNIP/(XI — 1)

r(j)EX
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where p(X) is the mean property vector of X, and |X| is the cardinality of X. The
best-fitting neighborhood of region r, BF(7), is that one of the m neighborhoods it
participates in that has lowest variance. Thus

BF(r) = Xx*
where X* = NBD(r’) for some r' € NBD(r) and

var( X*) = r’eII'I}]iB%(r) var(NBD(r’)).

An iteration of the region growing algorithm starts with the set of regions
r(1),...,r(N), with property vectors p*(1),...,p*(N), and replaces the property
vector of each region by some function of the property vectors of its best-fitting
neighborhood. That is,

pk“(n)=f(BFk(r(n))), n=1,...,N

where, of course, BF*(r(n)) depends on p*(n). The process is repeated until it
reaches or approaches a fixed point. Then in phase 2, adjacent regions with identical
or close property vectors are merged to form a new set of regions.

3.2. Phase 2

Suppose that we start with a segmented image whose regions are labeled
ri(1),...,r(N,). If the process for these regions reaches a fixed point at some

Segmentation after xth iteration

1 2
3
7
4 5 6
r(i) Fir | moean  |wfomean | o f i
(1) 182 1,2,4 13.013 194.67 194.67
r(2) 208 1,2,3,4,5,6 17.940 183.50 194.67
£(3) 187 2,3,6,7 47.021 162.50 183.50
) 194 1,2,4,5 14.477 189.75 194.67
r(5) 175 2,4,5,6 23.051 183.00 189.75
r{6) 155 2,3,5,6,7 41.103 165.00 183.50
{7} 100 3,6,7 44,004 147.33 165.00

If merging is performed at the k+15t iteration,
the number of resulting regions is 4.

e T

e |
'

F16. 2. Method 1 for updating property vectors by using the mean property vector of the best-fitting
neighborhood.
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iteration, we merge them to form a new set of regions r'**(1),...,7"*}(N,,,) in the
following way.

Construct a graph in which the nodes are the regions. Link together all pairs of
regions

(a) which are adjacent, and

(b) whose updated property vectors are close enough.

Determine the connected components of the resulting graph. Each connected
component corresponds to a subset of regions whose union constitutes one of the
merged regions for the next cycle.

For an image with 7 regions, let n(i) be the number of neighbors for region i.
Then the number of computations for an iteration of this algorithm is proportional
to n(1)+n(2)+ --- + n(T), which gives a computational complexity O(T*#),
where 7 is the average number of neighboring regions for all the regions. In most
cases, 7 << T, which makes this an efficient algorithm.

3.3. Updating the Property Vectors

One of the most important steps in the above region growing algorithm is to
update the property vector for each region. Three different alternatives have been
tried. The first method uses the mean property vector of its best-fitting neighbor-
hood. At iteration k, the updated property vector of a region R is given by

p*"(R) = p(R*)

where R* = BF(R). Extensions of the theorem for the flat facet model in [3]
guarantee the convergence of this method. Figure 2 illustrates this updating process.

The second way of updating the property vector of a region is to make it take on
the original property vector of the region that defines the best-fitting neighborhood.
That is, instead of using p**!(R) = p(R*) as in method (1), the property vector is
updated by

PFH(R) = pX(S)

where NBD(S) = BF(R). Results showed that the rate of merging by this method is
faster than the first. But unfortunately, this method shows oscillatory behavior for
some images; it does not always lead to a fixed point. As an example, Fig. 3 shows
an oscillation with a length one cycle. This is bad because it will give rise to two (or
more) interpretations of the same image.

The third alternative is to calculate the mean by weighting the property vectors of
a neighborhood by their region sizes. The algorithm used to update the mean and
variance of the weighted property vectors is suggested by West [14]. Our results
showed that the first approach, using the mean property vector, is the most reliable
method. For the rest of the discussion, the experiments performed employ the first
approach.
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3.4. Thresholded Flat Facet Iteration

The updating schemes described in the previous section recompute the property
vector of every region at each iteration. To prevent inaccurate segmentations due to
property vectors changing too much, we need to inhibit the updating if the new
property vector of a region is too different from the original one. To accomplish this,
the idea of a thresholded flat facet iteration is introduced. For a flat facet iteration
with threshold e, the updated property vector of a region R is given by

P*HR) = p“(R),  ifIIF(R*) = p*(R)| > e
= p(R*),  otherwise.

Experiments show that except for extreme values of e, the differences caused by the
choice of e are minor. For simplicity, the value of e is chosen to be a fraction of
the intensity range of the image.

Segmentation after kth iteration Segmentation after kth iteration
without merging. with merging.

i) ) varlGED(r (1)) | menertiny | gD | var*awentrein) | p6P2aa
r(1) 100.00 25.71 1,2,4,7,8, 100.00 25.03 100.00
10,11,12
r(2) 137.33 21.10 1,2,3,4,5, 137.33 20.62 137.33

11
r(3) 137.33 0.00 2,3 137.33 0.00 137.33
r(d} 154.50 21.73 1.2,4,5,7 149,89 20.54 154,50
9,10
r(5) 154.50 7.68 2,4,5,10,11 54.50 7.04 54.50
T (6) 66.33 0.00 7,6 166.33 0.00 66.33
r(7) 166.33 24,60 +4,6,7,8,9 166.33 24.42 66.33
T (8) 149.89 28.60 +71:8,9 149,89 25.18 149,89
r(9) 149.89 6.73 4,7,8,9,10 149,89 7.35 149.89
{10} 154.50 23.94 1,4,5,8,9 149,89 21.24 154.50
10,11
r(ll) 154.50 23.65 1,2,5,10,11 154.50 23.03 154,50
r(12) 100.00 0.00 1,12 100.00 0.00 100.00 *

Segmentation after k+1St iteration Segmentation after k+2nd iteration
with merging. with merging.

= )

FiG. 3. Method 2 for updating property vectors using the central property vector of the best-fitting
neighborhood. The oscillatory behavior is illustrated, since p* (i) = p""*z(i).
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The convergence of the flat facet iteration is guaranteed [3]. As a result of the
following theorem, the thresholded flat facet iteration also converges.

THEOREM. Let X°(1),...,X°(N) be a sequence of real numbers. The thresholded
flat facet iteration produces sequences X™(1),...,.X"™(N), m = 1,2,..., defined by

X e YR, ifmin(|JX™(k — 1) — X" (k)|,
| X"(k) = X"(k+ 1)) >e

_ X"(k—-1)+ X"(k)

2] .

if1Xx™(k—1)— X"(k)|
< min(e, | X"(k) — X™(k + 1))

_X™(k) + X"(k+ 1)
- : ,

otherwise.
Then,

(1) The algebraic order of X°(1),...,X°(N) is preserved by each sequence
X"(1),...,X"(N).

(2) If X°(k) is a local minimum (maximum), then so is X" (k) for every m.

(3) For all k and m, min, X°(i) < X™(k) < max, X°(i).

(4) For all k, X" (k) is either monotone increasing or decreasing.

) lim, ,_(X™Q),...,X"(N)) = (X®°(1),..., X*(N)) exists.

m— 00

A convergence proof for the simplest one-dimensional flat facet iteration is given in
the Appendix. That proof contains the essence of the more general result without
being obscured by technical details. The theorem can be readily generalized to larger
neighborhoods and higher dimensions.

Fi1G6. 4. The results of merging after five iterations of region growing, using replacement method 1,
where the property vector of a region is replaced by the mean property vector of its best-fitting
neighborhood. Note that some boundaries between two trailers are shifted because a boundary region
merged with just one of the trailers. There are 110 regions.
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F1G6. 5a. The results of merging after six iterations of region growing, using replacement method 2,
where the property vector of a region is replaced by the central property vector of its best-fitting
neighborhood. There are 58 regions.

4. EDGE HEURISTICS

Our results show that the algorithm suggested above reduces the number of regions
considerably; because many undesired regions still exist, more processing is needed.
In this section we attempt to achieve a better partition of the picture by using
heuristics to guide the merging of regions.

Regions are often characterized by well-defined boundaries. Experiments show
that boundaries are often picked up as small regions during the initial facet

bl h'
A
S
1"""I
1
! t il
F1G. 5b.  The results of merging after seven iterations of region growing, using replacement method 2.

There are again 58 regions, but the segmentation is slightly different from Fig. 5a. However, after eight
iterations, the results of Fig. 5a are repeated, showing the oscillatory nature of this method,
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segmentation. These regions will sometimes create problems during region growing
processes. Because boundary regions have width, a shift of boundary between two
objects will result if the boundary region between two objects is merged with one of
the regions. In this section, a combined use of the proposed region growing
algorithm and edge information is investigated.

We define edge regions as regions with mean gradient values greater than a certain
threshold. To find edge regions, a gradient image is computed from the coefficients
of the first order terms (a,, and a;; of (3)) of the fitting polynomials. The gradient
image can consist of one of three norms of the gradient:

(1) the /* norm: sum of the absolute values of a,, and a,;;
(2) the /? norm: square root of sum of the squares of a,, and a;;; or
(3) the /*® norm: maximum of the absolute values of 4,, and a,,.

The mean gradient value for a region is the mean of the gradient values of the pixels
in the region. An appropriate threshold can be found from the histogram of the
property vectors.

After the edge regions are identified, the region growing process is divided into
two stages. In the first step, the region growing algorithm described in Section 3 is
applied except that edge regions are excluded from the atomic regions. That is, edge
regions will not participate in any of the neighborhoods. Edge regions, therefore, will
remain unmerged after this growing process. The second step is to eliminate edge
regions. This is done by a filling algorithm. All the pixels in edge regions are first
marked with zeros in the segmented image and then a symmetric fill operation is
performed on the zeros.

One advantage to this approach is that it not only prevents the shifting of the
boundary, but also helps to stop regions from growing too far. The difficulty with
this method is the identification of edge regions from the rest.

F1G6. 6. The results of merging after five iterations of region growing, using replacement method 3,
where weighted mean and variance are calculated and the property vector of a region is replaced by the
weighted mean property vector of its best-fitting neighborhood. There are 80 regions.
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F1G. 7a.  The results of merging after five iterations of region growing, using replacement method 1,
but refusing to allow edge regions to merge. There are 143 regions.

5. EXPERIMENTAL RESULTS

In this section we discuss the results of applying the region growing algorithm to
three images: an artificially generated image, a small aerial image of a trailer park
(64 X 64), and a larger aerial image of a commercial /residential area (256 X 256).

The 64 X 64 trailer park image (Fig. 1a) and its initial slope facet segmentation
(Fig. 1c) are used to illustrate the three updating methods and the entire process
further. Note that most boundaries are picked up as small regions in the initial
segmentation. This set of experiments used only mean gray level as the criteria to
merge regions. Figure 4 shows the results of merging after five iterations of method
1. Figures 5a and b show the results of merging after six and seven iterations,

Fi16. Tb. The results of performing a symmetric fill operator on the edge regions of Fig. 7a so that the
edge regions are merged with the larger regions on all sides of them. There are 29 regions.
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FIG. 8a. A 150 x 150 image of a combination of different checkerboards; the checks are of sizes
10 x 10, 5 X 20, 15 x 15, and 9 X 25 pixels.

respectively, of method 2. After eight iterations, the results after merging are the
same as after six iterations, showing the oscillatory behavior. Figure 6 shows the
results of merging after five iterations of method 3. Figure 7a shows the results after
five iterations of method 1, but where edge regions are unmerged. Figure 7b shows
the results of the filling operation on Fig. 7a. The regions in Fig. 7b show a very
good correspondence with the trailers in the original image.

F1G. 8b. The results of merging after five iterations of region growing, using the size and elongation
measures.
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To understand the performance of the region grower by using properties other
than just the gray level intensities, we examined its behavior on an artificially
generated image (Fig. 8a). We used a 150 X 150 pixel image of a combination of
different checkerboards; the checks are of sizes 10 X 10, 5 X 20, 15 x 15, or 9 X 25
pixels. The slope facet segmentation created a perfect initial segmentation of this
image into the separate checks. The goal of the final segmentation was to group
checks which belong to the same checkerboard. Since within each of the different
checkerboards, size and elongation of checks are constant while gray tone varies, size
and elongation were selected as the components of the property vector for each
region. The results of applying the region grower are shown in Fig,. 8b.

Another set of experiments were performed on a more complex image. Figure 9
shows an aerial image of an urban area. The flat facet model F test produced an
initial segmentation of 13,602 regions (Fig. 10). The property vector for each region
consisted of only the mean gray level. The merging incorporating the edge heuristic

F1G. 9. A 256 X 256 aerial image of a commercial residential area.
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F1G. 10. The initial flat facet segmentation of the image of Fig. 9.

was done after five flat facet iterations of updating method 1, with and without a
threshold. The results are shown in Figs. 11 and 12, respectively. As a comparison
between the two kinds of facet iterations, we have examined those regions which
correspond to the buildings in this image. We found that over 50% of the buildings
were picked up closely as individual regions by both methods. Around 30 and 20%
of the buildings were split into smaller units in Figs. 11 and 12, respectively. Close to
20% of the buildings were erroneously merged with their surroundings as a result of
the regular facet iteration; around 10% were merged with their surroundings by the
thresholded facet iteration.

As a comparison, similar experiments were performed on the initial segmentation
produced from the slope facet model (Figs. 13-15). Results were found to be equally
good when the buildings in the image were examined. As we can see from Figs. 10
and 13, the flat facet model produces a lot more initial regions. Thus the region
growing process starting with the flat facet model is more expensive.



16 PONG ET AL.

F1G. 11.  The results of merging after five regular facet iterations of region growing, using replacement
method 1 on the segmentation of Fig,. 10, but incorporating the edge heuristic.

6. DISCUSSION AND CONCLUSION

It is worthwhile to compare our proposed region growing method to the split-and-
merge technique of Horowitz and Pavlidis [6]. Our procedure starts with an initial
segmentation into many small irregular regions where the pixels of a region belong
to the same sloped plane and a significant edge exists between the planes of each
pair of adjacent regions. The split-and-merge technique is defined as starting with an
arbitrary partition of the image. However, the implementation of split-and-merge
reported in [6] used square regions. Our procedure updates the property vectors of
each region up to (or close to) a fixed point and then merges adjacent regions having
similar property vectors. The resulting regions are again of arbitrary shape. The
split-and-merge implementation merges four square blocks to produce a new square
block or splits a single square block into four children (also square). Only after the
splitting and merging is over does a grouping procedure take over to partition the
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Fic. 12. The results of merging after five thresholded facet iterations of region growing, using
replacement methed 1 on the segmentation of Fig. 10, but incorporating the edge heuristic.

current cut set of the segmentation quad tree into equivalence classes that form the
final segmentation.

Our procedure only merges, using arbitrary shaped regions. The Horowitz and
Pavlidis procedure splits and merges using square regions and finally merges again to
get more arbitrary regions. We feel that the use of arbitrary regions throughout is
important in working with natural images; however, adding the possibility of
splitting to our procedure might be worth trying.

We have presented, in this paper, a scheme for region growing. Merging regions
using the mean property vector of the best neighborhood gave better results than the
two other alternatives tried. The thresholded facet iteration, which was used to
control the region growing process, introduced a larger number of regions, but had
the advantage of separating nonhomogeneous neighborhoods of regions. More
experiments are needed in order to understand how to select appropriate properties
for the regions.
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Due to the nature of the lower degree facet models, edge areas which have
significant width become small regions. Applying the heuristic of eliminating small
regions with high gradient values gave better results. Results show that both the flat
and the slope facet models give good fits to the interiors of the regions in the image,
but do not fit as well at the edges. Although the F tests for the higher-order facet
models are mathematically more complicated, initial segmentations based upon
higher-order facet models need to be attempted. Haralick [5] reports some success on
edge detection using a local cubic facet model which is different from the piecewise
facet model of [3]. Ways to incorporate the higher-order facet model edge detection
technique into our region grower are worth exploring. We hope to address these
issues in future papers.
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F1G. 13. The initial slope facet segmentation of the image of Fig. 9.
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F1G. 14. The results of merging after five regular facet iterations of region growing, using replacement
method 1 on the segmentation of Fig. 13, but incorporating the edge heuristic.

APPENDIX

In this appendix, we will prove the theorem on the convergence of the thresholded
flat facet iteration.

Proof. We will tacitly use the lemmas for the flat facet iteration in [3], since they
are trivially true for thresholded flat facet iteration also.

(1) The proof is by induction on m. Suppose X™(k) < X"(k + 1). Then from the
definition of the (m + 1)st iterates,

Xm(k)+ X™(k + 1)
2

Similarly, if X™(k) = X"(k + 1), then

X"(k)+ Xx™(k+1)
2

Xm+1(k) <

< X"k + 1).

X" (k) = = X"k +1).



20 PONG ET AL.

(2) Since order relationships between neighboring points are preserved, local
extrema must remain extrema.

(3) If X°(k) is a local minimum, then by (2) X™(k) remains a local minimum for
all m. By construction, X" *!(k) must either be the same as X™(k) or greater than
X™(k). Therefore the sequence X™(k), m =0,1,2,... must be monotonically
increasing, and by property (1), min, X°(i) < X™() for all j and m. If X°(k) is a
local maximum, then X™(k) is also a local maximum for all m. From the definition
of the thresholded flat facet iteration, X" !(k) must either be the same as X™(k) or
less than X™(k). Therefore the sequence X" (k) is monotonically decreasing, and
X™(j) < max,X™(i) < max,X°(i) for all j and m.

(4) If X™(k) is a local extremum, then the result follows from the proof of (3).
For X™(k) not a local extremum, the proof is by induction on m. There are two
possibilities: either

X" W k-1 <X Y k)< X" Y k+1)

L o
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A F
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FiG. 15. The results of merging after five thresholded facet iterations of region growing, using
replacement method 1 on the segmentation of Fig. 13, but incorporating the edge heuristic.
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or

X" Yk -1)> X" (k) > X"k + 1).

Since the second case follows from the first by reversing the indices, it may be
assumed without loss of generality that X" '(k — 1) < X" }k) < X"~ '(k + 1).
First the following observation must be established:
Claim. If min(X"(k) — X"(k — 1), X"(k + 1) — X"(k)) > e, then min( X/(k) —
XNk - 1), Xi(k +1)— X/(k))> e, forj=0,1,...,r — 1.

Proof of claim. An equivalent proposition is that if min(X*(k) — X*(k —
1), X*(k + 1) — X*(k)) < e, then min(X**"'(k) - Xt k-1, XYW k+1) -
X*T1(k)) < e. Suppose that X*(k) — X*(k — 1) < min(e, X°(k + 1) — X*(k)). Re-
calling the assumption X*(k — 1) < X*(k) < X*(k + 1) and using the definition of
facet iteration gives

Xk -X(k-1)

X (k- 1) .

< Xk -1) < X**(k)

CXo(k) + X°(k— 1)
a 2

which implies

X5+1(k) _ X.;+l(k _ 1)

LX)+ X (k- 1)
- 2

- X*(k) = x*(k-1) <.

_x(k) — X (k- 1)
2

| xo(k - 1)

Similarly X*(k + 1) — X*(k) < X*(k) — X*(k — 1) and X*(k + 1) — X*(k) < e im-
plies X**!(k + 1) — X**1(k) < e which establishes the claim.

Now if min( X" (k + 1) — X" Y(k), X"~1(k) — X"~Y(k — 1)) > e, then by
the preceding observation min( X/(k + 1) — X/(k), X/(k) — X/(k — 1)) > e forj =
0,1,...,m—2 and X%k)=--- = X" (k)= X"(k), so regardless of where
X™+1(k) is the sequence is monotone. Henceforth assume that min( X~ '(k + 1) —
X" Y k), X" k) - X" Wk - 1) <e.

Suppose that X™ (k) < X™(k). Then just using the definition of the facet
iteration and assumed inequalities yields

Xk — 1) + X" (k)
2

< X7(k) = X" Y k) + g{m—l(k +1)

xX"(k-1)<

< Xm_l(k)

X1k + 1) — X" (k)

< X"™(k+1) < X" W k+1)+ .
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Using pieces of this inequality gives

; . X" )+ X"k +1) | XNk — 1) + X1 (k)
X"(k) - X"(k—1) 2 5 - -
_ X" (k) = XNk - 1)
2

X"k + 1) + X" (k)

+ X" Nk +1) - >

X7k + 1) — X"1()
~ 2

+X" Nk + 1) = X™(k) = X"(k + 1) — X"(k),

"(k) + X" (k +
which establishes that X" (k) = X"(k) + X" (k 1) > X"(k).

2
To complete the proof, suppose that X™ (k) = X™(k). Then

X" k) + XYk + 1)

X"(k+1) =2 >
m—1 e BT e m—1
> Xm—l(k) me(k) = X (k ; X (k)
m—1 _ m—1 _
> X"k = 1) = X"k — 1) - (k) X k1)

which in turn implies

XM k= 1) + X N(k)

X"(k) = X"(k—1)

2
B Xm—l(k 3 1) 3 mel(k) _;fmfl(k — 1)
<X - XNk —1) | XmTHk + 1) - X7 N(k)
2 2
X" 4 XMk + 1)
B 2
X" k-1 + X" k) _ L, m
. s < X"k +1) — x™(k).

Hence the next iteration satisfies

X"™(k) =

X"k = 1)+ XME) _ ey
: = X""(k),

which completes the inductive proof.
(5) For fixed k, X™(k) is a bounded monotone sequence by (3) and (4).
Therefore, by the Bolzano-Weierstrass theorem, lim,, ,  X™(k) = X=(k) exists.
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Note that for the flat facet iteration, every point X*(k) is a local extremum. This
not necessarily true for thresholded flat facet iteration, since wild points may

remain unchanged throughout the iteration. In other words, every point is not
necessarily attracted to a “strong and consistent neighbor.”
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