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Abstract. A classical morphological technique to restore binary images degraded by union noise is to perform an opening to
remove the noise. The more general approach is to employ a union of openings, the resulting filter being known as a T-opening,
Assuming the structuring elements to be parameterized in terms of a single parameter, a fundamental problem is to determine
the optimal parameter, namely the one that produces the filter having minimum error according to some error measure.
Relative to symmetric-difference error and a certain random-grain model, the present paper develops an optimization procedure
based upon the individual pattern spectra of the signal and noise. If the image and noise grains are disjoint, then the pattern-
spectra parametric estimation procedure yields exactly the optimal value of the parameter. Of special concern in the present
paper is the robustness of the method with respect to the disjointness criterion. It is analytically demonstrated for a particular
model that the estimation procedure produces close to the optimal value when image and noise are not disjoint. Robustness
is also experimentally demonstrated for a large number of more complex image-noise models.

Zussammenfassung. Eine klassische Methode zur Restaurierung von bildern, die durch Rauschen gestort sind, besteht in der
Anwendung eines ‘Openings’ zur Entfernung des Rauschens. Eine verallgemeinerte Ldsung liegt in der Verwendung einer
‘Union of Openings’; das resultierende Filter ist als r-Opening bekannt. Unter der Annahme, daB die Strukturelemente in
Form eines einzelnen Parameters dargestellt sind, ist das fundamentale Problem die Festlegung des optimalen Parameters,
niimlich desjenigen, der zu einem Filter mit minimalem Fehler beziiglich einiger Fehlermessungen fiihrt. Im Vergleich zum
‘symmetric-difference’-Fehler und einem bestimmten ‘random-grain’-Modell wird in der vorliegenden Arbeit eine optimierte
Prozedur entwickelt, die auf den individuellen Spektralmustern des Signals und des Rauschens basieren. Wenn sich beide
ausschlieBen, dann liefert die Parametrische Schitzung der Spektralmuster exakt den optimalen Parameterwert. Von beson-
derem Interesse ist in der vorliegenden Arbeit die Robustheit der Methode in bezug auf das ‘disjointness’-Kriterium. Fiir ein
spezielles Modell wird analytisch gezeigt, daB die Schatz-Prozedur nahezu optimale Werte liefert, wenn Bild und Stérung sich
ausschlieBen. Die Robustheit wird weiterhin experimentell demonstriert anhand einer groBen Anzahl von komplexeren Bild-
Stoérungs-Modellen.
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Résumé. Une technique morphologique classique pour restaurer des images binaires, dégradées par 'union de bruit, consiste
i réaliser une ouverture pour éliminer le bruit. Une approche plus générale consiste a utiliser une union d’ouverture, le filtre
résultant étant connu comme l'ouverture t. En admettant que les éléments structurants n'ont gu'un seul paramétre, un
probléme fondamental consiste & déterminer la valeur optimale du paramétre, ¢'est-d-dire celle qui produit le filtre ayant
I’erreur minimum selon une mesure donnée. Cet article développe une procédure d’optimisation basée sur le spectre des formes
individuelles du signal et du bruit, relative a erreur de différence symétrique et a un cetain modéle de grains aléatoires. Si
I'image et les grains de bruit sont disjoints, alors la procédure d’estimation paramétrique du spectre de la forme donne
exactement la valeur optimale du paramétre. La robustesse de la méthode, par rapport au critére d’€tre disjoint, est un sujet
qui est traité avec une attention particuliére. Il est démontré analytiquement, pour un modéle particulier, que la procédure
d’estimation produit une valeur proche de celle qui est optimale quand 'image et le bruit ne sont pas disjoints. La robustesse
est également démontrée expérimentalement pour un grand nombre de modéles complexes d’images et de bruit.

Keywords. Mathematical morphology; optimal filtering; pattern spectrum; granulometry; t-opening; union noise.

1. Introduction

A classical problem in binary morphological fil-
tering involves the restoration of an image that has
been corrupted by union noise. Specifically, S is
the desired signal, N is the noise, and SUN is
observed. A well-known approach to this problem,
due to Matheron [15], involves the use of 7-open-
ing filters. In the present paper we develop a meth-
odology to select an optimal t-opening from
among a class of 7-openings. The method involves
application of Matheron’s granulometric method
to both signal and noise, the resulting size distribu-
tions being popularly known as the pattern spectra
of the signal and noise.

To appreciate the genesis of the method, con-
sider the ordinary morphological opening O(S, E)
of the image S by the structuring element E, defined
by O(S, E)=\J {E+x: E+x<S}, where E+x is
the translation of E by x, namely E+x=
{e+x:ecE} and < denotes the subset relation. A
point z lies in the opening O(S, E) if and only if
there exists some translate E-+x such that
zeE+x<S. As a filter, opening by E passes those
portions of S that match some translate of £ and
filters out the remainder of S. If we now consider a
corrupted image S U N, where S is the uncorrupted
image and N is noise, then the object is to find a
structuring element that passes most of & and very
little of N. If we assume that S and N are compact
and disjoint, and that E fits into all of the con-
nected components of S but not into any of the
connected components of N, then N will be com-
pletely eliminated and all of S that conforms to the
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shape and size of E will remain. Typically, how-
ever, even if the signal and noise components are
disjoint, there will be size overlap, meaning that
some large components of N will be greater than
some small components of S. This situation is anal-
ogous to linear-space filtering when the Fourier
representations of signal and noise share basis com-
ponents. The goal is to achieve optimality when the
sizes of signal and noise components intermingle.

Our approach is to model the signal and noise
as random Boolean images whose components are
known shapes, possessing random sizing param-
eters, that are randomly tossed into the plane. Note
that disjointness of the components actually places
a constraint on full randomness (as would be the
case with Poisson points). Our goal is to find opti-
mal-sized structuring elements by which to filter
the corrupted signal under the assumption that we
know the morphological pattern spectra of the sig-
nal and noise, but not of the corrupted signal. In
effect, we have some independent morphological
knowledge of the signal and the corrupting noise.
Such a situation would occur if we had a thresh-
olded image composed of desirable and undesirable
particles, and we had knowledge of both particle
processes. It would also occur if we wished to
remove background objects of noninterest from
foreground objects of interest. (More will be said
on such modeling following the theory and the
simulations.) Having solved the problem in full for
disjoint signal and noise, we proceed to demon-
strate, in part theoretically and in part through
simulation, the degree to which the estimation pro-
cedure in the disjoint case can be applied to the
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case of nondisjoint signal and noise. The key point
is: while there is some loss of accuracy in applying
the procedure when the disjointness criterion does
not hold, this loss is minimal should signal-noise
overlap not be too great. In fact, such is often the
case: just think of touching grains or touching tex-
ture primitives.

2. Granulometric pattern spectra

We begin by briefly reviewing the Matheron
granulometric theory. Binary morphological 7-
openings compose an important class of morpho-
logical filters. According to Matheron, a binary
filter ¥ is a 7-opening if it satisfies four conditions:
W is increasing: S<T implies W(S)< ¥(T);
¥ is antiextensive: Y (S)<S; ¥ is transiation
invariant: W(S+x)=Y(S)+x; ¥ is idempotent:
Y[¥(S)]=¥(S). The most commonly employed
T-opening is the ordinary opening.

A key aspect of any filter is its invariant class,
which consists of those images that are preserved
under the filter. We will denote the invariant class
of a r-opening ¥ by Inv[¥], so that Selnv[¥]
if and only if ¥(S)=S. Since ¥ is idempotent,
Y(S)elnv[¥] for any S. If B is a collection of
images such that each image in Inv[¥] is a union
of translates of elements in B, then B is called a
base for ¥. Intuitively, B consists of image primi-
tives that generate the invariants of ¥. As shown
by Matheron [15], ¥ is a binary 7-opening if and
only if there exists a class B of images such that
P(S)=\J {O(S, B): BeB}. Moreover, B is a base
for ¥; in fact, any base will do. It is immediate
that a r-opening is determined by any base. Conse-
quently, optimization of z-opening filters means
finding an optimal base, where perhaps the optimi-
zation is constrained to some class of potential
bases.

Closely related to t-openings are granul-
ometries, which were conceived by Matheron as
a model for sieving within an image. (For a full
description of binary 7-openings and granul-
ometries see Serra [21] or Dougherty and Giardina

(2, 8]). A granulometry is a parameterized family
of filters ¥,, r>0, such that ¥, is increasing, ¥,
is antiextensive, and ¥, ¥,= ¥, ¥, = ¥ naxgrusys TO
complete the definition of a granulometry we let
¥o(S) be the identity mapping. The granulometry
is denoted by {¥,}. If r=s>0, then
Inv[¥,] <Inv[¥,]. A t-granulometry is a granul-
ometry {¥,} for which ¥, is translation invariant.
The most commonly employed 7-granulometries
are the elementary granulometries, each of these
being of the form ¥.(S)= O(S, rB), where B is a
convex primitive,

For application, a key property of any granul-
ometry {¥,} is that, for r2s, F.(S)<W¥(S).
Thus, if A[S] denotes image area (and S possesses
finite area), then {A[¥,(S)]} is decreasing. If we
define @(r)=1—A[¥(S)]/A[S], then P(0)=0,
@(r) is increasing, and the limit of @(r) as ¥ - + oo
is 1. Under conditions that typically hold in appli-
cation, it can be shown that @(r) is continuous
from the left, so that @(r) is a probability distribu-
tion function (PDF) and its derivative d®(r) is a
probability density. (In the digital case the continu-
ity condition is inapplicable, so that @(r) is a
discrete PDF and d@(r) is a probability mass func-
tion.) @ and d® have historically been called size
distributions, a terminology in line with their granu-
lometric derivation; however, owing to their shape
discrimination capability, they have more recently
been called patrern spectra. Typically, the moments
of d@ arec employed for image analysis. For
instance, Maragos [12-14] has considered shape
analysis and symbolic image modeling, Serra [21]
has employed size distributions for both shape and
texture analysis, and Dougherty et al. [4-7, 16]
have used size distributions for analysis, segmenta-
tion and classification based upon texture.

Recently, Agerskov et al. [1] have considered the
problem of estimating morphological-filter param-
eters for restoration in the S'w N noise model. Gen-
erically, one can consider a parameterized filter
class {¥,}, not necessarily a granulometry, and
attempt to find some rule for estimating a good
value of r by considering the signal and noise pro-
cesses. In [1], it is assumed that the signal and noise
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pattern spectra (or generalized versions thereof)
are known, and based upon these spectra one
wishes to estimate an optimal value of . The proce-
dure employed is to try to find some multiple linear
regression of r on parameters derived from the pat-
tern spectra. Of the four filters considered, two are
7-openings. Although in some cases in [1] the esti-
mations are reasonably good, the evident difficulty
with the approach is use of linear regression
without an underlying model to justify supposition
of the multi-linear model. Nonetheless, in the case
of r-openings, their close relation to granul-
ometries points to the plausibility of a pattern-
spectra based estimation procedure. It is the pur-
pose of this paper to explore just such an approach
in the case of a certain grain model.

3. Filtering in the deterministic disjoint model

Consider a parameterized collection of convex
structuring-element primitives B(r), Bi(r), ...,
B,.(r) such that for k=1,2,...,m, and for r=s,
O[Bx(7), Bi(s)]= Bi(r). For any image F, define

¥ (F)=O(F, B\(r)) v O(F, By(r))
U0 O(F, Bu(r). (D)

Then {¥,} is r-granulometry, ¥, is a r-opening
for any r, and relative to {¥,}, the signal S and
the noise N possess pattern spectra given by

Ds(r)=1-A[¥A(S)]/A[S],

. (2)
D y(r)=1—A[¥,(N)],/A[N].

For fixed r, we can treat S" =%, (SUN) as an
estimator of S, keeping in mind that " depends
on r. By the increasing monotonicity and antiexten-
sivity of ¥,, ¥,(S)<S8" <S U N.Ifit happens that
S is invariant under ¥, (an assumption we do not
wish in general to make), then the preceding in-
equality becomes S<S" <Su N. Unless S is ¥,-
invariant, it is possible (and likely) that ™ will not
contain S. In any event, our goal is to find the
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value of r that minimizes the symmetric-difference
error

e(r=A[(S—8") v (5" = S)I. 3

Let us now make the assumption that § and N
are disjoint. Though this assumption is only realis-
tic for sufficiently sparse S and sufficiently sparse
N, it leads to a very tractable model, one which
provides essential insight. For this model,

e(r)=A[N](1— ®u(r)) + A[S]Ds(r). (4)

The optimal value of r is found by minimizing this
sum over r. If we assume that @y and @g are
differentiable, then taking the derivative with
respect to r and setting €'(r) equal to zero yields
AN dDp(r)=A[S]dPs(r). Although this last
equation is attractive and perhaps useful for some
general insight, (4) is more important because we
will be dealing with delta-function derivatives.
Moreover, in a digital implementation, minimiza-
tion of (4) involves finding e(r) for a finite set of
values and then selecting the minimum. Examina-
tion of (4) shows that

e(r)=en(r) +es(r), (%)

where ex(r) is the error resulting from noise not
eliminated by ¥, and es(r) is the error resulting
from erroneously eliminated signal. It is this
decomposition of the error that yields straight-
forward optimization in the disjoint model.

4. The case of a single convex base image

To obtain an analytical solution, we consider the
simple case of a single opening by rB, where B is
convex. In addition, we assume

S=5iB+x,Us8:B+x,0-- - Us,B+x,,

(6)
N=mB+y,umB+y, U - UnB+ys,

where §;<s,.1, m;<nm.;, the convex components
5;B+ x; are mutually disjoint, and so too are the
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components #;,8+ y;. Thus, the noise image is
SUN=(nB+x U usB+x,)
u(mB+y,us o unB+y,). (7)
The signal and the noise areas are
A[S]=(si+s5+ - - +5D)A[B)], )
A[N]=(m+n3+- - - +n})A[B].

Owing to disjointness, A[Sw N]=A[S]+ A[N]. In
differential form, the signal and noise pattern spec-
tra are

d@s=A[S] " A[BI(s16(r—5,) + 536 (r — )
bt

d®y=A[N] "A[BI(ni6(r—m) +n36(r—n,)
+ e+ ng8(r—ny)).

For r=0, let a(r) denote the greatest index s; such
that s,<r and b(r) denote the greatest index », such
that n;<r. Then

@s(r)=A[S] ' A[BI(sT+ 53+ - - + 52, (10)
Dn(r)=A[N]'A[Bl(mi +n5+- - - +nj,)).
Hence, (4) becomes
e(r)=A[N]1—A[Bl(ni+r3+- - - +niy,)
+A[BI(st+55+ - + )
=A[B)(si+s53+" - -+ 52)
+ A[Bl(Myy+ 1+ Moy w2+ - - +n3), (11)

where the first summand is es(r) and the second is
en(r).

For given deterministic images S and N, the best
opening filter O(S U N, rB) is found by minimizing
e(r) in (11). As is typically the case, statistical opti-
mization requires extension to random images and
random noise.

5. Statistical optimization

Turning to the nondeterministic setting, we first
consider the simple model in which S is a union of

sB components, where now each value of s is
selected from a known probability distribution
(random variable) § possessing density fs(s). We
also assume N is a union of nB components, each
value of n arising from a known probability distri-
bution N possessing density fy(n). Let us also
assume that the mean of /V is less than the mean
of §, i.e., E[N]=<E[S]. This will assure us of some
ability to filter out the noise by »B components (for
suitable values of ). Finally, let us assume that
the signal possesses ¢ components and the noise
possesses b components. Although a and b could
be random, for the purpose of obtaining a closed-
form solution, let us avoid this complication.
Under the assumptions, both S and N are random
images and realizations of S and N take the forms
given by (6).

In the extreme case, there exists r, such that
N<iy<S, so that the maximum size of the noise
components must be less than the minimum size of
the signal components. For r,, both summands in
(11) are vacuous, so that e(ry) =0 for any realiza-
tion of the observation S u N. Consequently, open-
ing by reB is optimal and there is perfect
restoration.

More generally, since S, N and S U N are ran-
dom images, @5, @y, d@s and d®, are random
signals. Moreover, the error e(r) is a random func-
tion of ». This is true in both the general disjoint
model, Eq. (4), as well as in the specific model
involving a single generating primitive B. Thus, our
real estimation problem involves finding r to mini-
mize Ele(r)], the expected-value function for e(r).
Letting r* denote this minimum, in the general z-
opening model our optimal filter is ¥,A(SUN),
and, in the single-opening model of (11), the opti-
mal filter is O(S U N, r" B).

Referring to (6), let us find an expression for
Ele(r)]. Let ¥=S8* for S<r and ¥Y=0 for
§zr. Then in the random model, eg(r)=
A[B](Y1+ Yo+ - -+ Y,), where ¥, is identically
distributed to Yfori=1, 2, ..., a. Similarly, if Z=
N? for Nzr, and Z=0 for N<r, then epn(r)=
A[BI(Z\+ Z,+- - -+ Z,), where Z; is identically
distributed to Z for i=1,2,...,b Taking
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expected values yields

E[es(r)]=bA[B] E[¥Y]=aA[B] J , 5fs(s) ds,
. (12)
El[en(r)]=bA[B] E[Z]=bA[B] J n*fn(n) dn.

r

The optimal value of r is that which minimizes

Ble(r)] = A[B](a j ' fe(x) dx+b jm ) dx).
0 ; )

Minimization of (13) characterizes the optimal
opening O(S'u N, r" B). As noted above, if f5(s) =
0 for s<ry and fy(n)=0 for n>ry, then ry is opti-
mal and E[e(r,)] =0.

Whereas appeal to differentiation for optimiza-
tion is generally not useful in the deterministic set-
ting, it often can be applied in the random setting.
Differentiation of (13) with respect to r yields

e'(r) = A[Bl(ar’fs(r) = br’fy(r)). (14)

Since the minimizing value of » does not occur at 0,
after setting €'(r) =0 we can divide out r to obtain
afs(r) =bfy(r). Of course, this last equation may
not possess a unique solution for r and its solution
may not give the optimal value of r; however, in
many practical cases, it may be solved for optimal
r. If not, then optimization in the discrete case can
be acheived by examining a finite collection of
E[e(r)] values.

If we return to the general disjoint model of (4),
then e(r) is again a random function of r; however,
it is much more complicated, because not only are
the differential pattern spectra generally not delta
functions, but 4[S] and A[N] do not drop out,
and these are both random variables depending on
the realizations of S and N. In terms of expectation,

E[e(r)]=E[A[N](1 — @x(r))] + E[A[S]Ps(r)]-
(15)

Note that the noise and signal areas are not stat-
istically independent of their respective spectra, so
that no further simplification is possible. In digital
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implementation, r is discrete and minimization
occurs numerically.

Before considering the case for which signal and
noise are not disjoint, we would like to mention
the morphological restoration work of Schonfeld
and Goutsias [17-19], who also make use of the
pattern spectrum, although in quite a different vein.
They define a smoothness criterion for the filtered
image by requiring the pattern spectrum of the fil-
tered image to be null for small spectrum values,
thereby determining that the filtered image is
invariant for openings by sufficiently small struc-
turing elements (and invariant for closings by
sufficiently small structuring elements, since they
also employ closing granulometries). They use the
smoothness criterion in conjunction with a least
mean difference criterion to define optimality, the
latter criterion employing, as we do, symmetric
difference to measure error. Using their dual cri-
teria, they show that, among a certain class of fil-
ters, optimal restoration is achieved by employing
certain alternating sequential filters (see [20]). The
similarities to our approach are use of the pattern
spectrum, the symmetric-difference criterion of
goodness, and a random-grain noise model; major
differences are the image model (which we take to
be random-grain and they take to be determin-
istic), the class of filters over which optimization is
taking place, the manner in which pattern spectra
are employed, and our determination, under cer-
tain conditions, of a closed-form optimization
equation [eq. (13)] and its analytic solution.

Perhaps it should also be pointed out that
Schonfeld and Goutsias make a second use of the
pattern spectrum, albeit one that is somewhat
heuristic (but very interesting). Let yp denote
opening by B, ¢p denote closing by B, and kB
denote self-dilation of B k times. Consider a
parameterized alternating-sequential-filter family
defined by g’k=¢k57k3¢(k—l)}?7(k—l}ﬂ' © Ppye,
where B is a fixed set. Schonfeld and Goutsias find
an expression for the member ¥, of the family that
provides optimal restoration for their degradation
model. The difficulty is that the parameter u is an
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unknown associated with the degradation process
and requires estimation. In the absence of an opti-
mal estimation rule for p, they employ a plausible
heuristic argument to ‘derive’ a method of ‘estimat-
ing’ p from the pattern spectrum of the degraded
image.

6. Signal and noise not disjoint: analysis of the
general problem

For nondisjoint signal and noise, the decomposi-
tion of (5) holds once again, the error terms es(r)
and ey(r) giving the areas of S,, the signal erro-
neously removed by the filter, and N,, the noise
erroneously not removed ; however, these areas are
not given by the spectra terms of (4). Decomposing
the observed image by SUN=SuU (N—S8) shows

5=5—¥.(SUN)=Sn T.(SuUN)-,

N,=N-¥Y(SUN)Y=Nn¥Y.(SUN), (16)

e(r)=A[S— Y.(SUN)]+A[Nn P(SUN)].
To treat nondisjoint S and N, let

ds(r)=A[S]Ds(r),

dy(r) =A[N](1 - Dx(r)), (17

d(r)=ds(r) +dn(r).

In the disjoint signal and noise model, the first two
equations of (16) reduce to

S=S—[FP(S)v F(N)]=5-¥.(S), 18)
N,=Nn[P(S)u V(N)]=Nn ¥.(N),
so that
es(r) = A[S]—A[F.(S)]=ds(r),
enr)=A[(Nn ¥,(S) V(N P,(N)] (19)
=A[¥N)]=dn(r),

e(r)=d(r), and (4) holds. But these equalities do
not hold in general.

What can be said in general is that es(r) <ds(r)
and exn(r) =dwy(r). Both inequalities follow from
(16) and (18), since ¥,(Su N)> ¥,(S). Thus, all

that can be concluded in general is that
max{d(r), e(r)} <ds(r) +en(r), equality holding
for disjoint S and ».

The difficulty with the nondisjoint model is that
the optimal value or r cannot be obtained from
minimizing E[e(r)] as given in (15). Employing the
current notation, in the disjoint model (15) is
rewritten as

E[e(r)]=E[d(r)] =E[ds(r)] + E[dn(r)],  (20)

whereas in the nondisjoint model there is no reduc-
tion to ds(r) and dy(r) and we are stuck with

E[e(r)]=El[es(r)] + E[en(r)]. (21)

Equation (20) provides estimation from the indivi-
dual pattern spectra, whereas (21) does not. A fun-
damental question arises: Can we predict r from
(20} and get an error comparable to that resulting
from minimization of (21)?

One way of approaching the problem is to con-
sider the difference between the true value of
E[e(r)] given by (21) and that given by (20) when
using (20) as an approximation in the nondisjoint
setting. Suppose we can find bounds K, and X so
that the difference E[e(r)] — E[d(r)] satisfies

Ko< E[e(r)] - E[d(n] <K,. (22)

If ¥** is found by minimizing E[d(r)],which is
expressed in terms of the pattern spectra, whereas
r” is the true optimal solution for E[e(r)], then two
nequalities can be deduced from (22):

E[d(r™")]+ Ko< E[e(r")] <E[e(r"")]
<E[d(r"")]+ K, (23)
Ele(r")]— Ki <E[d(r"")] <E[e(r")] - Ko.
A consequence of the first inequality is that selec-
tion of r by means of E[d(r)] minimization will
yield a 7-opening whose error lies between the min-

imal possible error and E[d(r"*)] + K, . Combining
this observation with the second inequality yields

E[e(r")]-.{E[e(rM)]SE[e(r“)]-ﬁ-K, - Ky. (24)

Consequently, K, —K, provides a bound on the
error difference resulting from finding r directly
Vol. 29, No. 3, December 1992
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from the signal and noise pattern spectra when the
signal and noise are not disjoint. In general, the
difference problem is very difficult; we will consider
a special case.

7. Nondisjoint signal and noise:
a random-grain model

To get an idea of the types of error differences
that occur, consider an image comprised of two
intersecting circular grains S and N, where S is the
signal, N is the noise, s 1s the radius of S, n is the
radius of N, and n<s. There are three subcases:

(a) r<mn<s = es(r)=0=ds(r),

en(r)=A[N—S]|<A[N]=dn(r),

(b) n<r<s = eg(r)=0=ds(r),

(25)
en(r)=A[Q]Z0=dn(r),

(c) n<s<r = es(r)=A[S]=ds(r),
ex(r)=0=du(r),

where Q, is the region depicted in Fig. 1. Two
points should be recognized: (1) in case (b),
en(r)=A[Q,]=0 if and only if N<S§; (2) in all
three subcases (of this example) es(r) = ds(r). There
exists a corresponding analysis if s<n (which

Fig. 1. Error Q..

Signal Processing

hopefully will happen with low probability):

(@) r<s<n = es(r)=0=ds(r),
en(r)=A[N—S]<A[N]=du(r),

(b) s<r<n = es(r)=A[S—(Nu W))]

<A[S]=ds(r), (26)

ex(r) = A[N = S]<A[N]=dn(r),

(¢) s<n<r = es(r)=A[S]=ds(r),
en(r)=0=dy(r),

where I, is defined analogously to Q,.

Proceeding, suppose S and N are given by (6)
and that S U N is given by (7) with S and N not
necessarily disjoint. First suppose S and N consist
of single grains. Assuming E[/V] is sufficiently less
than E[S], it is most likely that subcase (b) of (25)
will hold for an r value that is near optimal. For
case (b) there is a full restoration if N<S. There-
fore, we concentrate on case (b) when N is not a
subset of S, in which case n<r<s and the center
of the grain N is within # of the boundary of S.
Given the location of the noise-grain center, it is
possible to find ep{r) exactly, but the expression is
complicated and does not lead to a closed-form
solution. However, there are simple bounds on
en(r):

0 <en(r)<mn’,2. 27

Tighter bounds are possible if further constraints
are placed on the radii distibutions; however, given
the current assumptions, the bounds are tight.
Indeed,

lim en(r)=mn*/2, lim ex(r)=0.  (28)

Let us return to the case of @ and b grains, as in
(7). For the present, we make the assumption that
the maximum noise-grain radius is smaller than the
minimum signal-grain radius. While this assump-
tion is overly strict, it does allow a straightforward
analysis because, for optimal r, case (b) of (25)
holds for all signal-noise pairs. Moreover, even if
we consider a single signal grain in the presence of
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many noise grains, it is still not possible to have
es(r) <ds(r), so we can proceed under the assump-
tion that es(r) =ds(r). Later, we consider the effect
of weakening the assumption.

Consider a single noise grain nB+:z and let the
signal grains be denoted as in (6). Let D(r)=
e(r) —d(r), which under the governing assumption
is simply ex(r). Treating D(r) as a random variable,
we denote it by D. We would like to find a bound
on E[D]. D=0 unless the center of nB+z falls
within » of a signal-grain boundary. If 4 denotes
the entire image-frame area and we assume the
grain is thrown randomly upon the image, then the
probability that D#0 is

P(D#O)=A_I(i n(si+n)’— i 75(5,-—11)2)

i=1 i=1

=4mnA~" Y s;=4nans, (29)

i=1

where § is the mean of the 5,. Now define the ran-
dom variable ¥ by Y=1if D#0 and Y=0if D=
0. Then, using a well-known result concerning con-
ditional expectation, we obtain

E[D]=E[E[D|Y, N]]

ZF Jw E[D|F =y, N=#] foaly; o) dy i

:r Jm E[D|Y=y, N=n]

—n YV —

X frn(yIn)fn(n) dy dn

=4nasA™' j E[D|Y=1, N=nlnf\(n) dn

<2mfasA™! J. nfn(n) dn

—0o0

=2n’as E[N*]47". (30)

Since there are b noise grains, we multiply the latter
bound by b, and, recognizing that the computation
was done for a single realization, we take the

expected value over s to obtain
0<E[e(r) —d(r)] <2n’ab E[S] E[N*]4~", (31)

nonnegativity following from D=0 under the
assumption of signal-noise distributional separa-
tion. Relative to (22), the bounds are given by K, =
0 and K, =2n’ab E[S] E[/V*]4~", and in terms of
(24),

Ele(r")I<E[e(r"")]
<E[e(r")]+2n°ab E[S] E[N*]4™". (32)

If we select r** (from the signal and noise pattern
spectra) to minimize E[d(r)], we can employ
O(SUN,r™B) as a suboptimal filter and be
assured that its performance is not worse than the
bound given by (32).

Let us now consider the effect of dropping the
restriction that the maximum value of the #; is less
than the minimum value of the s;. The problem of
obtaining bounds K and K; becomes substantially
more difficult. No longer can we be assured that
D(r)=ex(r) or that inequality (27) holds, the latter
ensuring E[D|¥Y=1, N=n]<nn’2 in (27). We
must more closely consider the preceding condi-
tional expectation. We proceed approximately,
denoting the conditional expectation by £ and
considering, as in (27), a single noise grain being
tossed upon S, as given in (6). Write the difference
as

D(r)=es(r) —ds(r) +en(r) —dy (r)
=Ds(r) + Dx(r). (33)
According to (25) and (26), Ds(r) =0 unless there

exist s; such that s,<r<n, which is condition (b)
of (26). If there exist such i, say /<i<[I’, then

Ds(r)= i AlsiB+x;— (N W(i),)] - Als:B+ x;]

i

”
==Y A[NU W(i),]. (34)

i=I
The negative expression for Dg(r) shows us that it
1s possible for £ to be negative, so that K, may not
be 0 in (31). As for Dy it is negative for three
situations, (a) of (25), (a) of (26) and (b) of (26).
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In each case, a computation analogous to (34)
applies. Dy is only positive in case (b) of (25), and
here the previous analysis leading to (27) applies.

The error bound of (31) results from integrating
£ against nfy(n) and then taking the expectation
against S. Since dropping the original distribu-
tional restriction can never increase {2, the original
upper bound K still holds, albeit a bit less tightly.
However, because of the possibilities for £2 being
negative, we can no longer claim a lower bound
Ky=0. Yet, if E[/V] is sufficiently less than E[S],
then, for » close to optimal, the probabilities of the
events leading to negative €2 are relatively small,
so that employing Ky, =0 is a reasonable approxi-
mation. Consequently, we can still use (31), recog-
nizing the lower bound to be approximate and the
upper bound to be loose. Of course, if one has
reason to distrust the lower bound approximation
on distributional grounds, then one can still apply
the upper bound.

We consider an example for normal § and
normal N. First, since N is normal, E[N’]=
SE[N]*+3E[N] Var[N]. Suppose the image is
200 x 200, the signal has a =25 grains, the noise has
b=100 grains, the signal radii possess the normal
distribution Normal(3, 0.5), and the noise radii are
normally distributed with Normal(0.5, 0.1). Then
K;=2.29. Recognizing the strong distributional
difference, we apply (31) and obtain

Ele(r")] <E[e(r"")] <E[e(r")]+229. (35

Considering that the total signal area is in the vicin-
ity of 700 and the total noise area is in the vicinity
of 80, a loss of performance of 2.29 is not great
when the advantage is estimation directly from the
individual pattern spectra.

8. Simulations

To demonstate optimal parameter selection, we
have performed a number of simulations, a main
intent being to compare r" and r"" in the cases
where signal and noise overlap. The results of these
simulations are summarized in the tables. In each

Signal Processing

table, all parameters employed to generate the sig-
nal image are listed in column Signal. The signal
image may contain balls (Table 1), vertical lines
(Table 2), horizontal lines (Table 3) or both hori-
zontal and vertical lines (Table 4). The patterns
used to generate the signal image, called signal pat-
terns, are uniformly distributed on a 256 x 256
image. The length of the signal pattern is normally
distributed with mean and variance listed in col-
umn Signal; however, the width may be fixed
(Tables 1 and 2) or variable (Tables 3 and 4). In
the latter case the length-to-width ratio of the
structuring element must be fixed so that it only
depends on a signal parameter. In Tables 3 and
4, this ratio is (mean signal length)/(mean signal
width), these being 3.75 and 2.5, respectively. The
number of signal patterns in the signal image is
determined by the signal-to-noise ratio and the
total number of noise patterns. For the noise
images, all parameters are listed in the two columns
labeled Noise. The noise image may contain balls,
vertical lines or horizontal lines. The patterns
(noise patterns) used to generate the noise image
are also uniformly distributed on 256 x 256 images.
The length of each noise pattern is normally distri-
buted with mean and variance listed in the second
Noise column; however, the width of the noise may
be fixed (Tables 1 and 2) or normally distributed
(Tables 3 and 4) with mean and variance listed in
the first Noise column. The number of the various
noise patterns being employed are listed in the first
Noise column. We have discussed optimal estima-
tion for both the nonoverlapping case and the over-
lapping case. Since we have demonstrated that
** in the nonoverlapping case, it is not con-
sidered in the tables.

For each table, the signal process is the same
throughout, but the noise-process is different in
each row. Each row corresponds to a simulation
that consists of a signal image, a noise image, a
computation of r* and E[e(")] by means of the
actual symmetric-difference error, and a computa-
tion of r** and E[e(r"")] by means of the signal
and noise pattern spectra. Of particular note is the
closeness of r* and r*" throughout. Only in three

rt=r
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Table 1

275

Signal image (balls) versus noise images (different patterns)

e(r)=(S"=8S)u(§—-5")

d(r)=A[N](1 = @n(r) + A[S]Ds(r)

Noise
Signal Noise var=4 r" min E[e(r")] ret min E[d(r*")]
Ball Ball mean: 4 9 85 9 64
SNR:20 #=50 mean: 8 12 5146 13 7188
Length: Width: mean: 9 13 5108 12 6887
Mean: 15 Fixed: 1 mean: 10 13 6113 13 9668
Var: 9 mean: 11 12 7062 14 12001
mean: 12 13 8030 14 14959
Width: H-Line mean: 8 4 315 4 69
Fixed: 1 # =1000 mean: 9 4 347 4 70
Width: mean: 10 4 415 4 62
Fixed: 1 mean: 11 4 442 4 69
mean; 12 6 506 4 78
Overlap V-Line mean: 8 4 317 3 67
# =1000 mean: 9 4 355 4 65
Width: mean: 10 4 398 4 60
Fixed: 1 mean: 11 4 498 4 82
mean: 12 6 473 4 74
Table 2

Signal image (vertical lines) with noise images (different patterns)

e(rN=(8§"—-5)u(S-5")

d(r)=A[N](1 = @n(r)) + A[S]1Ds(r)

Noise

Signal Noise var=4 r" min Efe(#")] ret min E[d(r"")]
V-Line Ball mean: 4 8 204 8 151
SNR:20 #=50 mean: § 11 5525 12 6783
Length: Width: mean: 9 12 7082 13 8995
Mean: 15 Fixed: 1 mean: 10 11 7736 13 10930
Var: 9 mean: 11 12 8847 13 13713
mean: 12 12 8845 13 14924
Width: H-Line mean: 8 2 2 2 1
Fixed: 1 # =1000 mean: 9 2 2 2 1
Width: mean: 10 2 2 2 1
Fixed: 1 mean: 11 2 3 2 1
mean: 12 2 4 2 2
Overlap V-Line mean: § 11 402 11 403
4 = 1000 mean: 9 12 507 12 501
Width: mean: 10 12 571 12 502
Fixed: 1 mean: 11 13 751 13 761
mean: 12 14 896 13 909

instances do they differ by more than 1, and in
those cases the noise is close to the signal, so that
we cannot expect very good filtering in any event.

The optimality estimates r" and »™" were
obtained by using ten simulations of each image-
noise pair. For r”, using the ten simulations, e(r)

was computed as a function of r for each [by means
of (3)], and for each r the mean of the ten e(r)
values was computed, thereby giving an estimate
for E[e(r)], the mean of random function e(r). The
value of  that minimized this estimate is taken as
r". As for r**, the individual pattern spectra were
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Table 3

Signal image (horizontal lines); noise image (horizontal lines, different lengths)

Structuring

d(r)=

element e(r)=(5§"—8S)u(5§—S5") A[NJ(1—Dn(r))+A[S]Ds(r)
Noise length to Optimal
Signal Noise length width ratio »" min E[e(r")] rt min E[d(r"")] filter
H-Line H-Line mean: 4 375 9 309 9 309 L=9, W=2
SNR: 2.0 mean: 6 3.75 11 974 11 901 L=11, w=2
Length: Length: mean: 8 345 11 2086 12 2142 L=12, W=2
Mean: 15 mean: 10 3.75 12 2823 12 2972 L=12, W=3
Var: 9 Var: 4 mean: 12 3.75 12 3947 13 4222 L=12, W=3
Width Width:
Mean: 4 Mean: 2
Var: 4 Var: 1
Element: Elements: 200
Overlap
Table 4
Signal image (horizontal lines and vertical lines); noise image (horizontal lines only)
Structuring d(r)=
element e(r=(S"=S)u(S—8") A[N](1—Dn(r)+A[S]D(r)
Noise length to Optimal
Signal Noise length width ratio r” min Efe(r™)] e min E[d(r"")] filter
Hé&V-Line H-Line mean: 4 25 9 336 9 314 L=9, w=3
SNR: 2.0 mean: 6 255 9 793 9 748 L=10, W=3
Length: Length: mean: 8 2.5 10 1358 10 1287 L=10, W=4
Mean: 15 mean: 10 2.5 10 1868 11 1814 L=11, W=4
Var: 9 Var: 4 mean: 12 2.5 10 2527 10 2610 L=10, W=4
Width Width:
Mean: 6 Mean: 2
Var: 4 Var: 1
Element: Elements: 200

Overlap

taken in each case, d(r) was computed according
to (15) for various values of r, and these were aver-
aged to obtain an estimate of the random-function
mean E[d(r)]. The value of r that minimized this
estimate was taken as the optimal value ", which,
as has been demonstrated, would be optimal were
the signal and noise processes disjoint. It should be
recognized that in the nonoverlapping-simulation
estimate »**; we not only do not require the signal
and noise to be disjoint, we also do not require
the signal or the noise to be comprised of disjoint
patterns, which is a modeling assumption for the
pattern-spectrum method yielding r™".

Signal Processing

We consider some specific results. From left to
right in the top row of Fig. 2(a) we see a ball-
generated signal image S with radius possessing
mean 15 and variance 9, a ball-generated noise
image N with radius possessing mean 4 and vari-
ance 4, nonoverlapping Su N, and the optimally
filtered signal using r=9. The second row of the
figure, which corresponds to the first row of Table
1, is similar except S U N is not a disjoint union.
Figure 3(a) shows four of the ten e(r) realizations
together with the mean estimate E(e(r)] for the
overlapping process, " having been selected by
finding the low point on the mean curve. Figure
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Fig. 2. Random ball image with small-ball noise.
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Fig. 3. Error curves corresponding to Fig, 2.
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3(b) shows four of the ten d(r) realizations together
with the mean estimate E[d(r)], r"" having been
selected by finding the low point on the curve.

The image and noise realizations of Fig. 4 are
analogous to those of Fig. 2, except here we
employed noise with radius mean 8 and radius vari-
ance 4, the signal process being the same as in Fig.
2. These processes correspond to the second row
of Table 1. E[e(r)] minimization yields r* =12 and
E[d(¥)] minimization yields r** = 13. Both realiza-
tions of Fig. 4 have been filtered using r" =12.
Note that the optimal filter has not performed as
well in Fig. 4 as in Fig. 2. This should not be
surprising since in Fig. 4 the noise process is much
more similar to the signal process.

Further simulations are given in subsequent fig-
ures: Fig. 5 corresponds to the second row of Table
2, Fig. 6 to the first row of Table 3, Fig. 7 to the
first row of Table 4 and Fig. 8 to the third row of
Table 4.

From a strictly mathematical perspective, our
intent in providing the foregoing simulations has
been to demonstrate experimentally the rela-
tionship between r”* and r™"; however, reference
to the simulations can also provide an intuitive,
real-world appreciation of the estimation method-
ology. From the perspective of the random-grain
model, (§w N)-realization grains not containing
at least one r-opening primitive are removed, and

E.R. Dougherty et al. | Optimal morphological t-opening

our purpose has been to do this optimally. The
geometric character of the optimization is best
illustrated by (11), in which it is seen that error
results from erroneously removing small signal
components and erroneously leaving large noise
components, and that minimization of E[e(r)]
is the necessary mathematical requirement for
choosing an optimal filter. This particle interpreta-
tion is best illustrated in the simulations of Figs. 2
and 4.

A variation of the particle interpretation can be
achieved by considering Figs. 7 and 8. According
to the procedure adopted by Loce and Dougherty
[3,9-11] for morphological restoration of print
images via the Matheron representation theorem
[15], an optimal (or suboptimal) morphological
filter is derived via a random-process model and is
then applied to a corrupted print image to accom-
plish restoration; in fact, the printed-character
image will not strictly satisfy the model require-
ments, but good practical restoration is still
achieved. As is illustrated in Figs. 7 and 8, optimal
T-opening restoration can be applied to restore an
image composed of varied horizontal and vertical
strokes, the optimality procedure determining
which size strokes are to be eliminated. Viewing
these strokes as character components permits z-
opening optimization to be applied to print images
corrupted by background pepper components.

Qoo | o0, |[e%le |2 %
0, 8T e o8,
e Mol,° o [o® PDel,e Mo

Fig. 4. Random ball image with large-ball noise.

Signal Processing
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Fig. 6. Random horizontal-line with horizontal-line noise.

Still another interpretation can be given to the
optimization procedure by considering Fig. 5: the
image consists of objects of interest together with
‘clutter’, objects not of interest, and the goal is to
remove the clutter so as to reveal the objects of
interest (perhaps for identification purposes). In
Fig. 5 the vertical lines are of interest and the balls
are clutter. Optimization involves determination of
a best filter to eliminate the clutter.

9. Conclusion

Owing to the close relationship between granul-
ometries and opening, in certain random-grain

models it is possible to find statistically optimal -
openings for the union noise model by considering
granulometric size distributions for both signal and
noise. Optimization is facilitated by decomposition
of the symmetric-difference error into a sum of sig-
nal and noise errors. Full optimization occurs for
disjoint signal and noise because signal and noise
errors can be expressed in terms of signal and noise
pattern spectra. In the nondisjoint model, the opti-
mal filter parameter resulting from the pattern-
spectra formula is only approximate because the
signal and noise errors are not directly expressible
in terms of the respective spectra. Nonetheless, as
demonstrated both analytically for a particular
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Fig. 8. Random vertical and horizontal line image with large-horizontal line noise.

image-noise model and experimentally for more
complex models, approximating the optimal
parameter in the nondisjoint case by employing
pattern-spectra  optimization yields opening
parameters that are very close to optimal. Conse-
quently, the method is quite robust relative to the
disjointness hypothesis.
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