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a b s t r a c t

Dimension reduction methods are often applied in machine learning and data mining problems. Linear

subspace methods are the commonly used ones, such as principal component analysis (PCA), Fisher’s

linear discriminant analysis (FDA), common spatial pattern (CSP), et al. In this paper, we describe a

novel feature extraction method for binary classification problems. Instead of finding linear subspaces,

our method finds lower-dimensional affine subspaces satisfying a generalization of the Fukunaga–

Koontz transformation (FKT). The proposed method has a closed-form solution and thus can be solved

very efficiently. Under normality assumption, our method can be seen as finding an optimal truncated

spectrum of the Kullback–Leibler divergence. Also we show that FDA and CSP are special cases of our

proposed method under normality assumption. Experiments on simulated data show that our method

performs better than PCA and FDA on data that is distributed on two cylinders, even one within the

other. We also show that, on several real data sets, our method provides statistically significant

improvement on test set accuracy over FDA, CSP and FKT. Therefore the proposed method can be used as

another preliminary data-exploring tool to help solve machine learning and data mining problems.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Because of the curse of dimensionality and the concern of
computational efficiency, dimensionality reduction methods are
often used in machine learning and data mining problems.
Examples are face recognition in computer vision (Belhumeur
et al., 1997; Yang et al., 2002), electroencephalogram (EEG) signal
classification in brain–computer interface (BCI) (Dornhege et al.,
2004; Ramoser et al., 2000) and microarray data analysis (Dai
et al., 2006). Linear subspace methods have been widely used for
the purpose of dimension reduction.

Linear subspaces are affine spaces that contain the origin. In
this study, we discuss a novel affine feature extraction (AFE)
method to find affine subspaces for classification. Our method can
be seen as a generalization of the Funkunaga–Koontz transforma-
tion (FKT) (Fukunaga and Koontz, 1970). We investigate the
information–theoretical properties of our method and study the
relationship of AFE and other similar feature extraction methods.

Our paper is organized as follows: in Section 2, we briefly
review some subspace methods. In Section 3, we present the main

result of our work: the motivation of the study, the AFE method
and its closed-form solutions. We investigate the informa-
tion–theoretical properties of AFE and the relationship of AFE
with other linear subspace dimension reduction methods in
Section 4. We present experimental results in Section 5, and
conclude the study with the summary of our work, and possible
future directions in Section 6.

2. Subspace methods

Principal component analysis (PCA) and independent compo-
nent analysis (ICA) are unsupervised linear subspace methods for
dimension reduction. PCA tries to find linear subspaces such that
the variance of the projected data are maximally preserved. ICA is
a way of finding linear subspaces inwhich the second- and higher-
order statistical dependencies of the data are minimized; that
is the transformed variables are as statistically independent
from each other as possible. Note that, as unsupervised
methods, neither PCA nor ICA use label information, which is
crucial for classification problems. Consequently, PCA and ICA are
optimal for pattern description, but not optimal for pattern
discrimination.

Fisher’s discriminant analysis (FDA) determines linear sub-
spaces in which the distance between the means of the classes is
maximized and the variance of each class is minimized at the
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same time. An important drawback of FDA is that, for K-class
classification problems, it can only find K � 1 dimensional
subspaces. This becomes more serious when binary classification
problems are considered, for which FDA can only extract one
optimal feature. Canonical correlation analysis (CCA) is a method
for finding linear subspaces to maximize the correlation of the
observation vectors and their labels. It has been known for a long
time that FDA and CCA indeed give identical subspaces for the
dimension reduction purpose (Bartlett, 1938).

Recently there has been some interest in partial least squares
(PLS) (Rosipal and Krämer, 2005). Only recently, it has been shown
that PLS has a close connection with FDA (Barker and Rayens,
2003). PLS finds linear subspaces by iteratively maximizing the
covariance of the deflated observation vectors and their labels. In
one mode, PLS can be used to extract more than one feature for
binary classification. The main concern in PLS is the efficiency
issue, since in each iteration one has to subtract the observation
matrix by its rank-one estimation found in the previous iteration,
and generate deflated observation vectors.

3. Affine feature extraction

Consider a binary classification problem, which is also called
discriminant analysis in statistics. Let fðxj; gjÞ 2 Rm � f1;2gjj ¼
1;2; . . . ;Ng be a training set. xj and gj are the observation vector

and the corresponding class label. For simplicity, we assume the
training set is permuted such that observations 1 to N1 have label
1, and observations N1 þ 1 to N1 þ N2 have label 2. Define a data

matrix as

X ¼ ðx1;x2; . . . ;xNÞ ¼ ðX1;X2Þ,
where X1 ¼ ðx1;x2; . . . ;xN1

Þ, and X2 ¼ ðxN1þ1;xN1þ2; . . . ;xNÞ. For the
convenience of future discussion, we define augmented observa-

tion vectors as

yi ¼
xi
1

� �
. (1)

We can similarly define an augmented data matrix Yi for class i as
YT
i ¼ ðXT

i ;1Þ. Throughout this paper, we use the following conven-
tions: (1) vectors are column vectors; (2) 1 is a vector of all ones;
(3) I is an identity matrix; (4) &T is the transpose of a vector or
matrix &; and (5) trð&Þ is the trace of a matrix &.

3.1. Background

In this subsection, we give a brief introduction of dimension
reduction for classical discriminant analysis. Due to the limitation
of space, we cannot provide complete details for classical
discriminant analysis. We refer to Section 4.3 of Hastie et al.
(2001) for a nice treatment on this topic. This subsection also
serves as our motivation to carry on this study.

Before going on further, let us define the sample mean,
covariance and second order moment for class i as follows:

mean l̂i ¼
1

Ni
Xi1, (2)

moment M̂i ¼
1

Ni
XiX

T
i , (3)

covariance R̂i ¼
1

Ni
XiPX

T
i , (4)

where

P ¼ I� 1

Ni
11T.

In classical discriminant analysis, the probability density for each
class are usually modeled as multivariate normal distributions, i.e.
Nðli;RiÞ (i ¼ 1;2). It is also well known that, more generally,
elliptically contoured distributions also lead to linear or quadratic
decision surfaces (Haralick, 1977). Eqs. (2) and (4) can be seen as
the (pseudo-)maximum likelihood estimations of class density
parameters li and Ri, respectively. Without losing generality, let
us consider how to find a one-dimensional linear subspace for
classical discriminant analysis; that is to find a linear transforma-
tion for observations:

zi ¼ wTxi,

where wT is a m-dimensional vector.
When the two classes have a common covariance, i.e.

R1 ¼ R2 ¼ R, the problem is relatively easy. It is not hard to show
that the optimal w� is the eigenvector of R�1ðl2 � l1Þðl2 � l1ÞT.
FDA essentially capture this situation by solving the following
problem:

max
wTðl̂2 � l̂1Þðl̂2 � l̂1ÞTw

wTR̂w
, (5)

where NR̂ ¼ N1R̂1 þ N2R̂2.
When R1aR2, finding an optimal linear subspace is harder. The

only known closed-form solution is that w� is the eigenvector of
R�11 R2 þ R�12 R1, which has the largest eigenvalue. It can be shown
that, when l1 ¼ l2 ¼ 0, the solution optimizes the Kullback–
Leibler KL divergence and the Bhattacharyya distance, (cf. Section
10.2 of Fukunaga, 1990). The KL distance and the Bhattacharyya
distance are approximations of the Chernoff distance, which is the
best asymptotic error exponent of a Bayesian approach. Therefore
the optimizing of these distances serves as the theoretical support
to use it as a dimension reduction method. The approach has been
widely used in EEG classification problems, namely the common
spatial pattern (CSP). Formally speaking, CSP solves the following
problem:

max
wTR̂1w

wTR̂2w
or max

wTR̂2w

wTR̂1w
. (6)

Therefore, CSP only works well when the difference between the
class means is small, i.e. jl2 � l1j � 0. For many classification
problems, this restriction is unrealistic. Furthermore, unlike FDA,
CSP has no natural geometrical interpretation.

The FKT method can be seen as an extension of CSP by
shrinking l̂i to zero. It can be seen as a rough shrinkage estimation
of the mean for high dimensional data. FKT solves the following
problem:

max
wTM̂1w

wTM̂2w
or max

wTM̂2w

wTM̂1w
. (7)

Taking a closer look at the criterion of FKT, we note that the
criterion maxðwTM̂1w=wTM̂2wÞ can be written as

min wTM̂2w

s.t. wTM̂1w ¼ 1.

Note

wTM̂iw ¼
1

Ni

XkiþNi

j¼kiþ1
z2j ,

where k1 ¼ 1, k2 ¼ N1 and i ¼ 1;2. That is: wTM̂iw is the mean of
square transformed observations, i.e. z2j , of class i. Therefore, FKT
can be interpreted as finding a linear subspace in which one can
maximize the distance of the means of square transformed
observations. However, FKT may ignore important discriminant
information for some cases, for example, the one proposed in
Foley and Sammon (1975).
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3.2. Problem formulation

Let zi ¼ v0 þ vT1xi be an affine transformation for observations
xi, where v1 is a m dimensional vector. Linear transformations are
a special form of affine transformations, where v0 ¼ 0. Now
denoting wT ¼ ðvT1; v0Þ, we have zi ¼ wTyi. Note that we have
abused the notation of w. From now on, we shall use w for affine
transformations unless specified otherwise. Define a sample
augmented second moment matrix as

N̂i ¼
1

Ni
YiY

T
i . (8)

The relation of augmented second moment matrix, covariance
matrix and mean can be found in Appendix A. Motivated by FKT,
we use the following objective function to find the optimal one-
dimensional affine subspace

max x
wTN̂1w

wTN̂2w
þ ð1� xÞw

TN̂2w

wTN̂1w
, (9)

where 0pxp1. We use the sum of ratios to measure the
importance of w instead of two separated optimization problems
in FKT. The parameter x can be used to balance the importance of
different classes and thus is useful for asymmetric learning
problems.

Now let us consider how to find higher dimensional affine
subspaces. Let W ¼ ðw1;w2; . . . ;wdÞ be a low-rank affine transfor-
mation matrix. Let zi be the lower-dimensional representation of
xi, i.e. zi ¼WTyi. We define the following optimization problem to
find W:

max x
Xd
i¼1

wT
i N̂1wi

wT
i N̂2wi

þ ð1� xÞ
Xd
i¼1

wT
i N̂2wi

wT
i N̂1wi

s.t. wT
i N̂twj ¼ dij,

where NN̂t ¼ N1N̂1 þ N2N̂2, and dij is 1 if i ¼ j, and 0 otherwise. Let
P̂i ¼WTN̂iW. It is easy to recognize that P̂i’s are indeed the
second moment matrices in the lower dimensional space. Now we
can write the problem more compactly: find W to

max x trðP̂�11 P̂2Þ þ ð1� xÞ trðP̂�12 P̂1Þ
s:t: WTN̂tW ¼ I.

Generally speaking, we want to generate compact representations
of the original observations. Therefore it is desirable to encourage
finding lower dimensional affine subspaces. Motivated by the
Akaike information criterion and Bayesian information criterion,
we propose the following objective function that is to be
maximized:

CðW; x; dÞ ¼ ð1� xÞ trðP̂�12 P̂1Þ þ x trðP̂�11 P̂2Þ � d, (10)

where 0pxp1, d (1pdpm) is the number of features we want to
generate. We see that high dimensional solutions are penalized by
the term �d. Hyperparameter x may be tuned via standard cross-
validation methods (Hastie et al., 2001). In principal, the optimum
d can also be determined by cross-validation procedures. How-
ever, such a procedure is often computationally expensive.
Therefore, we propose the following alternative: define C0ðxÞ ¼
CðI; x;mÞ; we select the smallest d such that C is large enough, i.e.
d� ¼ inffdjCðW; x; dÞXgC0g, where g is a constant.

The constraint WTN̂tW ¼ I is necessary in our generalization
from the one dimensional to the high dimensional formulation,
but it does not generate mutually orthogonal discriminant
vectors. Obtaining orthogonal discriminant vectors basis is
geometrically desirable. Therefore, we introduce another ortho-
gonality constraint WTW ¼ I. We refer to Edelman et al. (1999) for
a geometrical view of the roles of the two constraints in

optimization problems. To summarize, we are interested in two
different kinds of constraints as follows:

(1) N̂t-orthogonal: W
TN̂tW ¼ I;

(2) orthogonal: WTW ¼ I.

3.3. Basic algorithms

In this subsection, we show how to solve the proposed
optimization problems. Define the function f as

f ðx; xÞ ¼ xxþ ð1� xÞ1
x
. (11)

Let 0oapxpb. Note that f is a convex function, and thus achieves
its maximum at the boundary of x, i.e. either a or b.

Define K ¼ diagðl1; l2; . . . ; lmþ1Þ, and li’s are the eigenvalues of
ðN̂1; N̂2Þ (i ¼ 1;2; . . . ;mþ 1), i.e. N̂1ui ¼ liN̂2ui. Let liðxÞ’s be the
ordered eigenvalues of ðN̂1; N̂2Þ with respect to f ðl; xÞ. That is:
define f iðxÞ ¼ f ðliðxÞ; xÞ, then we have f 1ðxÞXf 2ðxÞX � � �Xf mþ1ðxÞ.
The following lemma for nonsingular symmetric N̂1 and N̂2 can be
found in Golub and Van Loan (1996):

Lemma 1. If A 2 Rk�k is symmetric, and B 2 Rk�k is symmetric

positive definite, then there exists a nonsingular matrix U ¼
ðu1;u2; . . . ;ukÞ 2 Rk�k such that UTBU ¼ I and UTAU ¼ K, where

K ¼ diagðl1; l2; . . . ; lmþ1Þ. Moreover, Aui ¼ liBui, i.e. li and ui are

the generalized eigenvalue and eigenvector of ðA;BÞ. Furthermore, if A
is also positive definite, then li40.

In Appendix C, we show that:

CðW; x; dÞp
Xd
i¼1

f iðxÞ � d. (12)

Remark 2. If W1 maximizes CðW; x; dÞ, then W1R also maximizes
CðW; x; dÞ, where R is a nonsingular matrix. The proof is straight
forward and therefore is omitted.

Proposition 3. Let Ux ¼ ðux
1;u

x
2; . . . ;u

x
dÞ, where ux

i is the eigenvector

of ðN̂1; N̂2Þ and has eigenvalue liðxÞ. Let R be a nonsingular matrix.
Then W ¼ UxR maximize CðW; x; dÞ.

Proof. It is enough to show Ux maximizes CðW; x; dÞ. Note
UT

x N̂2Ux ¼ I and UT
x N̂1Ux ¼ diagðl1ðxÞ; l2ðxÞ; . . . ; ldðxÞÞ. Then it is

easy to affirm the proposition. &

Remark 4. Let Ux ¼ ðux
1;u

x
2; . . . ;u

x
dÞ maximize CðW; x; dÞ; let ux

dþ1
be an eigenvector of ðN̂1; N̂2Þ whose eigenvalue is 1. Then it is
straightforward to show that CðUx; x; dÞ ¼ CððUx;u

x
dþ1Þ; x; dþ 1Þ.

We prefer Ux to ðUx;u
x
dþ1Þ, because of the lower dimensionality. In

other words, we can safely ignore the eigenvectors of ðN̂1; N̂2Þ
whose eigenvalues are 1.

Let Ux ¼ QR, where Q and R are the thin QR factorization of Ux;
then W1 ¼ UxR

�1 maximizes CðW; x; dÞ and satisfies the orthogo-
nal constraint. Let W2 ¼ UxC�1=2, where

C ¼ 1

N
fdiagðN1l1ðxÞ þ N2;N1l2ðxÞ
þ N2; . . . ;N1ldðxÞ þ N2Þg. (13)

It can be easily shown that W2 maximizes CðW; x;dÞ and satisfies
the N̂t-orthogonal constraint. In practice, we only need to check
the largest d and the smallest d eigenvalues and eigenvectors of
ðN̂1; N̂2Þ in order to generate d features. The pseudo-code of the
algorithm is given in Table 1.
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3.4. Computational issues

For convenience, we will not differentiate N̂i’s and Ni’s in this
subsection unless otherwise specified. For the proposed AFE
problems, we need to solve the generalized eigenvalue problem
ðN2;N1Þ. In our derivation, we assume the positive definiteness of
Ni’s, which may not be satisfied in real applications. The deficiency
can be fixed by adding a small regularization matrix to Ni’s; that is
Ni  Ni þ aI, where a is a small positive constant. In this paper, we
take a ¼ 10�3. It is easy to show that, if w is a generalized
eigenvector of ðN2;N1Þ with eigenvalue l, it is also a generalized
eigenvector of ðN2;NtÞ with eigenvalue b, where

l ¼ N1b
N � N2b

.

Thenwe canwrite the Taylor expansion of l about b ¼ 1 as follows:

l ¼ 1þ N

N1
ðb� 1Þ þ Oððb� 1Þ2Þ.

Hence we have jl� 1j � Njb� 1j=N1. Solving the generalized
eigenvalue problem of ðN2;NtÞ is numerically more stable than
that of ðN2;N1Þ. Therefore we recommend solving the generalized
eigenvalue problem of ðN2;NtÞ, and remove eigenvectors whose
eigenvalue is near 1, i.e. jb� 1jot0. From now on, we shall not
differentiate b and l for the sake of simplicity of our argument.

When the dimensionality of observations is high, i.e. mb1,
solving the generalized eigenvalue problem ðN2;NtÞ is not only
computationally expensive, but also memory intensive. In the
remainder of this subsection, we show an efficient algorithm to
overcome the handicap. Let Y ¼ UdiagðD;0ÞVT be the SVD of the
augmented data matrix Y, where D 2 Rs�s is a diagonal matrix that
contains non-zero singular values of Y, and U and V are
orthonormal. Then we have NNt ¼ UdiagðD2;0ÞUT, and
NUTNtU ¼ diagðD2;0Þ. Let U ¼ ðu1;u2; . . . ;umþ1Þ ¼ ðU1;U2Þ, such
that U1 2 Rðmþ1Þ�s contains singular vectors with nonzero singular
values, and U2 be the remaining part of U. Since NUTNtU ¼
UTðN1N1 þ N2N2ÞU, we know by the positive semidefinite proper-
ties of Ni’s that UTNiU ¼ diagðUi;0Þ and Ni ¼ UdiagðUi;0ÞUT,
where Ui ¼ UT

1NiU1, i.e. Ui is the second moment of class i in
the span of U1 (see Appendix D). Define Ut ¼ UT

1NtU1.
Now consider the regularized generalized eigenvalue problem,

Awi ¼ liBwi, (14)

where

A ¼ U
U2 þ aI 0

0 aI

� �
UT,

and

B ¼ U
Ut þ aI 0

0 aI

� �
UT.

Let

wi ¼
Xmþ1
j¼1

ci;juj ¼ Uci,

where cTi ¼ ðci;1; ci;2; . . . ; ci;mþ1ÞT. Then the problem can be simpli-
fied as

U2 þ aI 0

0 aI

� �
ci ¼ li

Ut þ aI 0

0 aI

� �
ci.

Denote the kth canonical vector by ek; that is the kth component
of ek is 1 and the others are zero. Note esþ1; esþ2; . . . ; emþ1 are
eigenvectors with eigenvalue 1, and therefore can be safely
removed. Hence we only need consider ci with the form of
cTi ¼ ðd

T
i ;0

TÞ. It is easy to verify that di is the generalized
eigenvector of ðU2 þ aI;Ut þ aIÞ, i.e.

ðU2 þ aIÞdi ¼ lðUt þ aIÞdi. (15)

Since wi ¼ U1di, we can get W1 as

W1 ¼ U1D, (16)

where D ¼ ðd1;d2; . . . ;dnÞ.
To summarize, for data sets with high dimensionality, we can

carry on the calculation in two levels. In the first level, we apply
SVD on the augmented data matrix Y; we then select singular
vectors to form U1, whose singular values are larger than a
predefined threshold value. In the second level, we project data in
the span of U1 and calculate the second moments Ui’s; finally we
solve the generalized eigenvalue problem (15) and obtain the
solution as defined in Eq. (16).

4. Discussion

In this section, we investigate the properties of our proposed
method, and study the relationship of the new proposed method
with other dimension reduction methods. For simplicity, we
assume that N̂i’s are reliably estimated. Therefore we shall use Ni

in our discussion directly.

4.1. Information theoretical property of the criterion

The KL divergence of two multivariate normal distributions pi
and pj has a closed expression as:

Lij ¼ 1
2flogðjR�1i RjjÞ þ trðRiR

�1
j Þ

þ ðmi � mjÞTR�1j ðmi � mjÞ �mg, (17)

where pi ¼Nðmi;RiÞ. The symmetric KL divergence is defined as
Jij ¼ Lij þ Lji. Using formulas in Appendix A, one can easily get that

J12 ¼ C0ð12Þ � 1, (18)

that is, when x is 1
2, C0 is equivalent to the symmetric KL

divergence (up to a constant) of two normal distributions. The
solution of maximizing C can be seen as finding an affine subspace
that maximally preserves C0, i.e. an optimal truncated spectrum
of J12.

The KL divergence can be seen as a distance measure between
two distributions, and therefore a measure of separability of
classes. Traditional viewpoints aim at maximizing the KL
divergence between classes in lower dimensional linear sub-
spaces, see Fukunaga (1990) for an introduction and la Torre and
Kanade (2005) for the recent development. It is easy to show that
maximizing the lower-dimensional KL divergence in Fukunaga
(1990) and la Torre and Kanade (2005) is equivalent to our

ARTICLE IN PRESS

Table 1
Pseudo-code for feature extraction

Algorithm for feature extraction
Input: Data sample x1 ;x2 ; . . . ; xn
Output: Transformation matrix W

1. Calculate the augment second moment matrices N̂1, and N̂2;

2. Compute the largest d and the smallest d eigenvalues and eigenvectors of

ðN̂1; N̂2Þ;
3. Sort 2d eigenvalues and eigenvectors with respect to Eq. (11);

3. Selected the largest d eigenvectors to form Ux;

4�. (For orthogonal constraint) apply the thin QR factorization on Ux , i.e. Ux ¼ QR;
5�. (For orthogonal constraint) Let W ¼ Q ;

6 � �. (For N̂t-orthogonal constraint), calculate C as Eq. (13);

7 � �. (For N̂t-orthogonal constraint), Let W ¼ UxC
�1=2;
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proposed problem with an additional constraint

WT ¼ ðVT; eÞ, (19)

where V 2 Rm�d, and eT ¼ ð0;0; . . . ;1Þ. With the additional con-
straint, a closed-form solution cannot be found. By relaxing
e 2 Rm�1, we can find closed-form solutions.

4.2. Connection to FDA and CSP

Without losing generality, let us consider the one dimensional
case in this subsection. Let wT ¼ ðvT1; v0Þ. Then we have
Z ¼ vT1X þ v0, where X and Z are random covariate in higher- and
lower-dimensional spaces. Displacement v0 is the same for both
classes, and therefore plays no important role for final classifica-
tions. In other words, the effectiveness of the generated feature is
solely determined by v1. Let v�1 be an optimal solution.

Consider maximizing CðW; 12 ;dÞ. We know that w� is the
eigenvector of N�11 N2 þ N�12 N1 with the largest eigenvalue.

First, let us consider m1 ¼ m2 ¼ m. Using formulas in Appendix A,
we can simplify N�11 N2 þ N�12 N1 as

N�11 N2 þ N�12 N1

¼
R�11 R2 þ R�12 R1 0

2mT � mTðR�11 R2 þ R�12 R1Þ 1

0
@

1
A.

Then by simple linear algebra, we can show that v�1 is also the
eigenvector of R�11 R2 þ R�12 R1 with the largest eigenvalue.

Second, let us consider R1 ¼ R2 ¼ R. In this case, it is easy to
verify the following:

N�11 N2 þ N�12 N1 ¼
A 0

0 B

� �
þ 2I,

where A ¼ R�1ðm1 � m2Þðm1 � m2ÞT and B ¼ ðm1 � m2ÞTR�1ðm1 � m2ÞT.
It is then not hard to show that v�1 is the eigenvector of A with the
largest eigenvalue.

In summary, we show that FDA and CSP are special cases of our
proposed AFE for normally distributed data. Therefore, theoreti-
cally speaking AFE is more flexible than FDA and CSP.

5. Experiments

5.1. Visualization on simulated data sets

In order to compare our method with PCA and FDA, Several
7-dimensional toy data sets have been generated. The toy data
sets contain three-dimensional relevant components, while the
others are merely random noise. The three relevant components
form two concentric cylinders. The generated data are spread
along the surfaces of the cylinders. The cylinders are of elliptic,
parabolic and hyperbolic forms. Fig. 1 illustrates the first two
features found by PCA, FDA and our new approach AFE. As a result
of preserving the variance of data, PCA projects data along the
surfaces, and thus does not preserve the separation of the conic
cylinders; FDA fails to separate the two classes in most cases; on
the other hand, our method correctly captures the discriminant
information in the data.

5.2. Experiments with real data sets

We selected four benchmark data sets: German, diabetes,
waveform and heart.1 The dimensionality of these data sets are 20,
8, 21, and 13, respectively. The data sets had been preprocessed

and partitioned into 100 training and test sets (about 40%:60%).
They have been used to evaluate the performance of kernel FDA
(Mika et al., 1999), kernel PLS (Rosipal et al., 2003). We compared
our new approach with FDA, CSP, and FKT. For convenience, AFE1
and AFE2 are used for orthogonal and Nt-orthogonal AFE
algorithms. We used FDA, CSP, FKT, AFE1 and AFE2 to generate
lower-dimensional features; the features are then used by linear
support vector machines (SVM) to do classifications. To measure
the discriminant information of the data set, we also classified the
original data set via linear SVMs, which we denote FULL in the
reported figures. Feature extraction and classification are trained
on training sets, and test-set accuracy (TSA) are calculated with
predictions on test sets. Statistical boxplots of TSAs are shown in
Figs. 2–5 for the three chosen data sets. The poor performance of
FDA, CSP and FKT affirms that first-order or second-order statistics
alone cannot capture discriminant information contained in the
data sets. By comparing AFE1 and AFE2 with FULL, we see that
AFE1 and AFE2 are capable of extracting the discriminant
information of the chosen data. AFE1 and AFE2 can be used to
generate much compact discriminant features, for example, the
average dimensionality of extracted features for German, diabetes
and waveform are 8.16, 3.18, 1.2 and 4.96, respectively.

6. Conclusions

In this study, we proposed a novel dimension reduction
method for binary classification problems. Unlike traditional
linear subspace methods, the new proposed method finds
lower-dimensional affine subspaces for data observations. We
presented the closed-form solutions of our new approach, and
investigated its information–theoretical properties. We showed
that our method has close connections with FDA, CSP and FKT
methods in the literature. Numerical experiments show the
competitiveness of our method as a preliminary data-exploring
tool for data visualization and classification.

Though we focus on binary classification problems in this
study, it is always desirable to handle multi-class problems. One
can extend AFE to multi-class problems by following the work
presented in Dornhege et al. (2004). Here we proposed another
way to extend AFE to multi-class. Let Jij be the symmetric KL
distance of classes i and j, and assume class i, (i ¼ 1;2; . . . ;K), can
be modeled by multivariate normal distribution. Then we have

XK
i¼1

N�1i Nt /
XK
i;j¼1

Jij,

where Ni is the augmented second moment matrix for class i and

NNt ¼
XK
i¼1

NiNi.

Therefore, we may calculate the truncated spectrum of

XK
i¼1

N�1i Nt

for the lower-dimensional representations.
Another more important problem is to investigate the relation-

ship of our new proposed method with quadratic discriminant
analysis (QDA). It has long been known that FDA is an optimal
dimension reduction method for linear discriminant analysis
(LDA) (Hastie et al., 2001). But there is no well-accepted
dimension reduction method for QDA in the literature. Recently,
Huo et al. (2003) proposed that FKT might be seen as an optimal
one for QDA under certain circumstance. Our future work will be
dedicated to finding the relationship of AFE and QDA.
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Fig. 1. Comparison of features found by PCA, FDA, and our method. Star and plus points belong to different classes.
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Appendix A

Let X be a random covariate which has probability distribution
p. So we have

l ¼ EX�pX,

R ¼ EX�pðX � mÞðX � mÞT,

N ¼ EX�p
X

1

� �
ðXT;1Þ

� �
,

where l, R and N are, respectively, the mean, covariance and
augmented second moment of X. When m and R are finite, we have

N ¼ Rþ mmT m

mT 1

 !
.

Assuming R is positive definite, we have the inverse of N as
follows:

N�1 ¼ R�1 �R�1m
�mTR�1 1þ mTR�1m

 !
.

Appendix B

Lemma 5. Let A be an r � s matrix, (rXs), and ATA ¼ I. Let K be a

diagonal matrix. Then

x trðATKAÞ þ ð1� xÞ trð½ATKA��1Þp
Xs
i¼1

f iðxÞ.

Proof. By the Poincaré separation theorem (cf. Horn and Johnson,
1990), we know the eigenvalues of ATKA interlaces with those of
K. That is, for each integer j, (1pjps), we have ljptjpljþr�s,
where tj is the eigenvalue of ATKA. Then it is obvious that

x trðATKAÞ þ ð1� xÞ trð½ATKA��1Þ

¼
Xs
i¼1

xti þ ð1� xÞ 1
ti

� �
p
Xs
i¼1

f iðxÞ.

Appendix C

Let U be a nonsingular matrix such that UTN̂2U ¼ I and
UTN̂1U ¼ K. Then we have

P̂2 ¼WTðU�1ÞTUTN̂2UU
�1W ¼ VTV,
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Fig. 2. Test set accuracy for German data sets. See text for notations and details.
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Fig. 3. Test set accuracy for diabetes data set. See text for notations and details.
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Fig. 4. Test set accuracy for waveform data set. See text for notations and details.
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Fig. 5. Test set accuracy for heart data set. See text for notations and details.
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P̂1 ¼WTðU�1ÞTUTN̂1UU
�1W ¼ VTKV,

where V ¼ U�1W 2 Rðmþ1Þ�k. Then we can get

CðW; x; dÞ ¼ ð1� xÞ tr½ðVTKVÞ�1VTV�
þ x tr½ðVTVÞ�1VTKV�.

Applying SVD on V, we get V ¼ ADBT. Here A and B are ðmþ 1Þ � d

and d� d orthogonal matrices, i.e. BTB ¼ I, BBT ¼ I, and ATA ¼ I. D
is a d� d diagonal matrix. Therefore we have:

tr½ðVTVÞ�1VTKV� ¼ tr½VðVTVÞ�1VTK�
¼ trðAATKÞ ¼ trðATKAÞ,

tr½ðVTKVÞ�1VTV� ¼ tr½VðVTKVÞ�1VT�
¼ tr½AðATKAÞ�1AT�
¼ tr½ðATKAÞ�1�.

Thus by Lemma 5, we know that

CðW; x; dÞ ¼ tr½xATKAþ ð1� xÞðATKAÞ�1� � d

p
Xd
i¼1

f iðxÞ � d.

Appendix D

Since

UTNiU ¼
UT

1NiU1 UT
1NiU2

UT
2NiU1 UT

2NiU2

 !
,

we have

N1

N

UT
1N1U1 UT

1N1U2

UT
2N1U1 UT

2N1U2

0
@

1
A

þ N2

N

UT
1N2U1 UT

1N2U2

UT
2N2U1 UT

2N2U2

0
@

1
A ¼ D2 0

0 0

 !
.

Since Ni’s are positive semidefinite, i.e. Nik0, we have UT
1NiU2k0

and UT
2NiU2k0. Therefore, we must have UT

1NiU2 ¼ 0 and
UT

2NiU2 ¼ 0, otherwise the above equation will be invalid.
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