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Abstract

Distance measures like the Euclidean distance are used to measure similarity between images in content-based image
retrieval. Such geometric measures implicitly assign more weighting to features with large ranges than those with small
ranges. This paper discusses the effects of five feature normalization methods on retrieval performance. We also describe
two likelihood ratio-based similarity measures that perform significantly better than the commonly used geometric
approaches like the L, metrics. © 2001 Elsevier Science B.V. All rights reserved.

Keywords.: Feature normalization; Minkowsky metric; Likelihood ratio; Image retrieval; Image similarity

1. Introduction

Image database retrieval has become a very
popular research area in recent years (Rui et al.,
1999). Initial work on content-based retrieval
(Flickner et al.,, 1993; Pentland et al., 1994,
Manjunath and Ma, 1996) focused on using low-
level features like color and texture for image
representation. After each image is associated with
a feature vector, distance measures that compute
distances between these feature vectors are used to
find similarities between images with the assump-
tion that images that are close to each other in the
feature space are also visually similar.

Feature vectors usually exist in a very high di-
mensional space. Due to this high dimensionality,
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their parametric characterization is usually not
studied, and non-parametric approaches like the
nearest neighbor rule are used for retrieval. In
geometric similarity measures like the nearest
neighbor rule, no assumption is made about the
probability distribution of the features and simi-
larity is based on the distances between feature
vectors in the feature space. Given this fact,
Euclidean (L) distance has been the most widely
used distance measure (Flickner et al.,, 1993;
Pentland et al., 1994; Li and Castelli, 1997; Smith,
1997). Other popular measures have been the
weighted Euclidean distance (Belongie et al., 1998;
Rui et al., 1998), the city-block (L) distance
(Manjunath and Ma, 1996; Smith, 1997), the
general Minkowsky L, distance (Sclaroff et al.,
1997) and the Mahalanobis distance (Pentland
et al., 1994; Smith, 1997). The L; distance was also
used under the name ‘“‘histogram intersection”
(Smith, 1997). Berman and Shapiro (1997) used
polynomial combinations of predefined distance
measures to create new distance measures.
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This paper presents a probabilistic approach
for image retrieval. We describe two likelihood-
based similarity measures that compute the like-
lihood of two images being similar or dissimilar,
one being the query image and the other one
being an image in the database. First, we define
two classes, the relevance class and the irrelevance
class, and then the likelithood values are derived
from a Bayesian classifier. We use two different
methods to estimate the conditional probabilities
used in the classifier. The first method uses a
multivariate Normal assumption and the second
one uses independently fitted distributions for
each feature. The performances of these two
methods are compared to the performances of the
commonly used geometric approaches in the form
of the L, metric (e.g., city-block (L;) and Euclid-
ean (L,) distances) in ranking the images in the
database. We also describe a classification-based
criterion to select the best performing p for the L,
metric.

Complex image database retrieval systems use
features that are generated by many different
feature extraction algorithms with different kinds
of sources, and not all of these features have the
same range. Popular distance measures, for ex-
ample the Euclidean distance, implicitly assign
more weighting to features with large ranges than
those with small ranges. Feature normalization is
required to approximately equalize ranges of the
features and make them have approximately the
same effect in the computation of similarity. In
most of the database retrieval literature, the
normalization methods were usually not men-
tioned or only the Normality assumption was
used (Manjunath and Ma, 1996; Li and Castelli,
1997; Nastar et al., 1998; Rui et al., 1998). The
Mahalanobis distance (Duda and Hart, 1973)
also involves normalization in terms of the co-
variance matrix and produces results related to
likelihood when the features are Normally dis-
tributed.

This paper discusses five normalization meth-
ods: linear scaling to unit range; linear scaling to
unit variance; transformation to a Uniform[0,1]
random variable; rank normalization; normaliza-
tion by fitting distributions. The goal is to inde-
pendently normalize each feature component to

the [0,1] range. We investigate the effectiveness of
different normalization methods in combination
with different similarity measures. Experiments are
done on a database of approximately 10,000 im-
ages and the retrieval performance is evaluated
using average precision and recall computed for a
manually groundtruthed data set.

The rest of the paper is organized as follows.
First, the features that we use in this study are
summarized in Section 2. Then, the feature nor-
malization methods are described in Section 3.
Similarity measures for image retrieval are de-
scribed in Section 4. Experiments and results are
discussed in Section 5. Finally, conclusions are
given in Section 6.

2. Feature extraction

Textural features that were described in detail
by Aksoy and Haralick (1998, 2000b) are used for
image representation in this paper. The first set of
features are the line-angle-ratio statistics that use a
texture histogram computed from the spatial re-
lationships between lines as well as the properties
of their surroundings. Spatial relationships are
represented by the angles between intersecting line
pairs and properties of the surroundings are rep-
resented by the ratios of the mean gray levels in-
side and outside the regions spanned by those
angles. The second set of features are the variances
of gray level spatial dependencies that use second-
order (co-occurrence) statistics of gray levels of
pixels in particular spatial relationships. Line-
angle-ratio statistics result in a 20-dimensional
feature vector and co-occurrence variances result
in an 8-dimensional feature vector after the
feature selection experiments (Aksoy and Hara-
lick, 2000b).

3. Feature normalization

The following sections describe five normaliza-
tion procedures. The goal is to independently
normalize each feature component to the [0,1]
range. A normalization method is preferred over
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the others according to the empirical retrieval re-
sults that will be presented in Section 5.

3.1. Linear scaling to unit range

Given a lower bound / and an upper bound u
for a feature component x,

x—1

= (1)

u—1
results in X being in the [0,1] range.
3.2. Linear scaling to unit variance
Another normalization procedure is to trans-

form the feature component x to a random vari-
able with zero mean and unit variance as

. ox—qu
=2k @)
where u and ¢ are the sample mean and the sample
standard deviation of that feature, respectively
(Jain and Dubes, 1988).

If we assume that each feature is normally dis-
tributed, the probability of ¥ being in the [-1,1]
range is 68%. An additional shift and rescaling as

—w/3 1
/o A
2
guarantees 99% of x to be in the [0,1] range. We
can then truncate the out-of-range components to
either 0 or 1.

3.3. Transformation to a Uniform [0,1] random
variable

Given a random variable x with cumulative
distribution function F;(x), the random variable X
resulting from the transformation X = F.(x) is
uniformly distributed in the [0,1] range (Papoulis,
1991).

3.4. Rank normalization

Given the sample for a feature component for
all images as xi,...,x,, first we find the order
statistics x(1), . . ., x(,) and then replace each image’s

feature value by its corresponding normalized
rank, as

rank (x;) — 1
~i _ X1 seeesXp 4
TS “)

where x; is the feature value for the ith image. This
procedure uniformly maps all feature values to the
[0,1] range. When there are more than one image
with the same feature value, for example after
quantization, they are assigned the average rank
for that value.

3.5. Normalization after fitting distributions

The transformations in Section 3.2 assume
that a feature has a Normal (g, ?) distribution.
The sample values can be used to find better
estimates for the feature distributions. Then,
these estimates can be used to find normalization
methods based particularly on these distribu-
tions.

The following sections describe how to fit
Normal, Lognormal, Exponential and Gamma
densities to a random sample. We also give the
difference distributions because the image similar-
ity measures use feature differences. After esti-
mating the parameters of a distribution, the cut-off
value that includes 99% of the feature values is
found and the sample values are scaled and trun-
cated so that each feature component have the
same range.

Since the original feature values are positive, we
use only the positive section of the Normal density
after fitting. Lognormal, Exponential and Gamma
densities are defined for random variables with
only positive values. Other distributions that are
commonly encountered in the statistics literature
are the Uniform, y?> and Weibull (which are special
cases of Gamma), Beta (which is defined only for
[0,1]) and Cauchy (whose moments do not exist).
Although these distributions can also be used by
first estimating their parameters and then finding
the cut-off values, we will show that the distribu-
tions used in this paper can quite generally model
features from different feature extraction algo-
rithms.
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To measure how well a fitted distribution re-
sembles the sample data (goodness-of-fit), we use
the Kolmogorov—Smirnov test statistic (Bury,
1975; Press et al., 1990) which is defined as the
maximum value of the absolute difference between
the cumulative distribution function estimated
from the sample and the one calculated from the
fitted distribution. After estimating the parameters
for different distributions, we compute the Kol-
mogorov—Smirnov statistic for each distribution
and choose the one with the smallest value as the
best fit to our sample.

3.5.1. Fitting a Normal (u, o’ ) density

Let x1,...,x, € R be a random sample from a
population with density (1/v/2mn0) exp(—(x — p)*/
206%), —o00o<x< o0, —00 < pu<oo, ¢>0. The
likelihood function for the parameters p and o2 is

L(p, 6% |x1, ..., x,)

After taking its logarithm and equating the
partial derivatives to zero, the maximum likeli-
hood estimators (MLEs) of u and ¢® can be de-
rived as

The cut-off value &, that includes 99% of the fea-
ture values can be found as

P(x<5X)=P<x_“<5’“;”> =0.99

= 5, = [L+2.46. (7)

Let x and y be two iid. random variables with a
Normal (i, 6%) distribution. Using moment gen-
erating functions, we can easily show that their
difference z =x —y has a Normal(0,20?) distri-
bution.

3.5.2. Fitting a Lognormal (u,c?) density

Let xi,...,x, € R be a random sample from a
population with density (1/v2no)(exp(—(logx —
1)°/26%))/x, x>0, —co<pu<oo, o>0. The

likelihood function for the parameters p and
a2 is

L(w, a*|x1,. .., x,)

1 oxp ( — 2 (logx; — u)2/2o'2)

(2n62)"? [T
(8)
The MLEs of u and ¢? can be derived as
a1 z": logx; and & = ! Zn:(logx —n)?
H n < i n < i M)
9)

In other words, we can take the natural logarithm
of each sample point and treat the new data as a
sample from a Normal (u, ¢®) distribution (Casella
and Berger, 1990).

The 99% cut-off value d, can be found as

P(x<0,) = P(logx < logo,)

_P<log)i—u<10g5f—u> — 0.99
G G

= 5, = 2%, (10)

3.5.3. Fitting an Exponential (1) density

Let x;,...,x, € R be a random sample from a
population with density (1/4)e™/%, x>0, 4> 0.
The likelihood function for the parameter 4 is

L(i|x|,...,x,,):%exp(—ix,/l). (11)

The MLE of A can be derived as

n

|
= ;xi. (12)
The 99% cut-off value J, can be found as
P(x<d) =1—e/* =099
= 8, = —/10og0.01. (13)
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Let x and y be two iid. random variables with
an Exponential (1) distribution. The distribution
of z=x — y can be found as

1 ]
e HA
T 00 < z < 00. (14)

f(2) =
It is called the Double Exponential (1) distribution
and similar to the previous case, the MLE of 4 can
be derived as

R L
_Z;m. (15)

3.5.4. Fitting a Gamma(w, ) density

Let xi,...,x, € R be a random sample from a
population with density (1/I(x)p")x* e /P,
x>0, o, f = 0. Since closed forms for the MLEs
of the parameters « and f§ do not exist, ' we use the
method of moments (MOM) estimators (Casella
and Berger, 1990). After equating the first two
sample moments to the first two population mo-
ments, the MOM estimators for o and f can be
derived as

5 — (i Z?:lx’)z )_Lz 16
COSL - (sna) S e
B: (Z Zz l(z) (lx)z: ) _%’ (17)

where X and S° are the sample mean and the
sample variance, respectively.

It can be shown (Casella and Berger, 1990)
that when x ~ Gamma («, /) with an integer o,
P(x<9d,) =P(y = a), where y~ Poisson(d,/p).
Then the 99% cut-off value o0, can be found
as

" MLEs of Gamma parameters can be derived in terms of
the “Digamma” function and can be computed numerically
(Bury, 1975; Press et al., 1990).

Ze—o/ﬁ 5/ﬁ

ZI: ~0u/p T P) Mﬂ =0.99

y=0

= Z oo/ O/ B) 5/ =0.01. (18)
»=0 y
Johnson et al. (1994) represents Eq. (18) as
B 00 5 /ﬁ x+1
<o) =e /b 19
Plr< O ey (19)

Another way to find J, is to use the Incomplete
Gamma function (Abramowitz and Stegun, 1972,
p. 260; Press et al., 1990, Section 6.2) as

P(<b) =15 ;4(0). (20)

Note that unlike Eq. (18), & does not have to be an
integer in Eq. (20).

Let x and y be two iid. random variables with a
Gamma (o, f) distribution. The distribution of
z =x — y can be found as (Springer, 1979, p. 356)

e R T
(28)® V2 nl/2 BT () KacrnG/P) (21)

—00 <z < 00,

f-(2) =

where K,,(u) is the modified Bessel function of the
second kind of order m (m > 0, integer) (Springer,
1979, p. 419; Press et al., 1990, Section 6.6).

Histograms and fitted distributions for some of
the 28 features are given in Fig. 1. After comparing
the Kolmogorov—Smirnov test statistics as the
goodness-of-fits, the line-angle-ratio features were
decided to be modeled by Exponential densities
and the co-occurrence features were decided to be
modeled by Normal densities. Histograms of the
normalized features are given in Figs. 2 and 3.
Histograms of the differences of normalized fea-
tures are given in Figs. 4 and 5.

Some example feature histograms and fitted
distributions from 60 Gabor features (Manjunath
and Ma, 1996), 4 QBIC features (Flickner et al.,
1993) and 36 moments features (Cheikh et al.,
1999) are also given in Fig. 6. This shows that
many features from different feature extraction
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Fig. 1. Feature histograms and fitted distributions for example features. An Exponential model (solid line) is used for the line-angle-
ratio features and Normal (solid line), Lognormal (dash—dot line) and Gamma (dashed line) models are used for the co-occurrence
features. The vertical lines show the 99% cut-off point for each distribution. (a) Line-angle-ratio (best fit: Exponential); (b) line-angle-
ratio (best fit: Exponential); (¢) co-occurrence (best fit: Normal); (d) co-occurrence (best fit: Normal).

algorithms can be modeled by the distributions
that we presented in Section 3.5.

4. Similarity measures

After computing and normalizing the feature
vectors for all images in the database, given a
query image, we have to decide which images in
the database are relevant to it and we have to
retrieve the most relevant ones as the result of the
query. A similarity measure for content-based
retrieval should be efficient enough to match

similar images as well as being able to discriminate
dissimilar ones. In this section, we describe two
different types of decision methods: likelihood-
based probabilistic methods; the nearest neighbor
rule with an L, metric.

4.1. Likelihood-based similarity measures

In our previous work (Aksoy and Haralick,
2000b), we used a two-class pattern classification
approach for feature selection. We defined two
classes, the relevance class .« and the irrelevance
class 4, in order to classify image pairs as similar
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Fig. 2. Normalized feature histograms for the example features in Fig. 1. Numbers in the legends correspond to the normalization
methods as follows. Norm.1: linear scaling to unit range; Norm.2: linear scaling to unit variance; Norm.3: transformation to a
Uniform [0,1] random variable; Norm.4: rank normalization; Norm.5.1: fitting a Normal density; Norm.5.2: fitting a Lognormal
density; Norm.5.3: fitting an Exponential density; Norm.5.4: fitting a Gamma density.

or dissimilar. A Bayesian classifier can be used for
this purpose as follows. Given two images with
feature vectors x and y, and their feature difference
vector d =x —y, x,y,d € R? with ¢ being the size
of a feature vector, the a posteriori probability that
they are relevant is

P(/|d) = P(d|.)P(</)/P(d) (22)
and the a posteriori probability that they are ir-
relevant is

P(#|d) = P(d|#)P(%)/P(d). (23)

Assuming that these two classes are equally likely,
the likelihood ratio is defined as

r(d) = =2 (24)

In the following sections, we describe two
methods to estimate the conditional probabilities
P(d|</) and P(d|%). The class-conditional den-
sities are represented in terms of feature difference
vectors because similarity between images is as-
sumed to be based on the closeness of their fea-
ture values, i.e. similar images have similar
feature values (therefore, a difference vector with
zero mean and a small variance) and dissimilar
images have relatively different feature values
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Fig. 3. Normalized feature histograms for the example features in Fig. 1 (cont.). Numbers in the legends are described in Fig. 2.

(a difference vector with a non-zero mean and a
large variance).

4.1.1. Multivariate Normal assumption

We assume that the feature differences for the
relevance class have a multivariate Normal density
with mean g, and covariance matrix 2,

1
fldlpny,20) = "
<exp (= (d—w) X} d—p,)/2).  (25)

Similarly, the feature differences for the irrele-
vance class are assumed to have a multivariate
Normal density with mean p, and covariance
matrix X,

1
(2m)"2|Z4]"

xexp (= (d = 1), (d = 1,)/2). (26)

fd| iy, 24) =

The likelihood ratio in Eq. (24) is given as

Sl
@ = iy s

Given training feature difference vectors d, ..., d,
eRrRY, u,, X, u, and X, are estimated using the
multivariate versions of the MLEs given in Section
3.5.1 as

(27)

n <

c I . Iy X N
p=—> di and E=-7% (d—)d—p.
i=1 i=1

(28)
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Fig. 4. Histograms of the differences of the normalized features in Fig. 2. Numbers in the legends are described in Fig. 2.

To simplify the computation of the likelihood ra-
tio in Eq. (27), we take its logarithm, eliminate
some constants, and use

r(d) = (d = pny)'2,(d - py,)
—(d = py) 2, (d — py) (29)

to rank the database images in ascending order of
these values which corresponds to a descending
order of similarity. This ranking is equivalent to
ranking in descending order using the likelihood
values in Eq. (27).

4.1.2. Independently fitted distributions

We also use the fitted distributions to compute
the likelihood values. Using the Double Expo-
nential model in Section 3.5.3 for the 20 line-angle-
ratio feature differences and the Normal model in

Sd|2m,

Section 3.5.1 for the 8 co-occurrence feature dif-
ferences independently for each feature compo-
nent, the joint density for the relevance class is
given as

2 2
f(d|)“&/la e Aer205 Mgty - - o5 Bapags [ TERRRR) %/28)

(d[*ﬂ oi )2 /2‘7,2(//,

H e ldil/ 2eri H
2) ‘*/l =21V 211',6%
(30)

and the joint density for the irrelevance class is
given as

) 2 2
s 45205 Moga1s -+ + 5 Hogags O ot - - - 5 Jﬂzs)

~ldi| /A o (di—z)* /20,
H 2)% ¢ H \/21wjl ’

i=21

(31)



572 S. Aksoy, R.M. Haralick | Pattern Recognition Letters 22 (2001) 563582

feature 7 feature 18
0.16 T v r T T r - 0.2 T T T T - T T —
— e |
Norm.5.3 4B Norm.5.3
.18} =%
0.14f b 0.18
0.16 B
0.14 ]
0.12

- -08 -06 -04 -02

(b)
feature 26 feature 27
0.14 T 0.08 T T T T T T T
=+ Norm.1
-8~ Norm.5.1
0.07+ =+ Norm.5.2 {
0.12F < - Norm.5.3
Norm.5.4
0.06 1
0.1
0.05 hi
0.08f
0.041
0.06
0.03F
0.04r
0.02
0.021 o1t
0 Ll o >
-1 -1 1
(© (@)

Fig. 5. Histograms of the differences of the normalized features in Fig. 3. Numbers in the legends are described in Fig. 2.

The likelihood ratio in Eq. (24) becomes
r(d)

:f(d s 2205 Koty -+ - 5 Hoposs %//21"'"63//28)
f(duwlv---,imoa#mla---,ﬂﬁsa Ompi1s 763’428)
(32)

Dectis Py Wogis Wiy G-piy 0 are estimated using the
MLEs given in Sections 3.5.1 and 3.5.3. Instead of
computing the complete likelihood ratio, we take
its logarithm, eliminate some constants, and use

Z"’"(m 4,>

128

d :LL?/Z 2 (d :ult)

2 i=21 0-9//1 O-JI

(33)

to rank the database images.

4.2. The nearest neighbor rule

In the geometric similarity measures like the
nearest neighbor decision rule, each image » in
the database is assumed to be represented by its
feature vector y™ in the g-dimensional feature
space. Given the feature vector x for the in-
put query, the goal is to find the ys which are
the closest neighbors of x according to a dis-
tance measure p. Then, the k-nearest neigh-
bors of x will be retrieved as the most relevant
ones.

The problem of finding the k-nearest neighbors
can be formulated as follows. Given the set ¥ =
{HM]ymW e R n=1,...,N} and feature vector
x € R?, find the set of images U C {I,...,N} such
that #U = k and



S. Aksoy, R.-M. Haralick | Pattern Recognition Letters 22 (2001) 563-582

feature 44

(X1

06|

04f

02f

573

feature 55

feature 1

p=1.17, 620.40

feature 26

08

o1

(c)

02 03 04 06 07

05
1=0.58, 6=0.11

300 500 600

4=97.02, 6=72.25

400 700 800 900 1000

(d)

Fig. 6. Feature histograms and fitted distributions for some of the Gabor, QBIC and moments features. The vertical lines show the
99% cut-off points. (a) Gabor (best fit: Gamma); (b) Gabor (best fit: Normal); (c) QBIC (best fit: Normal); (d) moments (best fit:

Lognormal).

Vue Uve{l,...,N}\ U,
(34)

p(x, ) < p(x, »),

where N being the number of images in the dat-
abase. Then, images in the set U are retrieved as
the result of the query.

4.2.1. The L, metric
As the distance measure, we use the Minkowsky
L, metric (Naylor and Sell, 1982)

1/p

q
Pp(X7J’): E e — wil” ) (35)
i=1

for p > 1, where x,y € R? and x; and y; are the
ith components of the feature vectors x and y,
respectively. A modified version of the L, met-
ric as

q
() =Y i =l (36)
i=1

is also a metric for 0 <p<1. We use the
form in Eq. (36) for p >0 to rank the data-
base images since the power 1/p in Eq. (35)
does not affect the ranks. We will describe how
we choose which p to use in the following sec-
tion.
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4.2.2. Choosing p

Commonly used forms of the L, metric are the
city-block (L;) distance and the Euclidean (L)
distance. Sclaroff et al. (1997) used L, metrics with
a selection criterion based on the relevance feed-
back from the user. The best L, metric for each
query was chosen as the one that minimized the
average distance between the images labeled as
relevant. However, no study of the performance of
this selection criterion was presented.

We use a linear classifier to choose the best p
value for the L, metric. Given training sets of
feature vector pairs (x,y) for the relevance and ir-
relevance classes, first, the distances p, are com-
puted as in Eq. (36). Then, from the histograms of
p, for the relevance class ./ and the irrelevance
class 4, a threshold 0 is selected for classification.
This corresponds to a likelihood ratio test where
the class-conditional densities are estimated by the
histograms.

After the threshold is selected, the classification
rule becomes

class .o/

| if p,(x,y) <0,
assign (x,y) to {class 4

if p,(x,y) = 0.

We use a minimum error decision rule with equal
priors, i.e. the threshold is the intersecting point of
the two histograms. The best p value is then chosen
as the one that minimizes the classification error
which is 0.5 misdetection + 0.5 false alarm.

5. Experiments and results
5.1. Database population

Our database contains 10,410 256 x 256 images
that came from the Fort Hood Data of the RA-
DIUS Project and also from the LANDSAT and
Defense  Meteorological — Satellite  Program
(DMSP) Satellites. The RADIUS images consist
of visible light aerial images of the Fort Hood area
in Texas, USA. The LANDSAT images are from a
remote sensing image collection.

Two traditional measures for retrieval perfor-
mance in the information retrieval literature are
precision and recall. Given a particular number of
images retrieved, precision is defined as the per-
centage of retrieved images that are actually rele-
vant and recall is defined as the percentage of

(37) relevant images that are retrieved. For these tests,
Table 1
Average precision when 18 images are retrieved®
p \ Method Norm.1 Norm.2 Norm.3 Norm.4 Norm.5.1 Norm.5.2 Norm.5.3 Norm.5.4
0.4 0.4615 0.4801 0.5259 0.5189 0.4777 0.4605 0.4467 0.4698
0.5 0.4741 0.4939 0.5404 0.5298 0.4936 0.4706 0.4548 0.4828
0.6 0.4800 0.5018 0.5493 0.5378 0.5008 0.4773 0.4586 0.4892
0.7 0.4840 0.5115 0.5539 0.5423 0.5033 0.4792 0.4582 0.4910
0.8 0.4837 0.5117 0.5562 0.5457 0.5078 0.4778 0.4564 0.4957
0.9 0.4830 0.5132 0.5599 0.5471 0.5090 0.4738 0.4553 0.4941
1.0 0.4818 0.5117 0.5616 0.5457 0.5049 0.4731 0.4552 0.4933
1.1 0.4787 0.5129 0.5626 0.5479 0.5048 0.4749 0.4510 0.4921
1.2 0.4746 0.5115 0.5641 0.5476 0.5032 0.4737 0.4450 0.4880
1.3 0.4677 0.5112 0.5648 0.5476 0.4995 0.4651 0.4369 0.4825
1.4 0.4632 0.5065 0.5661 0.5482 0.4973 0.4602 0.4342 0.4803
1.5 0.4601 0.5052 0.5663 0.5457 0.4921 0.4537 0.4303 0.4737
1.6 0.4533 0.5033 0.5634 0.5451 0.4868 0.4476 0.4231 0.4692
2.0 0.4326 0.4890 0.5618 0.5369 0.4755 0.4311 0.4088 0.4536

#Columns represent different normalization methods. Rows represent different p values. The largest average precision for each nor-
malization method is marked in bold. The normalization methods that are used in the experiments are represented as: Norm.1: linear
scaling to unit range; Norm.2: linear scaling to unit variance; Norm.3: transformation to a Uniform[0,1] random variable; Norm.4:
rank normalization; Norm.5.1: fitting Exponentials to line-angle-ratio features and fitting Normals to co-occurrence features;
Norm.5.2: fitting Exponentials to line-angle-ratio features and fitting Lognormals to co-occurrence features; Norm.5.3: fitting Ex-
ponentials to all features; Norm.5.4: fitting Exponentials to line-angle-ratio features and fitting Gammas to co-occurrence features.
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we randomly selected 340 images from the total of
10,410 and formed a groundtruth of seven cate-
gories; parking lots, roads, residential areas,
landscapes, LANDSAT USA, DMSP North Pole
and LANDSAT Chernobyl.

The training data for the likelihood-based
similarity measures was generated using the pro-
tocol described in (Aksoy and Haralick, 1998).
This protocol divides an image into sub-images
which overlap by at most half their area and re-
cords the relationships between them. Since the
original images from the Fort Hood Dataset that
we use as the training set have a lot of structure,
we assume that sub-image pairs that overlap are

575

relevant (training data for the relevance class) and
sub-image pairs that do not overlap are usually
not relevant (training data for the irrelevance
class).

The normalization methods that are used in the
experiments in the following sections are indicated
in the caption to Table 1. The legends in the fol-
lowing figures refer to the same caption.

5.2. Choosing p for the L, metric

The p values that were used in the experiments
below were chosen using the approach described
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Fig. 7. Classification error vs. p for different normalization methods. The best p value is marked for each method. (a) Norm.1 (best
p = 0.6); (b) Norm.2 (best p = 0.8); (¢c) Norm.3 (best p = 1.3); (d) Norm.4 (best p = 1.4); (¢) Norm.5.1 (best p = 0.8); (f) Norm.5.2 (best
p =0.8); (g) Norm.5.3 (best p = 0.6); (h) Norm.5.4 (best p = 0.7).
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in Section 4.2.2. For each normalization method,
we computed the classification error for p in the
range [0.2,5]. The results are given in Fig. 7. We
also computed the average precision for all nor-
malization methods for p in the range [0.4,2] as
given in Table 1. The values of p that resulted in
the smallest classification error and the largest
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average precision were consistent. Therefore, the
classification scheme presented in Section 4.2.2
was an effective way of deciding which p to use.
The p values that gave the smallest classification
error for each normalization method were used
in the retrieval experiments of the following
section.

Recall

(b)

Fig. 8. Retrieval performance for the whole database using the likelihood ratio with the multivariate Normal assumption. (a) Precision
vs. number of images retrieved; (b) precision vs. recall.
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images retrieved; (b) precision vs. recall.
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Fig. 10. Retrieval performance for the whole database using the L, metric. (a) Precision vs. number of images retrieved; (b) precision

vs. recall.

5.3. Retrieval performance

Retrieval results, in terms of precision and re-
call averaged over the groundtruth images, for the
likelihood ratio with multivariate Normal
assumption, the likelihood ratio with fitted distri-
butions and the L, metric with different normal-
ization methods are given in Figs. 8-10,
respectively. Note that, linear scaling to unit range
involves only scaling and translation and it does
not have any truncation so it does not change the
structures of distributions of the features. There-
fore, using this method reflects the effects of using
the raw feature distributions while mapping them
to the same range. Figs. 11 and 12 show the
retrieval performance for the normalization
methods separately. Example queries using the
same query image but different similarity measures
are given in Fig. 13.

5.4. Observations

e Using probabilistic similarity measures always
performed better in terms of both precision
and recall than the cases where the geometric
measures with the L, metric were used. On the
average, the likelihood ratio that used the multi-

variate Normality assumption performed better
than the likelihood ratio that used independent
features with fitted Exponential or Normal dis-
tributions. The covariance matrix in the corre-
lated multivariate Normal captured more
information than using individually better fitted
but assumed to be independent distributions.
Probabilistic measures performed similarly
when different normalization methods were
used. This shows that these measures are more
robust to normalization effects than the geomet-
ric measures. The reason for this is that the pa-
rameters used in the class-conditional densities
(e.g. covariance matrix) were estimated from
the normalized features, therefore the likeli-
hood-based methods have an additional (built-
in) normalization step.

The L, metric performed better for values of
p around 1. This is consistent with our ear-
lier experiments where the city-block (L) dis-
tance performed better than the Euclidean
(L) distance (Aksoy and Haralick, 2000a).
Different normalization methods resulted in
different ranges of best performing p values
in the classification tests for the L, metric.
Both the smallest classification error and the
largest average precision were obtained with
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Fig. 11. Precision vs. number of images retrieved for the similarity measures used with different normalization methods. (a) Linear
scaling to unit range (Norm.1); (b) linear scaling to unit range (Norm.2); (¢) transformation to a Uniform r.v (Norm.3); (d) rank
normalization (Norm.4).

normalization methods like transformation
using the cumulative distribution function
(Norm.3) or the rank normalization (Norm.4),
i.e. the methods that tend to make the distri-
bution uniform. These methods also resulted
in relatively flat classification error curves
around the best performing p values which
showed that a larger range of p values were
performing similarly well. Therefore, flat min-
ima are indicative of a more robust method.
All the other methods had at least 20% worse
classification errors and 10% worse precisions.
They were also more sensitive to the choice of
p and both the classification error and the av-
erage precision changed fast with smaller

changes in p. Besides, the values of p that re-
sulted in both the smallest classification errors
and the largest average precisions were consis-
tent. Therefore, the classification scheme pre-
sented in Section 4.2.2 was an effective way
of deciding which p to use in the L, metric.

The best performing p values for the methods
Norm.3 and Norm.4 were around 1.5 whereas
smaller p values around 0.7 performed better
for other methods. Given the structure of the
L, metric, a few relatively large differences can
effect the results significantly for larger p values.
On the other hand, smaller p values are less sen-
sitive to large differences. Therefore, smaller p
values tend to make a distance more robust to
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Fig. 12. Precision vs. number of images retrieved for the similarity measures used with different normalization methods (cont.). (a)
Fitting Exponentials and Normals (Norm.5.1); (b) fitting Exponentials and Lognormals (Norm.5.2); (c) fitting Exponentials
(Norm.5.3); (d) fitting Exponentials and Gammas (Norm.5.4).

large differences. This is consistent with the fact
that L,-regression is more robust than least
squares with respect to outliers (Rousseeuw
and Leroy, 1987). This shows that the normal-
ization methods other than Norm.3 and
Norm.4 resulted in relatively unbalanced fea-
ture spaces and smaller p values tried to reduce
this effect in the L, metric.

Using only scaling to unit range performed
worse than most of the other methods. This is
consistent with the observation that spreading
out the feature values in the [0,1] range as much
as possible improved the discrimination capa-
bilities of the L, metrics.

6.

Among the methods with fitting distributions,
fitting Exponentials to the line-angle-ratio
features and fitting Normals to the co-occur-
rence features performed better than others.
We can conclude that studying the distributions
of the features and using the results of this study
significantly improves the results compared to
making only general or arbitrary assumptions.

Conclusions

This paper investigated the effects of feature

normalization on retrieval performance in an
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Fig. 13. Retrieval examples using the same parking lot image as query with different similarity measures. The upper left image is the
query. Among the retrieved images, first three rows show the 12 most relevant images in descending order of similarity and the last row
shows the 4 most irrelevant images in descending order of dissimilarity. Please note that both the order and the number of similar
images retrieved with different measures are different. (a) Likelihood ratio (MVN) (12 similar images retrieved); (b) likelihood ratio (fit)
(11 similar images retrieved); (c) city-block (Z;) distance (9 similar images retrieved); (d) Euclidean (Z,) distance (7 similar images

retrieved).

image database retrieval system. We described five
normalization methods: linear scaling to unit
range; linear scaling to unit variance; transfor-
mation to a Uniform[0,1] random variable; rank
normalization; normalization by fitting distribu-
tions to independently normalize each feature
component to the [0,1] range. We showed that the
features were not always Normally distributed as
usually assumed, and normalization with respect

to a fitted distribution was required. We also
showed that many features that were computed by
different feature extraction algorithms could be
modeled by the methods that we presented, and
spreading out the feature values in the [0,1] range
as much as possible improved the discrimination
capabilities of the similarity measures. The best
results were obtained with the normalization
methods of transformation using the cumulative
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distribution function and rank normalization. The
final choice for the normalization method that will
be used in a retrieval system will depend on the
precision and recall results for the specific data set
after applying the methods presented in this
paper.

We also described two new probabilistic simi-
larity measures and compared their retrieval per-
formances with those of the geometric measures in
the form of the L, metric. The probabilistic mea-
sures used likelihood ratios that were derived from
a Bayesian classifier that measured the relevancy
of two images, one being the query image and one
being a database image, so that image pairs which
had a high likelihood value were classified as
“relevant” and the ones which had a lower likeli-
hood value were classified as “irrelevant”. The first
likelihood-based measure used multivariate Nor-
mal assumption and the second measure used in-
dependently fitted distributions for the feature
differences. A classification-based approach with a
minimum error decision rule was used to select the
best performing p for the L, metric. The values of p
that resulted in the smallest classification errors
and the largest average precisions were consistent
and the classification scheme was an effective way
of deciding which p to use. Experiments on a
database of approximately 10,000 images showed
that both likelihood-based measures performed
significantly better than the commonly used L,
metrics in terms of average precision and recall.
They were also more robust to normalization ef-
fects.
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