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Performance Characterization in Computer Vision
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1. INTRODUCTION

Computer vision algorithms aic composed of different
subalgorithms often applied in sequence. Determination
of the performance of a total computer vision algorithm
is possible if the performance of each of the subalgorithm
constituents is given. The problem, however, is that for
most published algorithms there is no performance char-
acterization which has been established in the research
literature. This is an awful state of affairs for the engineers
whose job it is to design and build image analysis or
machine vision systems.

This suggests that there has been a cultural deficiency
in the computer vision community: computer vision algo-
rithms have been published more on the merit of an experi-
mental or theoretical demonstration suggesting that some
task can be done, rather than on an engineering basis.
Such a situation was tolerated because the interesting
question was whether it was possible at all to accomplish
a computer vision task. Performance was a secondary
issue.

Now, however, a major interesting question is how
to quickly design machine vision systems which work
efficiently and which meet requirements. To do this re-
quires an engineering basis which describes precisely
what is the task to be done, how this task can be done,
what is the error criterion, and what is the performance
of the algorithm under various kinds of random degrada-
tions of the input data. To accomplish this for adaptive
algorithms requires being able to do a ciosed loop engi-
neering analysis. To perform a closed loop engineering
analysis requires being able to first do an open loop engi-
neering analysis.

The purpose of this discussion is to raise our sensitivity
to these issues so that our field can more rapidly transfer
the research technology to a faciory floor technology. To
initiate this dialogue, we will first expand on the meaning
of performance characterization in general and then dis-
cuss the experimental protocol under which an algorithm
performance can be characterized.

2. PERFORMANCE CHARACTERIZATION

What does performance characterization mean for an
algorithm which might be used in a machine vision sys-
tem? The algorithm is designed to accomplish a specific
task. If the input data is perfect and has no noise and no
random variation, the output produced by the algorithm
ought also to be perfect. Otherwise, there is something
wrong with the algorithm.

So measuring how well an algorithm does on perfect
input data is not interesting. Performance characterization
has to do with establishing the correspondence of the
random variations and imperfections which the algorithm
produces on the output data caused by the random varia-
tions and the imperfections on the input data. This means
that to do performance characterization, we must first
specify a model for the ideal world in which only perfect
data exist. Then we must give a random perturbation
model which specifies how the imperfect perturbed data
arises from the perfect data. Finally, we need a criterion
function which quantitatively measures the difference be-
tween the ideal output arising from the perfect ideal input
and the calculated output arising from the corresponding
randomly perturbed input.

Now we are faced with an immediate problem relative
to the criterion function. It is typically the case that an
algorithm changes the data unit. For example, an edge-
linking process changes the data from the unit of pixel
to the unit of a group of pixels. An arc segmentation/
extraction process applied to the groups of pixels pro-
duced by an edge linking process produces fitted curve
segments. This data unit change means that the represen-
tation used for the random variation of the output data
set may have to be entirely different than the representa-
tion used for the random variation of the input data set.
In our edge-linking/arc extraction example, the input data
might be described by the false alarm/misdetection char-
acteristics produced by the preceding edge operation, as
well as the standard deviation in the position and orienta-
tion of the correctly detected edge pixels. The random
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variation in the output data from the extraction process,
on the other hand, must be described in terms of fitting
errors (random variation in the fitted coefficients) and
segmentation errors. Hence, the criterion function may
change from stage to stage in the analysis process,

Consider the case for segmentation errors. The repre-
sentation of the segmentation errors must be natural and
suitable for the input of the next process in high-level
vision which might be a model-matching process, for ex-
ample. What should this representation be to make it
possible to characterize the identification accuracy of the
model matching as a function of the input segmentation
errors and fitting errors? Questions like these, have typi-
cally not been addressed in the research literature. Until
they are, analyzing the performance of a machine vision
algorithm will be in the dark ages of an expensive experi-
mental trial-and-error process. And if the performance of
the different pieces of a total algorithm cannot be used
to determine the performance of the total algorithm, then
there cannot be an engineering design methodology for
machine vision systems.

This problem is complicated by the fact that there are
many instances of algorithms which compute the same
sort of information but in forms which are actually non-
equivalent. For example, there are arc extraction algo-
rithms which operate directly on the original image along
with an intermediate vector file obtained in a previous
step and which output fitted curve segments. There are
other arc extraction algorithms which operate on groups
of pixels and which output arc parameters such as center,
radius, and endpoints in addition to the width of the origi-
nal arc.

What we need is the machine vision analog of a system’s
engienering methodology. This methodology can be en-
capsulated in a protocol which has a modeling component,
an experimental component, and a data analysis compo-
nent. The next section describes in greater detail these
components of an image analysis engineering protocol.

3. PROTOCOL

The modeling component of the protocol consists of a
description of the world of ideal images, a description of
a random perturbation model by which non-ideal images
arise, and a specification of the criterion function by which
the difference between the ideal output and the computed
output arising from the imperfect input can be quantified.
The experimental component describes the experiments
performed under which the data relative to the perfor-
mance characterization can be gathered. The analysis
component describes what analysis must be done on the
experimentally observed data to determine the perfor-
mance characterization.
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3.1. Image Acquisition

This part of the protocol describes how, in accordance
with the specified model, a suitably random, independent,
and representative set of images from the population of
ideals is to be acquired or generated to constitute the
sampled set of images. This acquisition can be done by
taking real images under the specified conditions or by
generating synthetic images. If the population includes,
for example, a range of sizes of the object of interest or
if the object of interest can appear in a variety of situa-
tions, or if the object shape can have a range of variations,
then the sampling mechanism must assure that a reason-
able number of images are sampled with the object
appearing in sizes, orientations, and shape variations
throughout its permissible range. Similarly, if the object
to be recognized or measured can appear in a variety of
different lighting conditions which create a similar variety
in shadowing, then the sampling must assure that images
are acquired with the lighting and shadowing varying
throughout its permissible range.

Some of the variables used in the image generation
process are ones whose values will be estimated by the
computer vision algorithm. We denote these variables by
Zys .., Zg. Other of these variables are nuisance vari-
ables. Their values provide for variation. The perfor-
mance characterization is averaged over their values. We
denote these variables by wy, ..., w,,. Other of variables
specify the state of the controlled random perturbation
and noise against which the performance is to be charac-
terized. We denote these variables by y,, ... , y;. The
generation of the images in the population can then be
described by N = J + K + M variables. If these N
variables having to do with kind of lighting, light position,
object position, object orientation, permissable object
shape variations, undesired object occlusion, environ-
mental clutter, distortion, noise, etc., have respective
range sets R,, ..., Ry then the sampling design must
assure that images are selected from the domain R, X
R, % ... X Ryinarepresentative way. Since the number
of images sampled is likely to be a relatively small fraction
of the number of possibilities in R; X R, x ... X Ry,
the experimental design may have to make judicious use
of a Latin square layout.

3.2. Random Perturbation and Noise

Specification of random perturbation and noise is not
easy because the more complex the data unit, the more
complex the specification of the random perturbation and
noise. Each specification of randomness has two potential
components. One component is a small perturbation com-
ponent which affects all data units. It is often reasonable
to model this by an additive Gaussian noise process on
the ideal values of the data units. This can be considered
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to be the small variation of the ideal data values combined
with observation or measurement noise. The other com-
ponent is a large perturbation component which affects
only a small fraction of the data units. For simple data
units it is reasonable to model this by replacing its value
by a value having nothing to do with its true value. Large
perturbation noise on more complex data units can be
modeled by fractionating the unit into pieces and giving
values to most of the pieces which would follow from the
values the parent data unit had and giving values to the
remaining pieces which have nothing to do with the values
the original data unit had.

This kind of large random perturbation affecting a small
fraction of units is replacement noise. It can be considered
to be due to random occlusion, linking, grouping, or seg-
menting errors. Algorithms which work near perfectly on
small amounts of random perturbation on all data units,
often fall apart with large random perturbation on a small
fraction of the data units. Much of the performance char-
acterization of a complete algorithm will be specified in
terms of how much of this replacement kind of random
perturbation the algorithm can tolerate and still give rea-
sonable results. Algorithms which have good performance
even with large random perturbation on a small fraction
of data units can be said to be robust.

3.3. Performance Characterization

Some of the variables used in the image generation are
those whose values are to be estimated by the machine
vision algorithm. Object kind, location, and orientation
are prime examples. The values of such variables do not
make the recognition and estimation much easier or
harder, although they may have some minor effect. For
ecxample, an estimate of the surface normal of a planar
object viewed at a high slant angle will tend to have higher
variance than an estimate produced by the planar object
viewed at a near normal angle. The performance charac-
terization of an image analysis algorithm is not with re-
spect to this set of variables. From the point of view of
what is to be calculated, this set of variables is crucial.
From the point of view of performance characterization,
the values for the variables in this set as well as the
values in the nuisance set are the ones over which the
performance is averaged.

Another set of variables characterize the extent of ran-
dom perturbations which distort the ideal input data to
produce the imperfect input data. These variables repre-
sent variations which degrade the information in the im-
age, thereby increasing the uncertainty of the estimates
produced by the algorithm. Such variables may character-
ize object contrast, noise, extent of occlusion, complexity
of background clutter, and a multitude of other factors
which instead of being modeled explicitly are modeled
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implicitly by the inclusion of random shape perturbations
applied to the set of ideal model shapes.

Finally, there may be other variables governing parame-
ter constants that must be set in the image analysis algo-
rithm. The values of these variables may to a large or
small extent change the performance of the algorithm.

The variables governing the extent of random perturba-
tions and the variables which are the algorithm parameter
constants constitute the set of variables in terms of which
the performance characterization must be measured. Sup-
pose there are I algorithm parameters x,, ... , x;, which
can be set, J different variables y,, ... , y; governing
the extent of random perturbations, and K different mea-
surements 7,, . ..., Zx to be made on each image. There
will be a difference between the true ideal values z,, . . .,
Zg of the measured quantities and the measured values
2., ..., Zx themselves. The error criterion, e(zy, ..., Zg,
2, ..., £g), must state how the comparison between the
ideal values and the measured values will be evaluated.
Its value will be a function of the [ algorithm parameters
and the J random perturbation parameters.

An algorithm can have two different dimensions to the
error criterion. To explain these dimensions, consider
algorithms which estimate some parameter such as posi-
tion and orientation of an object. One dimension the error
criterion can have is reliability. An estimate can be said
to be reliable if the algorithm is operating on data that
meets certain requirements and if the difference between
the estimated quantity and the true but known value is
below a user specified tolerance. An algorithm can esti-
mate whether the results it produces are reliable by mak-
ing a decision on estimated quantities which relate to
input data noise variance, output data covariance, and
structural stability of calculation. Qutput quantity covari-
ance can be estimated by estimating the input data noise
variance and propagating the error introduced by the noise
variance into the calculation of the estimated quantity.
Hence the algorithm itself can provide an indication of
whether the estimates it produces have an uncertainty
below a given value. High uncertainties would occur if
the algorithm can determine that the assumptions about
the environment producing the data or the assumptions
required by the method are not being met by the data on
which it is operating or if the random perturbation in the
quantities estimated is too high to make the estimates
useful.

Characterizing this dimension can be done by two
means. The first is by the probability that the algorithm
claims reliability as a function of algorithm parameters
and parameters describing input data random perturba-
tions. The second is by misdetection false alarm operating
curves. A misdetection occurs when the algorithm indi-
cates it has produced a reliable enough result when in
fact it has not produced a reliable enough result. A false
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alarm occurs when the algorithm indicates that it has
not produced a reliable enough result when in fact it has
produced a reliable enough result. A misdetection false
alarm rate operating curve results for each different noise
and random perturbation specification. The curve itself
can be obtained by varying the algorithm tuning constants,
one of which is the threshold by which the algorithm
determines whether it claims the estimate it produces is
reliable or not.

The second dimension of the error criterion would be
related to the difference between the true value of the
quantity of interest and the estimated value. This criterion
would be evaluated only for those cases where the algo-
rithm indicates that it produces a reliable enough result.

Each estimated quantity 2, is a function of the values
of the algorithm constants x,, ... , x; and the random
perturbation induced on the image by the values of the
variables y,, .. , y; and each gz, is a function only of the
algorithm constants x, ... , x;. The expected value E of
€(Zys 5 Zgs 215 «+ . » 2g) 1s, therefore, a function of x|,

., xpand y;, ..., ;. Performance characterization
of the estimated quantity then amounts to expressing in
graph, table, or analytic form Ele(z;, ... , Zg, Z1s -
Zx)] as a function of x, ..., xyand ¥y, ..., y;.

3.4. Experiments

In a complete design, the values for the algorithm con-
stants x;, ..., x; and the values governing the random
perturbations y,, ..., y; will be selected in a systematic
and regular way. The values for z;, . . ., zx and the values
for the nuisance variables wy, ... , wy will be sampled
from a uniform distribution over the range of their permis-
sible values.

The values for z;, ... . zx uniquely specify an ideal
image. The values for y, ... , y; specify the extent to
which random perturbations and noise are randomly intro-
duced into the ideal image and/or object(s) in the ideal
image. In this manner, each noisy trial image is generated.
The values for x,, . . ., x; specify how to set the parameter
constants required by the algorithm. The algorithm is then
run over the trial image producing estimated values Z,,

., fxforzy, ..., zx. Applying the error criterion then
produces the values e(zy, ..., 2x, 2y, - .. » 2¢). The data
produced by each trial then consists of a record

M o v 4 e(Zyy « v s Zs 210 o oo 5 2R

s Xps Yo - 5 Yis

The data analysis plan describes how the set of records
produced by the experimental trials will be processed or
analyzed to compactly express the performance charac-
terization. For example, an equivalence relation on the
range space fory,, ..., y,;may be defined and an hypothe-
sis may be specified stating that all combinations of values
of y;, ..., y, in the same equivalence class have the same
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expected error. The data analysis plan would specify the
equivalence relation and give the statistical procedure by
which the hypothesis could be tested. Performing such
tests is important because they can reduce the number of
variable combinations which have to be used to express
the performance characterization. For example, the hy-
pothesis that all other variables being equal, whenever
v;_/v; has a ratio of &, then the expected performance
is identical. In this case, the performance characterization
can be compactly given in terms of k and y, ..., y;_5.

Once all equivalence tests are complete, the data analy-
sis plan would specify the kinds of graphs or tables em-
ployed to present the experimental data. It might specify
the form of a simple regression equation by which the
expected error, the probability of claimed reliability, the
probability of misdetection, the probability of false alarm,
and the computational complexity or execution time can
be expressed in terms of the independent variables x,,

s X1s Yis - -5 ¥y As well, it would specify how the
coefficients of the regression equation could be calculated
from the observed data.

Finally, if the computer vision algorithm must meet
certain performance requirements, the data analysis plan
must state how the hypothesis that the algorithm meets
the specified requirement will be tested. The plan must be
supported by a theoretically developed statistical analysis
which shows that an experiment carried out according to
the experimental design and analyzed according to the
data analysis plan will produce a statistical test, itself
having a given accuracy. That is, since the entire popula-
tion of images is only sampled, the sampling variation will
introduce a random flucation in the test results. For some
fraction of experiments carried out according to the proto-
col, the hypothesis to be tested will be accepted but the
algorithm, in fact, if it were tried on the complete popula-
tion of image variations, would not meet the specified
requirements; and for some fraction of experiments car-
ried out according to the protocol, the hypothesis to be
tested will be rejected but if the algorithm were tried on
the complete population of image variation, it would meet
the specified requirements. The specified size of these
errors of false acceptance and missed acceptance will
dictate the number of images to be in the sample for the
test. This relation between sample size and false accep-
tance rate and missed acceptance rate of the test for the
hypothesis must be determined on the basis of statistical
theory. One would certainly expect that the sample size
would be large enough so that the uncertainty caused by
the sampling would be below 20%.

For example, suppose the error rate of a quantity esti-
mated by a machine vision algorithm is defined to be the
fraction of time that the estimate is further than g; from
the true value. If this error rate is to be less than kg,
then in order to be about 85% sure that the performance
meets specification, 10,000 tests will have to be run. If
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the image analysis algorithm performs incorrectly nine or
fewer times, then we can assert that with 85% probability,
the machine vision algorithm meets specification [1].

4. CONCLUSION

We have discussed the problem of the lack of perfor-
mance evaluation in the published literature on computer
vision algorithms. This situation is causing great difficult-
ies for researchers who are trying to build upon existing
algorithms and for engineers who are designing opera-
tional systems. To remedy the situation, we suggested
the establishment of a well-defined protocol for determin-
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ing the performance characterization of an algorithm. Use
of this kind of protocol will make using engineering system
methodology possible as well as making possible well-
founded comparisons between machine vision algorithms
that perform the same tasks. We hope that our discussion
will encourage a thorough and overdue dialogue in the
field so that a complete engineering methodology for per-
formance evaluation of machine vision algorithms can
finally result.
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1. GENERAL COMMENTS

The article by R. M. Haralick [1] underlines the impor-
tance of performance evaluation studies at a formal level
in a vision system where noise plays a crucial role in
the quantitative study of the results. He also suggests
considering a number of steps for the overall evaluation
of an artificial vision system: (1) a noise model to apply
on input images; (2) a closed loop engineering analysis;
(3) a parameter set for measuring both algorithmic perfor-
mance and robustness with respect to corrupted images.

With respect to the first point, we should note that
most studies use images with superimposed artificial noise
which may not reproduce real scenes. The nature of the
image perturbation may be local (as in the occlusion case
mentioned in the note) or global with some peculiar
aspects due to the physical nature of the scene (dirty
background, irregular illumination, uneven shading,
etc.).

As for the second point we agree on the importance of
a feedback loop for evaluating the algorithmic perfor-
mance as a function of the obtained results (implicitly
considering the existence of an automatic learning mecha-
nism), although an open loop analysis may also provide
a significant insight.

As a last point, it seems difficult to extract or define
general parameters for the evaluation of a full system
since different data representations are generally used
at different processing levels (sometimes having specific
computer architectures exploiting parallelism).

Consider, for instance, the evaluation of an optical char-
acter reader where the input device may differ from sys-
tem to system (various signal-to-noise ratios and transfer
functions), the application may include only printed fonts
or handwritten ones, the use of temporal information (as in
sequential recognizers) and/or context, the use of custom
chips or of a general purpose computer with special recog-
nition programs, etc. In all these cases it would be ex-
tremely difficult to provide parameters that may help in
quantifying the performance of such systems.
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2. CULTURAL ORIGINS

The solution to a computer vision problem strongly
depends on education, i.e., on the university degree
(mathematics, engineering, computer science, psychol-
ogy, etc.) and on the cultural background. For instance,
consider the problem of recognizing and manipulating ob-
jects in the blocks world, with some given constraints, A
mathematician would first consider the geometrical de-
scription of the scene, then model the objects, and finally,
try to match the observed scene to those models for recog-
nition; an engineer would analyze the required measure-
ments (from range finders, light sensors, telecameras,
etc.) in order to obtain values to be used for object detec-
tion, recognition, and manipulation; a computer scientist
would first preprocess the scene and then segment for
subsequent identification and labeling of the components/
objects giving emphasis on the computational aspect and
communication issues of all the implied algorithms; a cog-
nitive scientist would analyze perceptual cues from the
objects to infer a description that could be later used in
a human-like recognition process.

Performance studies, originated by the engineering ap-
proach have been sometimes neglected by researchers.
In the early vision systems many other technical questions
had to be answered first in order to become operational
and, moreover, the difficulties encountered in the overall
evaluation of such systems discouraged the investigation
of a performance characterization particularly when atask
independency is requested.

ESPRIT is a good example of a combined European
research effort that, starting from well-defined tasks, gen-
erally within industrial environments to achieve specific
goals, tries to develop innovative methodologies and tech-
niques for solving such tasks in order to design prototypi-
cal systems. This research program involves both acade-
mia and industries with well-defined roles; in one
particular program one of the purposes of an applied re-
search program considers performance evaluation explic-
itly [2].
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3. PERFORMANCE STUDIES IN THE PAST

Performance evaluation has always been a difficult and
nonrewarding effort much like standardization and cre-
ation of large bibliographical databases; all these efforts
have been postponed since they are believed to be neither
gratifying nor publishable.

Let us start by describing the evolution of the ap-
proaches to performance evaluation in image processing
from the beginning of the 1960s. Initially, the main prob-
lem was first to establish whether the task could be accom-
plished at all. This was not obvious, since the solution
of many subtasks (overcoming signal-to-noise problems,
preprocessing for feature extraction, choosing some sig-
nificant measurements, achieving high classification rate,
etc.) was necessary in order to achieve the recognition
task. Each single research group, worked on his own test
data for a given application area (biomedical, physical,
industrial, geographical, etc.). Later on, during the 1970s,
quantitative analysis was done on the time required to
solve the problem on a given class of machines (in terms
of clock cycles, time dependency, program length, porta-
bility, cost) and finally (during the 1980s) the interest was
shifted toward the evaluation of the quality of the obtained
results in a formal way.

This is indeed a challenging task since, although many
efforts have been devoted to express the processes in-
volved in image transformations and pattern recognition
within artificial vision systems, it has proved difficult both
to express image quality in a quantitative way as well as
recognition efficiency; as a consequence no progress has
been made in reaching a universal solution. Keeping in
mind that the computer has always played a central role
and that it has continuously evolved (see different compu-
tational models) within the area of image processing and
pattern recognition applications, the borderlines between
algorithm design, architecture development, and techno-
logical choice (acquisition transducers, optical comput-
ing, communication, etc.) have been gradually displaced.
First, new algorithms were developed to accomplish well-
defined tasks which could be integrated into full software
packages, next new computer architectures were con-
ceived so as to match the image data and processing tasks
to the corresponding algorithms, and finally, specific cir-
cuits used for the processing units and interconnections
were designed and built to improve reliability and overall
performance.

Benchmarks were introduced in the 1980s and one sig-
nificant case is the Abingdon cross [3] which contained
the most typical, elementary image processing operations
and, as such, was easily accepted by over 30 different
groups which provided their coded programs and time/
cost values to perform the task. Such task was the extrac-
tion of the skeleton of a cross embedded in Gaussian noise.
In this effort the number of image pixels, the required
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time, and the machine cost were considered, neglecting
the evaluation of the perceptual quality of the final image.
As mentioned and motivated in [4], a useful benchmark
for image processing is ditficult to achieve, although it is
“‘an important and worthwhile exercise.”

Programs are language dependent and with the new
suggested paradigms (object oriented, logical, functional,
etc.) it is even more difficult to make comparisons of
transparency, portability, simplicity, program length,
etc.; execution times are able hardware and technology
dependent while cost heavily relies on the number of
systems produced/sold. For the above reasons it would
be better to introduce other parameters, possibly taking
into account the quality of the obtained results.

Another issue in the performance evaluation activity is
the definition of the set of test data which, in some cases,
is provided by an institution (as an example, a character
database is stored and distributed by the NBS); in other
cases it may be defined by a group of researchers (multi-
computer workshops) [5-9].

4. HUMAN JUDGMENT OF RESULTS

Although it would be nice to have a quantitative evalua-
tion of performance given by an analytical expression, or
more visually by means of a table or graph, we must
remember that the final evaluator is man and that his
subjective criteria depend on his practical requirements.
In order to do this, a better presentation of the output
may help to make judgments about the obtained results
(partial and final); image visualization in a controlled envi-
ronment and with real time presentation greatly facilitates
the observer’s evaluation,

5. SYSTEM ROBUSTNESS

In order for a system to be reliable and usable in a
real environment it should not collapse with minor local
perturbations. A similar approach to the one used in mate-
rial sciences, i.e., stress analysis, could be employed in
the evaluation of the vision system robustness by estab-
lishing a perturbation scale and a threshold above which
no correct response is obtained. Even if no fully formal
characterization of robustness has been given in computer
vision yet, this requirement is always on the forefront,
particularly in fields like image motion analysis and 3D
reconstruction, where small variations produce occlusion
so severe that recognition is hindered. Similarly to other
fields, a graceful degradation is also desirable since a
poorer response is better than no response from the
system.

6. DIFFERENT DATA REPRESENTATION

As mentioned in Haralick’s note, since representation
of data may differ according to the processing level (low
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level, intermediate level, and high level in artificial vision)
the introduction of a cost function may turn out to be
highly difficult due to the nonhomogeneous nature of the
data; this is particularly true for the higher (logical/seman-
tic) levels reached at the end of the process with respect
to the source information at the basic or pixel level. On
the other hand, if a performance value is computed for
each level they cannot be added to obtain a global perfor-
mance value since we are working with a nonlinear
system.

7. CONCLUSIONS

We strongly appreciate the attempt to characterize the
quality of an image processing system independently from
the task it is performing, and, as mentioned above, we
realize that many difficulties in achieving such a goal may
be encountered. We believe that we still have a long way
to go and therefore must now principally rely on human
judgement for obtaining a practical evaluation; for some
specific applications we feel that this is doomed to be the
only possibility.
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Haralick [1] has raised a very important issue: that of
performance characterization of computer vision algo-
rithms. We argue that his goal as stated in the protocol
is laudable but that it is in most cases very difficult, if not
impossible, to achieve. Nonetheless, because perfor-
mance evaluation is of the utmost importance, we need
to try to approach this goal as closely as possible. The
protocol he proposed covers three components of perfor-
mance evaluation: image generation, random perturba-
tion, and performance characterization. Each component
may involve a large number of variables. Since the number
of images sampled is likely to be relatively small, the
applicability and proper selection of these variables is
of great importance to the quality of the performance
evaluation. We bring up some related issues that need
attention in conducting performance evaluation.

1. WIDE VARIATION OF VISION PROBLEMS

During the 1970s and early 1980s, fascinated by the
power of the computer, computer vision researchers iden-
tified various vision tasks and attempted to develop algo-
rithms that perform these tasks, often assuming some
idealized and restricted situations. During that early stage,
since the main concern was about whether something
can be done, the techniques that were used by those
algorithms are often relatively crude and little or no per-
formance characterization was conducted. After some at-
tempts, which ended up with either preliminary success
or failure, many rescarchers have realized the limitation
of those techniques and started to seriously investigate
computer vision on a more solid basis. Computer vision
researchers became concerned with rigorous definition of
the vision tasks, the solution methods, as well as other
related issues such as the existence, uniqueness, com-
pleteness, stability optimality, robustness, and efficiency
of the solution. Today many of us believe that computer
vision is a discipline of both science and engineering which
needs rigorous scientific methodology and precise engi-
neering specifications. But as pointed out by Haralick,
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for most published computer vision algorithms, there is
little or no performance characterization. It appears that
this phenomenon is more evident among high-level Al
type algorithms than among low-level image processing
type algorithms.

The lack of performance characterization in computer
vision is due largely to the difference in nature between
computer vision and traditional engineering disciplines.
The major difference lies in the complexity of the vision
problems and the need for knowledge. The complexity is
reflected by the fact that most vision problems have not
been rigorously defined. The available definitions of most
vision problems are rather descriptive and rely very much
on our experience with human visual capabilities. Be-
cause the problem itself is not well defined, the perfor-
mance characterization is then groundless. The use of
knowledge (which can be implicitly embedded into the
solution methods) implies that the performance is highly
scene dependent. For example, a texture segmentation
algorithm may work well on one type of image but fall
apart on other types. Due to the complexity of the prob-
lems and the use of knowledge, many factors (e.g., texture
type, background complexity, and occlusion) that are
closely related to the performance of an algorithm cannot
be easily parameterized without contaminating the perfor-
mance evaluation with some subjective bias.

The wide variation of computer vision problems may
require that performance characterization be conducted
according to the problem category. Roughly speaking,
computer vision problems fall into three categories. The
first category corresponds to low level problems. A prob-
lem is considered as low level here if it can be solved, to
a large extent, from images based on mathematics and
physics, and little or no high-level knowledge is neces-
sary. Edge detection, shape from shading, and motion
parameter estimation are such examples. The second cat-
egory contains middle level problems whose solution re-
quires extensive use of the knowledge about the visual
appearance of the objects. Generic object recognition and
segmentation belong to this category. The third category
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includes high level problems, which require symbolic rea-
soning from sensory data. Path planning, collision avoid-
ance, autonomous navigation, and sensor guided assem-
bly belong to this category. Very often, although not
necessarily, the higher level problems require the results
of lower level problems as input. Performance character-
ization for these three categories should be different since
their solutions and objectives are quite different in nature.

2. SUBPROBLEMS AND DATA GENERATION

Arguably, computer vision currently is still mainly an
area of research rather than applications. Often, the vision
tasks are broken into subproblems and each is investi-
gated separately, under the assumption that the results
from lower level modules are available. But the level
specific nature of these subproblems complicates their
performance characterization. For example, the random
perturbation of input data might not be realistic for simu-
lating the imperfection of the input, since the actual error
in the input, which is often an output of another algorithm,
is highly correlated with the input itself. For instance, the
error in stereo matching is usually closely related to the
depth discontinuities and occlusions. Random noise in
the input depth map may be casy to deal with by imposing
certain types of smoothness, but the error along depth
discontinuities and near occluded regions cannot be dealt
with effectively by the same smoothness constraints. An
algorithm which performs well under random noise may
perform poorly on real input data. Therefore, ideally the
performance characterization of an algorithm should be
based on actual input and its intended use, together with
the precedent and subsequent algorithms.

For many engineering systems, the specification of the
total system can be met by imposing specifications on
each subsystem. However, in computer vision, the perfor-
mance of a vision algorithm can be so scene-dependent
that often there exists no proper set of parameters that
can usefully characterize the performance of a subsystem.
For instance, consider an edge detector whose result is
to be used by some edge-based recognition systems. The
success of the detector may depend very much on the
image content or the objects in the scene. It may detect
every edge in one context and miss most of the edges
in another. Although one can come up with an average
detection rate based on a set of sample images, this detec-
tion rate may tell little about how successful an edge-
based recognizer can be which uses the result from the
edge detector. An artist’s line-drawing rendition of a natu-
ral scene is very different from the output of a Laplacian-
of-Gaussian edge detector applied to the same scene. The
former preserves and links most identify-informative
edges (those that are informative for identifying the ob-
jects in the scene) and neglects the rest; while the latter
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gives just intensity edge curves that run from one object
to another. Therefore, an edge detector with a smaller
detection rate (the artist, as in our example, or other
good edge detectors designed for recognition) may allow
a better recognition than one with a larger detection rate
(Laplacian of Gaussian in our example). But an identity-
informative edge is not well-defined. Consequently, it is
difficult to impose proper specifications on an identity-
informative edge detector and evaluate its performance.
So, the performance characterization for subproblems
is very complex. Imperfection of input data is often scene
dependent, and random perturbation might not be a suit-
able model for modeling the imperfection. While the solu-
tions to some relatively simple vision problems may in-
volve only a few numerical estiamtes or detection flags,
the solutions to many other problems are in more complex
forms, such as object segmentation, uncertain recogni-
tion, scene understanding (description of the scene), pre-
diction, knowledge representation, planning, and mission
specification. The quality of the outputs, either numerical
or nonnumerical, are not always characterized by some
types of statistical average. Furthermore, the relation-
ships among subsystems are both nonlinear and scene
dependent, thus, propagation of even random errors
through the total system is in most cases very compli-
cated. As a result, except for some simple problems, the
goal of predicting the total vision system performance
from subsystem performances may be unachievable,

3. THE NEED FOR PERFORMANCE
CHARACTERIZATION

Despite the complexity of the computer vision algo-
rithms and the difficulties in their performance character-
ization, computer vision algorithms cannot do without
some performance characterization.

Performance characterization is important in order to
identify under which conditions the algorithm gives good
result and under which it does not. We must deal with a
wide variation of real world conditions, including varia-
tions in lighting source, lighting geometry, viewing posi-
tion, surface optical property, surface geometry, and ob-
ject types. An algorithm that works in one situation may
fail in another. A valid algorithm must clearly identify the
conditions under which the algorithm performs normally
and the quality of the solution under these conditions.

Performance characterization is also useful in establish-
ing the value of a new algorithm. We may have seen
many algorithms that perform the same task. For a new
algorithm, one must clearly demonstrate its performance
and the advantages over existing algorithms. Without
knowing which algorithm is better, it is very difficult for
a practitioner to select an appropriate algorithm.

Performance characterization can sometimes provide
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insight into the problem itself, not just the particular algo-
rithm under consideration. For example, one may wish
to obtain a good estimate of the motion parameter from
a sequence of low resolution images, say 64 x 64. But
the digitization noise has imposed a theoretical lower error
bound that itself is larger than the tolerable error. We can
know what is the best one can possibly do by conducting
the performance characterization of the algorithm that is
known to have nearly reached the bound.

Performance characterization of all the algorithms for
a particular problem may indicate clearly the state of the
art of the problem, not just a few ad hoc examples about
something doable.

4, FACILITATION OF PERFORMANCE
CHARACTERIZATION

For most low-level problems, one of the key measures
of the performance is the stability under image noise, and
the quality of the solution can be characterized by some
numerical measurements. The protocol proposed by Har-
alick can be used to conduct performance evaluation for
these problems. But it should be noted that the criteria
used for characterization should be suitable for the in-
tended application.

The major concern of middle and high level problems
is not necessarily noise immunity. Normally, successful
recognition from good real images is sufficient for most
applications. The main concern could be the success rate,
or other appropriate measures, under different lighting
conditions, viewing positions, backgrounds, object types,
etc. A large number of these factors result in a huge space
from which a small number of sample images are to be
generated. The selection of the sample images from this
huge space is inevitably either subjective or accidental.

As discussed above, it is difficult to generate suitable
input data sets for subproblems. Synthetically generated
data with random noise contamination are often far from
what one actually obtains in a real world situation. It
is not always possible for every researcher to generate
realistic input data from original images.

Therefore, though performance characterization is an
extremely difficult task. To promote performance charac-
terization, we need not only protocols, but also means
that facilitate such characterizations. The heavy burden of
sample image generation, imperfect input data generation,
and performance criteria selection should be removed
from individual researchers as much as possible so that
the individual cost of conducting performance character-
ization is not so formidable. This can be made possible
by establishing the following channels that facilitate per-
formance characterization in the computer vision com-
munity.
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1. Image sharing. A set of images can be collected from
different groups and be entered into an image database
available to the public. It is encouraged to use images
from this database for various experiments. The results
from different algorithms can be compared and the perfor-
mances evaluated. The selection of the images in the im-
age database should take into account the permissible
range of image generation variables. The 1991 IEEE Work-
shop on Visual Motion has organized a public image se-
quence database for image sequence analysis. Such a
practice may be extended to other computer vision
problems.

2. Result sharing. The results from different groups
can be organized into a public result database. The results
are indexed according to the images in the image database
and the tasks to be performed. These results can be used
by others as input for their subsequent algorithms. They
are also useful for comparison with other new algorithms
that perform the same task. Without such result sharing,
the comparison requires independent implementation of
others’ algorithms, which may compromise the fidelity of
the original algorithms. Currently, in the computer vision
community, result sharing is conducted only occasionally
between groups. A coordinated public result database
may greatly facilitate and expand such collaborations.

3. Program sharing. Various programs from different
groups can be collected into a program library. Those
programs can be used by other researchers to generate
the input data they need. The use of these programs may
be restricted to academic research only and not for com-
mercial use. Certain other limitations may also apply,
e.g., the authors’ permission and participation inany com-
parison that is intended for publication. Currently, various
program giving-away is happening among various aca-
demic groups. Most of those programs are used to bridge
the gaps in computer vision experiments. By doing so,
one can conduct performance evaluation from real data
without having to write programs to generate the input
data needed.

4. Open competition. Every group that has published
the algorithms that perform the same task is encouraged
to participate in the open competitions for the task. To
eliminate human intervention, every participating group
is required to submit its program to an organizing commit-
tee. The committee independently selects a set of test
images, runs every algorithm on these images, and evalu-
ates the results according to some predetermined rules.
Open competition is probably the most objective way of
conducting performance evaluation. Computer chess has
had similar competitions for quite some time, and the
computer vision community can do the same.

Facilitating performance evaluation is one of the key
factors for the success of promoting performance evalua-
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tion. We think that the lack of performance evaluation in
computer vision has not so much to do with the under-
standing of its importance as with the difficulties and the
lack of facilities that may otherwise make the task more
tractable.

5. CONCLUSIONS

Serious discussion on performance characterization in
computer vision is indeed overdue. In our view, the lack
of performance evaluation is mainly due to various diffi-
culties peculiar to computer vision. An important charac-
teristic of performance evaluation for computer vision
algorithms is that there are a large number of parameteri-
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zable and nonparametrizable factors that need to be taken
into account. The subproblem status of many vision algo-
rithms make a thorough performance characterization
very difficult and time consuming. In order to translate
our awareness of performance characterizatiaon into ev-
eryone's action, we need to facilitate performance charac-
terization. We propose the establishment of public data-
base facilities which allow free sharing of data, results,
and programs. Objective performance evaluation should
also be conducted in the form of open competitions.

REFERENCE

1. R. M. Haralick, Performance characterization of computer vision,
CVGIP: Image Understanding 59, 1994,



CVGIP: IMAGE UNDERSTANDING
Vol. 60, No. 2, September, pp. 257-259, 1994

REPLY

Computer Vision: The Goal and the Means

PETER MEER

Department of Electrical and Computer Engineering, Rutgers University, P.0. Box 909, Piscataway, New Jersey 08855-0909

In his intriguing position paper Haralick proposes an
engineering approach toward the development and valida-
tion of computer vision algorithms. He emphasizes that
the reliability of these algorithms (and therefore the matu-
rity of the field) cannot be achieved without using quanti-
tative methods at every stage of design. Intuition and luck
should be replaced by methodology and inference.

We can only agree with the ideas put forth in the posi-
tion paper. Changes in our way of approaching computer
vision problems are certainly needed. However, we must
also examine the present state of the field and evaluate
whether or not it is possible to advance in one ‘‘great leap
forward.” The complexity and diversity of the visual input
is extremely challenging and we may not yet understand
all the implications arising from its discrete nature. To
make our point clear we discuss the problem of random
perturbations. Along the presentation some of the conclu-
sions are spelled out as questions. In our opinion satisfac-
tory answers to these questions are a prerequisite for
achieving reliable universal computer vision algorithms.

Central to any engineering procedure is the access to
ground-truth, i.e., to a known input—output relation. The
ground-truth allows the designer to compare the output
of an algorithm with the expected correct result. Under-
standing the discrepancies between the obtained and de-
sired output helps to improve the algorithm to achieve
better performance. Discarding all the unrelevant compo-
nents from the input-output relation often reduces the
ground-truth to simplistic data. In agreement with Hara-
lick we assume that for such ideal data an algorithm has
its best possible performance. The real world, however,
is almost never perfect and we must take into account
the presence of random perturbations corrupting the ideal
input. These perturbations (noise) are classified into two
categories that are functions of their effect.

A task is an algorithm performed on a given data set.
The data can be an image, an ensemble of extracted fea-
tures, any quantitative description. The task is satisfy-
ingly executed whenever the performance of the algorithm
exceeds a bound. The precise definition of this bound is

not relevant for the discussion; what is of importance for
us is that the performance depends on the available data.,
Every data point in the set carries information which
either aligns or diverges from the assumptions embedded
(maybe only implicitly) in the algorithm. We can also
include in the latter category all the points having no
influence at all on the algorithm’s performance. This is
justified by the fact that an increased support usually
reduces the spread of the estimated quantities around
their correct value and thus improves the performance.
A simple example: recovery of a parametric model from
nonhomogeneous data. Data that can be derived from the
model is considered helpful for the performance of the
algorithm. Data not accounted for by the model is consid-
ered hostile for the performance of the algorithm.

The customary taxonomy of noise processes (also used
by Haralick) is similar but not identical with a purely task-
dependent classification. The Type I noise yields small
perturbations and corrupts every data point. However,
Type I noise will not change the status of a point from
helpful to hostile. (A change in the other direction is not
relevant for the performance of any algorithm!) If we
model the small perturbations with distributions which
do not exclude large deviations (e.g., zero-mean Gaussian
processes) the status of a corrupted data point may change
with low probability.

Performance of an algorithm decreases with the in-
crease of Type I noise (increase measured by some param-
eters of the noise distribution). The worsening of the per-
formance, however, is reflecting mainly the sensitivity of
the algorithm due to the relative small data size available
in computer vision. Should a very large amount of data
be available the influence of Type I noise on the perfor-
mance of a good algorithm (producing unbiased and effi-
cient estimates) can be close to its upper bound. This
bound is determined by the algorithm and the available
data, i.e., by the performed task, and cannot be exceeded.
We can ask ourselves:

Do we know how to describe the influence of small data size on
the performance of computer vision algorithms?
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The Type II noise is present only in a subset of the
data but the corrupted data points change their appurte-
nance from helpful to hostile for the performance of the
algorithm. The corrupted points are also called as outliers,
At least theoretically an ideal image can become another
ideal image when corrupted by Type II noise. In this case,
while the algorithm performs well, execution of the task
fails. To make this clear lets use an extreme example,
Assume that we are looking for a circle in a binary image
with a matching algorithm which can recover circles and
ellipses. The ideal image contains a circle but in the cor-
rupted image due to the outliers we have a shape close
to an ellipse. The algorithm alone will not be able to
recover from the error. Additional information is needed,
either available a priori or through a top-bottom compo-
nent incorporating more general knowledge. What is the
conclusion of this toy-example? Open-loop analysis of
computer vision algorithms may not tell the whole story
when Type II noise is present. This type of perturbation
can alter significantly the semantic content of the data
and a ‘“‘narrow-minded’ algorithm may not be able to
discriminate the original data any more. We can ask our-
selves:

Do we know how to separate the *‘low-level” and “‘high-level””
component of a task in an optimal way?

It was recognized long ago that the hardness of many
computer vision tasks stems from Type Il noise corrupting
the data. Whenever the data contains more than one class
(as defined by some homogeneity criterion) and is ana-
lyzed by an algorithm not specifically designed to handle
several classes, we can regard all data points belonging
to the nonmajority classes as outliers, i.e., the majority
class corrupted by Type Il noise. The influence of outliers
on the performance of an algorithm not able to deal with
Type II noise can be disastrous. Recall the result of any
least squares based procedure applied to data containing
a step-discontinuity.

Robust algorithms which can handle data corrupted by
Type II noise were recently developed in statistics and
adopted in computer vision. These algorithms recover
parametric models by dichotomizing the data into a major-
ity (the “‘good”’ part) and a minority (outliers). The philos-
ophy behind all outlier-resistant robust algorithms is simi-
lar. First, randomly select a subset of the data points large
enough to compute the values of the sought estimates.
These estimates are then assumed to be valid for the entire
data set, i.e., to represent the underlying model. A quality
measure is computed to characterize the deviation be-
tween this model and the *‘good’’ data points. The whole
procedure is repeated several times and the estimates
corresponding to the extreme value of the quality measure
are retained as the output of the algorithm. The extreme
quality measure value corresponds to a subset containing
only “‘good’’ data points and therefore carrying the cor-
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rect model. Note that the size of the data is not an im-
portant factor in the performance of the outlier-resistant
robust algorithms.

So if we have enough data points and Type I noise we
can expect good performance; if we have Type II noise
we can borrow techniques from statistics. Unfortunately
in real images we have both types of noise! Type II noise
appears whenever the data is nonhomogeneous, while
Type I noise is generated by measurement inaccuracies.
The influence of Type I and Type II noise cannot be
separated when the performance of an algorithm is stud-
ied. The robust procedure overcoming Type II noise
works only if the “‘good” data is close to ideal. Indeed,
when Type I noise is also present, none of the randomly
selected subsets can carry the correct model. The em-
ployed quality measure is no longer reliable since now it
also incorporates a random component. The performance
of the robust algorithm decreases drastically even for
small Type I noise since the algorithm loses its resistance
to Type 1I noise. We can ask ourselves:

Do we know how to build algorithms which have acceptable perfor-
mance in the presence of both noise types?

Haralick proposes sampling the high-dimensional space
of all the possible images related to a general task. From
the ensemble of the outputs the receiver operator charac-
teristics or the average deviations from the ground-truth
should be computed. The performance is then character-
ized by the dependence of these quantities on the input
parameters. There is no doubt that the proposed perfor-
mance measures are the desired ones; however, the
amount of data required for their computation appears to
be prohibitive for real images. Can we obtain less rigorous
measures with less pain? Maybe. Computer-based error
analysis techniques like cross-validation, bootstrapping,
Jackknifing are very popular in statistics. They use only
a few samples of the input data to compute confidence
intervals for the estimated quantities, that is, a measure
of accuracy for the output of the algorithm.

The data in statistics is much less complex than images
and therefore it is not clear if the abovementioned tech-
niques can be successfully applied to measure the uncer-
tainty about the output of a general computer vision algo-
rithm. Should this be possible the performance of an
algorithm for a given input can be characterized by the
confidence we have in the output. If the confidence is
high enough, i.e., the range of probable output values
allows a unique interpretation, the algorithm can be con-
sidered reliable.

The proposed performance measuring protocol as-
sesses reliability for a specific input or for a very narrowly
defined set of inputs. To validate an algorithm over alarger
family of inputs (say, recovery with the same algorithm of
different objects laying on different backgrounds) we must
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first define what the output uncertainties are that we can
tolerate when correct classification is reuired. Then, if
the computed confidence intervals are within these limits,
the algorithm passes the test. The protocol recalls pattern
recognition. At the dawn of computer vision history the
official paradigm was indeed that of pattern recognition.
Later its importance diminished. However, maybe it is
time to reexamine the usefulness of pattern recognition
principles for computer vision. The arguably most suc-
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cessful computer vision algorithm, the Hough transform,
is also pointing toward this.

In conclusion we are in agreement with the majority
of ideas in Haralick’s position paper. Nevertheless, we
wanted to attract attention on two issues. First, the dis-
crimination of the signal from noise in visual data is a
delicate and difficult problem. Second, restricting perfor-
mance measurement to the given input may make algo-
rithm validation easier.
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In his paper, Haralick points out that computer vision
algorithms have been published more on the merit of an
experimental or theoretical demonstration suggesting that
some task can be done and that performance characteriza-
tion is necessary for algorithms in order to be used in
practical engineering. He also proposes a general method
of performance characterization.

I agree with the necessity of performance characteriza-
tion of an algorithm with perturbation of the input images
and that of the algorithm parameter in order to show the
robustness of the algorithm. His suggestion, however,
might be applied only to a limited class of algorithms.
We should consider the evaluation of a computer vision
system separately from the algorithms used in computer
vision systems.

EVALUATION OF THE TOTAL SYSTEM AND
THE COMPONENTS

The performance of a total vision system can be evalu-
ated rather easily because the purpose of the system is
clear. For example, a surface defect detection system for
steel milling is expected to work for input images of steel
sheets which are characterized by some parameters and
perturbation. The error criterion may be easily defined
because the desired output can be determined.

However, the purpose of characterization is not for a
total vision system, but for algorithms to be used for
constructing a total vision system. Then the problem of
characterization is quite different from the case of a total
system because none of the above characteristics can be
uniquely determined. Let us take an edge detector as an
example. Suppose that the edge operator is designed on
the basis of a certain property of a light intensity profile
in an image and that the edge is detected as a ridge of the
output of the edge operator. One important problem is
now to determine the error criterion. Since the edge detec-
tion is performed according to a firm criterion, the de-
tected edge itself is correct if we admit the definition of
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the edge. However, if the result of edge detection is used
for the detection of defects, for example, then the edges
may not always correspond to the defects. Is it a responsi-
bility of the edge detector or the later algorithm which
selects the defects among the detected edges.

If a noise is added for the perturbation of an image,
new edges may be created by the noise. Then a question
arises whether or not the edge detector should detect the
edges caused by the noise or should avoid such edges
because they do not correspond to a real defect?

As shown in this example, evaluation of lower level
vision (or early vision) without any particular purpose is
difficult by the suggested performance characterization
method. In general, the expected value of the error cannot
be obtained as a function of the algorithm parameter and
the perturbation variables.

EVALUATION BY HUMAN

Objective evaluation of an early vision algorithm is dif-
ficult without specifying the purpose of a total system
which includes the algorithm. One possible way is to com-
pare the performance of an algorithm with that of human
visions.

It is desirable for an algorithm to produce an output
similar to human vision. When a total system is designed
as a combination of component algorithms, the perfor-
mance of each algorithm is predicted. The predicted per-
formance of an early vision algorithm may be similar to
the performance of human vision. If the performance of
the algorithm is different from the predicted one, the per-
formance of the total system may also be different (often
lower) than the predicted one.

The variance of human vision characteristics is much
smaller than the gap between the characteristics of human
and machines. The color distance, for example, is deter-
mined by human subjective experiments. Although it can-
not always be applied straightforwardly to all applica-
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tions, it is still useful as a criterion of an intermediate
color segmentation.

A problem with the human subjective judgement of an
early vision algorithm is the use of semantics by human
beings. If an input image is a real image of a 3D scene,
a human being may interpret the image before evaluating
the performance, just like the case of edge detection given
images of steel with defects.

To avoid the effect of semantics, we should make artifi-
cial images which do not correspond to real scenes. Com-
puter graphics techniques might be useful for synthesizing
many images by changing the parameters which specify
the image. For each synthesized image we can prepare
the result of human image processing. Of course, in order
to make a convincing result of human image processing,
experiments with human subjects must be performed
which may require a great deal of labor.
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CONCLUSION

Although the suggested method of performance charac-
terization cannot be used for general computer vision
algorithms, it may work for certain algorithms. One such
class of algorithms are the algorithms with binary input
images (such as thinning algorithms) because the variation
of the input image is not very large. Another example is
stereo matching algorithms because a stereo pair of im-
ages can be created from a known or synthesized 3D
description of the scene. In fact, many researchers of
stereo matching algorithms wish to use sample images
with the correct range data to evaluate and improve their
methods. We should begin with those possible and useful
cases. Again, a practical method of perturbation is indis-
pensable, as pointed out by Haralick, for evaluating ro-
bustness of an algorithm.
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We commend the author for raising again the issue of
performance evaluation, and in particular for raising it in
the context of complex computer vision systems con-
structed from multiple interacting components. For years
researchers have been dividing vision into a series of
(hopefully simpler) subproblems and designing algorith-
mic solutions to them. The better we understand how
these algorithms behave, the more success we will have
at assembling complex systems. Nonetheless, we caution
those who would embrace Professor Haralick’s strict
methodology that it assumes conditions that cannot al-
ways be met. ;

The first assumption is that the errors and/or distortions
in the input data are well understood and can thus be
formally modeled. Haralick’s performance characteriza-
tion technique requires many carefully controlled inputs
with accompanying ground-truth values. This level of con-
trol can generally only be achieved through artificial data
sets (including but not limited to synthetic images) created
by adding errors and/or distortions to idealized world and
camera models. Although Haralick’s methodology relies
on such artificial data, he fails to mention that the error
and distortion processes used to generate this data must
be statistically validated. Even with statistically validated
data models the accuracy of the performance character-
ization is limited by the accuracy with which the synthetic
input data matches real data.

It is therefore possible, using Haralick’s methodology,
to specify performance models that are much more precise
than accurate. It allows researchers to present detailed
analyses of an algorithm’s behavior on synthetic data
without ever acknowledging that their input model is at
best a crude approximation of the real world. The resulting
performance models are precise in that they provide de-
tailed predictions of output errors, but inaccurate in that
their predictions do not match the algorithm’s perfor-
mance on real data. Moreover, such precise but inaccu-
rate models can be harmful to the field, in part because
they feign more accuracy than they possess and in part
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because their acceptance encourages researchers to adopt
error models based on ease of analysis rather than fidelity
to real data.

Haralick also assumes that object kind and pose have
only a ‘‘minor effect” on the performance of a computer
vision algorithm. Unfortunately, this assumption does not
hold for many common algorithms. For example, object
type is generally important to the analysis of matching
algorithms, which confuse similar object types more often
than dissimilar ones. In the same vein, the analysis of
pose refinement algorithms depends on the discrepancy
between an object’s actual pose and the estimated pose
supplied as input.

By disregarding object kind and pose, performance
evaluation is limited to a subset of computer vision algo-
rithms. Historically, computer vision research can be di-
vided into two paradigms: computational vision tries to
reconstruct the 3D geometry of a scene while knowledge-
directed vision tries to match the contents of a scene to
models in memory. Most computational vision algorithms
can be analyzed without reference to object kind or pose
since they attempt to recover spatial properties by reason-
ing about geometry or physics. Knowledge-directed algo-
rithms, on the other hand, match image data to object
models and their performance depends critically on the
quality and kind of available object models.

Moreover, the only apparent reason for precluding ob-
ject kind from performance characterization is that there
is no consensus as to what variables should be used to
describe object knowledge. Ignoring knowledge-directed
algorithms avoids having to specify the relevant features
of a model base (e.g., similarity between models, symmet-
ries within models, variability between instances of an
object class). Unfortunately, it also limits the scope of
the methodology to computational vision.

Overall, this paper emphasizes the importance of per-
formance evaluation in computer vision and gives a meth-
odology by which precise performance models can be
derived. We must remember, however, that this method-
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ology can only be applied when validated models of the
errors and distortions in the input data are available and
when there is a general consensus as to which scene vari-
ables need to be controlled and modeled. When these
conditions are met, the performance evaluation methodol-

ogy outlined by Professor Haralick is both appropriate
and desirable. However, when these conditions are not
met the best evaluation technique is still an empirical
investigation of an algorithm’s performance on real
data.
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There are a few issues for which it is appropriate to
make comment. One is that knowing the performance of
one stage of an algorithm will not permit one to propagate
this performance to the next stage. This point was raised
by Cinque et al., Weng and Huang, and Shirai.

They raise this issue because they do not fully under-
stand the performance characterization position. Shirai’s
reply has the most detailed comments. He gives the exam-
ple of knowing the performance of an edge detector and
relating that to the performance of defect classification,
of which edge detection may be one step. Defects, for
example, may not always correspond to edges and edges
may not always correspond to defects.

Shirai’s question comes to asking how the misdetect
and false alarm characteristics of the defect detector can
be determined from the misdetect and false alarm charac-
teristics of the edge detector. The answer is that it can
be determined in a way exactly analogous to that in which
the performance of the edge detector can be character-
ized. The step after edge detection, whatever it is, has a
performance relative to the random perturbation of the
idealized data that it inputs. Indeed it is the case that the
output of the edge detector is not ideal. But once we
can describe this random perturbation in terms which
are relevant to the next processing step, then everything
regarding performance characterization is analogous to
what happened in characterizing the performance of the
edge detector.

To make this more concrete, suppose, for the sake of
argument, that a surface defect is a small dark area in a
smooth lighter background. This is the idealization. Next
we must state the random perturbation model. The ran-
dom perturbation model describes the density, size, and
brightness of the defects. It can do this with a spatial
Poisson process. For each size and brightness combina-
tion of a defect, a number is chosen from an associated
Poisson distribution. This number is the number of defects
of that kind per unit area with which the surface will be
infected. Then the random population of images becomes
that obtained by infecting surfaces with a uniform distribu-
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tion, planting the chosen random number of defects on
each unit area of the surface. Then some model of texture
needs to be given. There could be one texture for the
background and another texture for the defect. This would
then constitute a model of the population of images to be
processed for defect inspection,

Suppose now that the first operation to be performed
on the images from this population is edge detection.
By whatever edge detector and edge detection algorithm
parameter values are used, the edge detector has a perfor-
mance. There will be some defect edges which are missed
and some defect edges which are detected. There will be
some background edges which are detected. From the
performance characteristics of the edge detector and the
known random perturbation characteristics of the image
model, it will be possible to infer the fraction of misde-
tected edges and the fraction of false alarms. In addition,
it will be possible to infer the edge direction distribution
for each true detected edge relative to its true direction
and the edge direction distribution for each falsely de-
tected edge.

Suppose that the next operation is a spoke filter. Then
utilizing the information from edge direction, it will be
possible to infer for each pixel location for any image the
distribution of counts that the given pixel has coming
from detected edges in some neighborhood around it. In
particular, a distribution of counts due to false background
edges for pixels in and around a defect can be determined
and a distribution of counts for pixels in the open back-
ground area can be determined. Similarly, a distribution
of counts due to correct edge detections for pixels in and
around a defect and for pixels in the open background
area can be determined.

Suppose that the final operation is a detection opera-
tion. Suppose that the detection operation is one which
looks for relative maximal counts and declares a defect if
the maximal count is great enough. Now from the distri-
butions of counts of defect and non-defect pixels, it
should be possible to compute the misdetection and false
alarm characteristics of the final defect detection step.
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And this characterization will be a parametric character-
ization with parameters consisting of the Poisson density
parameters, the background brightness, the defect bright-
ness and size, and all algorithm turning parameters.
Cinque et al., Weng and Huang, and Draper and Bever-
idge raise a second issue: the issue of realistically model-
ing random perturbations. This issue is important be-
cause if the random perturbation models are not realistic,
then to the degree that they are not realistic, the perfor-
mance characterization will be meaningless. In the way
they raise this issue, however, there is almost an implica-
tion that since whatever perturbation model one might
use is certainly not realistic, there is no point in developing
a performance characterization theory using it. So we
should better spend our time working with heuristically
developed algorithms applied in real data experiments and
not spend any time on performance characterization.
This position has a fundamental flaw which can be seen
by considering that it entails a commitment to developing
algorithms. We understand that a commitment to devel-
oping algorithms means that we want to develop good
algorithms, reliable ones, ones that work in the face of
the real random perturbations to which the data are sub-
ject. Now once an algorithm is stated, there is an implied
class of random perturbations on the input to which the
algorithm is suited. Often this class of random perturba-
tion models can be inferred by a sort of reverse statistical
engineering of the algorithm. So committing to the devel-
opment of an algorithm and then developing the algorithm
implies an unconscious selection of a random perturbation
model for which the algorithm produces good answers.
The point raised by the performance methodology proto-
col is that this selection of a random perturbation model
should not be an unconscious selection. It should be a
conscious selection, for once the selection is in conscious-
ness, then it becomes possible for the rational intellect to
work with it and thereby develop algorithms which are
optimal rather than being heuristic and suboptimal.
There is one more dimension to this issue, which Draper
and Beveridge raise. They say that to make sure that the
perturbation models are realistic they have to be statisti-
cally validated. Indeed that is true. Not only must they
be validated, but the free parameters of the random pertur-
bation model must be estimated. And it is the case that
nothing was mentioned in the initial dialogue about pa-
rameter estimation and validation. So to correct that
omission it must be asserted that the entire performance

265

characterization methodology involves parameter esti-
mation and validation of random perturbation models.

This of course puts a different look at the way that we
are called upon to do our research. For it suggests that
one of the first steps is to gather a suitable real data set
and annotate or gound-truth it. And from this data set the
parameters of the perturbation model must be estimated
and then the perturbation model must be statistically vali-
dated. Then having a validated perturbation model, we
should proceed to the design of the algorithm step whose
input data perturbation model we have in hand.

Finally, Shirai makes the comment that it is easy to
evaluate the performance of an existing algorithm in an
existing application, so why all the fuss on performance
characterization. The answer is that it is important for
the machine vision engineer to be able to predict the
performance of a vision algorithm before it is tried on
the factory floor. It is important for the machine vision
engineer to be able to analyze the performance of a ma-
chine vision algorithm step by step to determine where
effort should be put to improve the performance by using
more optimal values of algorithm tuning parameters or a
different algorithm step. It is important for the machine
vision engineer to be able to set the algorithm running
parameters to their optimal values based on the estimated
parameters of the random perturbation model(s) without
an experimental trial and error procedure.

In summary, performance characterization is not only
applicable to low level vision. It is applicable throughout
low level, mid level, and high level. Indeed it is the case
that when it is applied to high level, the kind of control
that high level needs to exert on mid and low level will
become apparent—not as a heuristic, but as what opti-
mally needs to happen. What performance characteriza-
tion does is to take the subjective free play out of computer
vision and to replace it with sound engineering systems
analysis and synthesis. If replaces the fancy buzz words
and buzz techniques with the kind of soundness which
characterizes all the successful areas of engineering. One
must remember here that engineering systems can be quite
complex. Perhaps the most complex engineering system
designed and built and which is in operation is more com-
plex than the most complex computer vision system built
up to today. Perhaps the success in having such a complex
engineering system working is due to each module in it
having a performance characterization which was utilized
in the design analysis and synthesis process.



