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Abstract

In this paper, a statistically efficient Hough transform (HT) technique with improved performance in accuracy and
robustness is described. The proposed technique analytically computes the uncertainty of each feature point based on
image noise, the procedure used for estimating edge orientation, and the specific parametric representation scheme of a
line. Using the estimated uncertainty of each feature point, a Bayesian probabilistic scheme is introduced to compute
the contribution of each feature point to the accumulator. A performance evaluation of our technique reveals its
improved performance, especially for noisy images. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The Hough transform (HT) is a method for
detecting straight lines and curves on gray level
images. For line detection, the equation of a line
can be expressed as

p = xcos(0) + ysin(0), (1)

where 6 and p are the line orientation and the
distance from origin to the line, respectively. A line
is therefore, completely specified by a parameter
pair (0,p). For straight line detection, the HT
maps each edge pixel (x,y) from the image space
into a parameter space of (0, p), where contribu-
tions from each feature point to each possible set
of (6,p) are accrued. For this purpose the pa-
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rameter space is divided into cells with each cell
corresponding to a pair of quantized (0,p). A
multi-dimensional accumulator array is often used
to represent the quantized space. For each feature
point, all the parameters associated with the point
are estimated, the corresponding cells of the ac-
cumulator are incremented accordingly. This is
repeated for all feature points. Lines are found by
searching the accumulator array for peaks. The
peaks correspond to the parameters of the most
likely lines.

The standard HT adopts a top hat strategy to
compute the contribution of each point to a hy-
pothesized line. Specifically, the scheme assumes
all feature points located within a close range of
the hypothesized line contribute equally to the line.
The accumulator is, therefore, incremented by a
unit for those feature points. This scheme is in-
adequate in that data points are not all equally
reliable. By that, we mean the line parameters
derived from each feature point may carry different
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uncertainties due to the following reasons. Most
HT techniques employ certain techniques for es-
timating the orientation of feature points (edgels)
to restrict the ranges of values of 6 a pixel may
vote for. The estimation of the orientation of each
edge pixel is often uncertain due to: (1) image noise
(e.g., positional errors from quantization and
sensor errors); (2) small neighborhood associated
with the edge detection procedure and the inherent
uncertainty with the procedure; (3) the parametric
representation used to define a line (e.g., Eq. (1)).
Feature points, therefore, vary in uncertainties.
They should not be treated equally.

In this paper, we propose to investigate the ef-
ficacy of a probabilistic scheme for computing the
contribution of each feature point to the accu-
mulator array. Our scheme analytically estimates
the uncertainty of the line parameters derived from
each feature point, based on which a Bayesian
accumulator updating scheme is proposed to
compute the contribution of the point to the ac-
cumulator.

The proposed scheme is based on the following
observation. At each edge pixel (x,y), its direction
0 is first estimated based on the gradient infor-
mation. The random perturbation on the input
image data propagates to 0, the estimate of 0. The
amount of uncertainty with 0 not only depends on
image error but also on the procedure used to es-
timate 0. Subsequently, when p is computed based
on 6 using Eq. (1), the perturbation on 6 propa-
gates to p, the estimate of p. The contribution of
point (x,y) to parameter set (0,p), therefore de-
pends on the uncertainty associated with (0, p).
We propose to analytically estimate the uncer-
tainty of each point and update the accumulator
array accordingly based on the estimated uncer-
tainty.

In the sections to follow, we detail the scheme
and study its performance. Section 2 briefly dis-
cusses previous efforts in this area. The proposed
scheme is covered in Section 3, where we analyti-
cally derive the error propagation scheme and the
Bayesian accumulator updating scheme. Section 4
presents the results of a performance analysis of
the improved HT against the standard HT trans-
form. This paper ends in Section 5 with a discus-
sion of the proposed scheme.

2. Previous work

Previous efforts in algorithmic improvement to
HT focused on improving the computational effi-
ciency of the HT (speed and memory). Early ef-
forts in this aspect concentrated on reducing the
number of bins used for tessellating the parameter
space. Many proposed techniques drew on some
form of coarse-to-fine search strategy resulting in a
dramatic reduction of cells.

More recent efforts have been focusing on
sampling the feature points. The idea is to use only
a subset of image features. These efforts give rise to
different probabilistic (also called randomized) HT
techniques (Davies, 1986; Xu et al., 1990; Xu and
Oja, 1993; Kiryati et al., 1991; Kalviainen et al.,
1994; Galmbos et al., 1999), which increase the
computational efficiency and decrease memory
usage by means of sampling the image feature
space.

Recently, Kittler and Pamler (1994) argued that
research efforts should focus on addressing the is-
sues of performance quality (accuracy) instead of
on computational aspects. They believe that im-
provements in computer hardware automatically
speed up algorithms, and that memory chips are
becoming increasingly cheaper. We agree with
their opinion. The emphasis of this research is
therefore, on improving the robustness and accu-
racy of the HT techniques.

Researchers have long realized the limitation
of the standard HT scheme and have proposed
different schemes to improve the performance of
HT. O’Gorman and Clowes (1976) first suggested
the accumulator be increment by the magnitude
of the gradient of each edge pixel. Their moti-
vation is to weight the contribution of each edge
pixel to the accumulator such that the pixels at
which 6 can be more accurately estimated con-
tribute more to the accumulator. Other authors
including Ballard (1981), Thrift and Dunn (1983),
Veen and Groen (1991) suggest using weighting
factors to weigh each feature point so that the
most prominent or the most certain image fea-
tures contribute more to accumulator cells than
less certain data. Most of these schemes usually
are variants of that of O’Gorman’s, i.e., the
weighting factors are derived from edge gradient
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measurements. They are either ad hoc or heuris-
tic, involving little theoretical justification. They
ignored the uncertainties associated with the es-
timated p parameter. Furthermore, they tend to
ignore the uncertainties introduced by the specific
line parameter representation. As we will see, the
uncertainties with p not only relate to gradient
information but also relate to point location and
line orientation. Thrift and Dunn (1983) pro-
posed to use a heuristic function, called an in-
fluence function, to determine the contribution of
each cell to the accumulator. The method was
reported to be superior to the standard HT on
noise perturbed examples of simple shapes. Ha-
ralick and Shapiro (1992) proposed a Bayesian
approach to increment the accumulator based on
the joint probability of 0 and p, but did not
elaborate on how the joint probability can be
estimated.

Kittler and Pamler (1994) described a statistical
hypothesis testing approach for the HT. The pro-
posed technique replaces the commonly used top-
hat kernel with a smooth kernel. For each feature
point, its contribution to the accumulator array at
a hypothesized cell (6,p) is computed from the
smooth kernel function, which is a function of the
differences between the estimated model parame-
ters and hypothesized model parameters.

Though very similar to our approach in spirit,
they proposed a rather complex and computa-
tionally intensive scheme to derive an optimal
analytic form of the kernel function. The kernel
function is analytically determined by maximizing
the power function, the probability of rejecting the
incorrect hypothesis.

Stephens’ (1991) work is very much similar to
ours. Both methods update the accumulator array
probabilistically. The major difference between
ours and Stephens’ lies in the probability used to
update the accumulator. Through error propaga-
tion, we propagate the perturbation with each
point to the computed curve parameter and update
the true (quantized) curve parameter by its likeli-
hood, assuming the computed curve parameter is
Gaussian distributed with each quantized curve
parameter as its mean and its perturbation (esti-
mated via error propagation) as its covariance
matrix. Stephens’, on the other hand, only updates

the computed curve parameter based on its likeli-
hood given a point. It has the following draw-
backs: (1) only the computed curve parameters are
updated and others are not; (2) it is difficult to
model the probability density function (pdf) be-
tween an image point and the estimated curve
parameters. The proposed pdf model may be
suitable for modeling the pdf of an image point
with the ideal curve parameters. The two methods
also differ in modeling perturbations with the im-
age points. We model both intensity and positional
errors while Stephens’ only models positional er-
ror. Finally, Stephens did not mention for real
images how to estimate the required positional and
orientational errors.

3. Overview of the proposed scheme

We follow most HT techniques, i.e., starting
with estimating 6 for each pixel using directional
intensity gradient measurements and then, com-
puting p using Eq. (1). This can be used to re-
strict the range of values of 0 that the pixel may
vote for. It permits one-to-many mapping to be
restricted to one-to-few mapping of image point
to a parameter point. We assume that the gradi-
ent at a particular pixel is estimated by comput-
ing an equally weighted least squares fit to the
gray levels in the pixel’s neighborhood. It is also
assumed that the input image is corrupted with
additive Gaussian noise with zero mean and
variance ¢°. In the following sections, we will
show how to estimate 0 for each pixel, compute
its perturbation o}, and analytically propagate
this propagation to p.

3.1. Uncertainty of the estimated line parameters

Let O = (é, p) be a vector representing the es-
timated line parameters for a feature point. The
uncertainty of the estimated line parameters can be
characterized by X, the covariance matrix of @.
2, can be analytically expressed as

2
o Ty Gop
zo= (0 W), ©)
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where oj and o) represent the variances of the
estimated line orientation and position parame-
ters, and oy, the covariance of p and 0.

In the paragraphs to follow, we will show, how
to analytically compute o2, oi and o,), respec-

tively.

3.1.1. Estimation of 0 and its perturbation

If we approximate the image gray-tone values in
pixel (x,y)’s neighborhood by a facet plane
oy + fx + vy (Haralick, 1980), then the estimated
gradient direction 0 for (x,p) is

| >

tan( = =, (3)

=

where & and ﬁ are estimates of o and f, resulting
from a least-squares fitting. Taking a Taylor
expansion of the right-hand side of Eq. (3)
around (o, ), we obtain to a first order ap-
proximation

Atan@—;Aa—[;Aﬁ. (4)

Similarly, expanding the left-hand side of Eq. (3)
around 0, we obtain

AO
Atan0 = ——.
tan o2 0 (5)

Combining Egs. (4) and (5) yields

1
AO = (EA“ - %Aﬁ) cos? 0. (6)

As a result, the perturbation of é, 0(2), 1s

A )
o) = G—§+—4/3——faxﬂ cos* 0, (7)
B B B

where o, f, o2, oﬁ, and o, are estimated as follows
(Haralick, 1980). Let R be the rectangular region
that we use to estimate o and f. Let the row index
of R be Y and column index be X. And let g(x,y)
be the intensity at location (x,y). Then, we have
(x,y) eX x Y.

& _ Zyey er)( xg(x,y) (8)
ZXEX Zye}’xz 7
BA _ Zyey er)( yg(xay) (9)
ZXGX ZyEY y2 7
2
B ag
0, = = ~ (10)
Zer erX x?
2
P ag
O, =———"—F—"—"— 5 1 1
’ Zye)’ ZXGX y2 ( )
0-2 Zer ZXEX Xy (12)

Oup = )
ZyEY erX x? ZyEY erX yz
where a*/(30,y Do ex¥?) and 0 /(30 Do X)

is the summation of the squared row (column)
index values over the neighborhood used in the
least-square fit. For a rectangular neighborhood,
o, = a;. For a symmetric neighborhood R, that is,
if x € R implies —x € R, we have, > _, > _,xy
=0, 1.e., 0,5 = 0. )

We must emphasize two things. First, Eq. (7)
only approximates variance of 0 estimated from
the linear facet-fitting procedure. For 0 estimated
from different procedures like Sobel or Canny,
Eq. (7) is not applicable. This, however, does not
mean we cannot propagate error for other edge
detectors. In fact, for any edge detectors with a
given kernel, we can analytically compute the un-
certainties associated with the computed first order
directional gradients (e.g., /. and /,) (Ji and Ha-
ralick, 1999a). Substituting « and f in equation
with I, and 7, in Eq. (3), we can proceed in the
same fashion to compute ¢j and ¢. Second, aj
only characterizes the random uncertainties of
0 due to image noise ¢°. It does not account for
any systematic errors inherent with the procedure
used for estimating 6.

3.1.2. Estimating of), the uncertainty of the estimat-
ed line parameter p .

For each observed pixel (x,y), given 0 its p is
estimated via

ﬁ:xcosé+ysin§. (13)

Taking a Taylor expansion of Eq. (13) around 0, x
and y, we obtain to a first order approximation:
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Ap = cos O0Ax + sin 0Ay

+ (ycos 0 — xsin 0)A0. (14)
The variance of p is therefore,
o2 = cos’ o2 + sin’ 02 + (y cos 0 — xsin 0) a7,
(15)
where o2, 02 and o3 are standard deviations for

x> Yy 0
positional and orientational errors. If we assume

a; = 0, = 0, Eq. (15) becomes

_ 2 V2 2
o, =0, + (ycos —xsin0) oy.

2
p
If we let

k = ycosf — xsin 0.

Then the variance of p is

af) :kzag—i—af,. (16)

By substituting Eq. (7) into (16), we have

2 262 D
oik2<%+ﬁ—fﬁ—2€amﬁ>cos“9+ai (17)

where o, f, o,, and ¢} can be estimated from

Eqgs. (8)-(12), respectively. Geometrically, k£ can
be interpreted as the distance from an image
point (x,y) to the point closest to the origin on
the line determined by (0, p) as shown in Fig. 1.
So ¢ not only depends on o; but also on the
geometric location of the point via k as well as

line orientation. As k increases or 0 decreases, af]

Fig. 1. Geometric interpretation of k.

increases. It is also clear from Eq. (17) that 012] isa
function of: (1) image intensity perturbation via
a,, a5, and a,4; (2) point location via k; (3) po-
sitional error via o

Eq. (17) is significant in that it reveals that the
variance of the estimated line parameter p not only
relates to the input perturbation via perturbation
on 0 as expected, but also relates to the distance of
the feature point to the origin (or the location of
the point), as well as to the orientation of the line.
It implies that a point further from the origin may
induce more uncertainty and that lines with larger
angles can be more accurately estimated than
those with smaller angles. Given equal position, 6/2)
is 0 for horizontal lines and is maximum for ver-
tical lines. This echoes the conclusion drawn by
Davies (1986), who showed that the parameter
error increases as the distance from the foot of the
normal to the origin increases. He recommended
to change origins in order to derive more accurate
parameter estimation.

This means that the uncertainty of a feature
point depends on the HT coordinate system em-
ployed and that we can always translate and rotate
the coordinate system to minimize O’f). Based on the
above analysis, we can conclude that the quality of
the estimated line parameters can always be im-
proved by simply selecting the appropriate coor-
dinate system. A coordinate system centered at the
centroid of the feature points should always yield
better quality of the estimated line parameters than
a coordinate system centered at one of the corners
since it leads to smaller k value for each point.

Using Eq. (14), 0,9, the covariance of p and 0
can be computed as follows.

o = E(AOAp)
= E[(A0)*](ycos 0 — x sin 0)
+ E[AxA0] + E[AyA0)]
= ka?, (18)

where we assume A6 is uncorrelated to Ax and Ay.
3.2. Estimating image error o°
Computation of the o7, af,, and gy, requires o2,

the amount of perturbation associated with image
intensities. Let /(x,y) be the observed gray-tone
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value for pixel located at (x,y). If we approximate
the image gray-tone values in pixel (x,y)’s neigh-
borhood by a plane ay + fx + 7, then the image
perturbation model can be described as

L(x,y) = oy + fr+ 7+ ¢,
where ¢ represents the image intensity error and
follows an iid distribution with & ~ N (0, ¢?).

For a M x N neighborhood, the sum of squared
residual fitting errors

E=> "> (x,y)—ox—py—7),
1

y=1 x=

is distributed o?€* ~ y3, y . As a result, we can
obtain 67, an estimate of ¢, as follows

2
2 €

T T MxN-2

Assume each pixel is perturbed identically and
independently with the same variance 6>, we can
obtain a more accurate estimate of > by averaging
6% obtained from each neighborhood over the en-
tire image.

Let 6; be an estimate of ¢ from the kth
neighborhood. Given a total of K neighborhoods
across the image, we can obtain

K
¢ = 1 67
=1

4. Increment the accumulator

Given X, we propose a Bayesian scheme to
probabilistically compute the contribution of each
feature point to the accumulator array. Assume
o= (0, p), a line parameter vector estimated from
a feature point, is distributed as @ ~ N(0,Z,),
where © = (0, p) is a vector consisting of all pos-
sible quantized values of 0 and p. Given O, the
likelihood of @ can be computed as P(O|O)

P(@ 10) = (Zn)—l |Z@|71/2 exp—(1/2)(@7@)’2g)'(@7@) .
(19)

If the prior information about @ is available, then
accumulator H (6, p) for parameter © = (6, p) can

be incremented by P(O | (:2), the sum of posterior
probability of @ given @ at each image point

(x,y), ie.,

H(0) = Z(yexrP(0] 0), (20)

where X x Y is the image domain, note O is a
function of image point (x,y). If, however, the
prior for @ is not available, we may assume uni-
form prior for @, then H(0, p) can be incremented
by the sum of its likelihoods at each point, i.e.,

H(0) = X1y)cxxrP(0]0) (1)

Given each image point, we can obtain an 6,
whose support for @ is quantified by P(®|@). The
total support for a particular quantized value @ is
the sum of all supports it receives from each every
feature point. .

It is clear from Eq. (21) that given each (0, p)
and its covariance matrix X, the bin for a (0, p) is
updated based on P(@|O), the likelihood of ©
given the observed @. The further away O is from
O, the smaller the likelihood is and the less con-
tribution @ = (0, p) receives from the point (x,y)
as shown in Fig. 2, which graphically illustrates the
density function of P(O|®) given ® and ;. The
probabilistic updating scheme introduced here
differs from the standard HT and other techniques
in that, not only is ©® = @ updated but other Os

Fig. 2. Illustration of the procedure for probabilistically up-
dating the accumulator array in the Hough space, where
O = (0,p) is a quantized parameter and P(@|0) is the likeli-
hood of © given & = (0, p). O is obtained from a feature point
using Eq. (1).
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nearby are also updated in a statistically optimal
fashion.

The smooth kernel function as represented by
P(©|©) is in firm contrast with the top-hat kernel
employed by most HT techniques. While similar to
the one proposed by Kittler and Pamler (1994),
ours can be derived more efficiently.

In practice, given ® and its covariance matrix
24, a lo-limit elliptical region can be established in
0 — p space (the shaded region shown in Fig. 3)
such that bins for @s located within the shaded
region are updated accordingly using Eq. (21)
while bins for @s located outside the region are not
updated since their probabilities are negligible.
The major and minor axes of the elliptical region
are the two eigenvectors of 2.

Fig. 3. An elliptical region for probabilistically updating the
accumulator array in the Hough space.

5. Performance characterization

In this section, we present sample results on a
variety of images to highlight the improvements in
detection accuracy and robustness that can be ob-
tained from the proposed scheme. The perfor-
mance of the proposed scheme (referred to as
improved HT hereafter) was evaluated against the
standard HT on a synthetic image. Finally, the
performance of the improved HT is further as-
sessed using real images. The synthetic image
contains a set of line segments in different direc-
tions as shown in Fig. 4. We are interested in
comparing the results of the two methods by ap-
plying them to images corrupted with varying
amount noises. The noisy images result from cor-
rupting the intensities of original images by adding
Gaussian noise with a mean of zero and a variance
of ¢? to each pixel independently. Three different
values of 6> was used to perturb the original image.
The edge points were extracted using a 3 x 3 facet
model. The performance of a HT was evaluated by
visually inspecting the 3D accumulator plots to see
if distinct peaks can be recognized. These peaks
correspond to the line segments in the image.

5.1. Experimental results

The first part of the experiment involves 3D
accumulator plots comparison. The accumulator
array obtained using the standard and improved
HT on perfect images are plotted in Figs. 5(a) and
(b), respectively. The two images look very much
identical (though the peaks in (b) are more

@ (b)

(c) (d)

Fig. 4. The synthetic test image containing eight lines segments: (a) the original image; (b) image after perturbing (a) with ¢ = 5;
(c) image after perturbing (a) with ¢ = 10; (d) image after perturbing (a) with ¢ = 20.
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300
250
200
150
100

50

300 —

Fig. 5. 3D accumulator plots obtained using the standard HT (a) and the improved HT (b) from the perfect image. The eight peaks

correspond to the eight line segments in the image.

distinctive). This is correct since when ¢ = 0, we
can see from Eq. (17), the variance of p is zero.
The improved scheme is therefore the same as the
standard HT. Figs. 6-8 show the accumulator ar-
rays obtained using the improved HT and stan-
dard HT, respectively on noisy images, with
¢ =5, 10 and 20, respectively. From these figures,
we can see as the noise level increases, the per-

300 —
250
200
150
100

50

50
100
0 150 5o 250 100
350

(a)

formance of standard HT degenerates very quickly
as shown by the larger blurred peak clusters, a
reduction in the number of peaks observable, and
an increase in the number spurious peaks. For
example, when ¢ = 10, only three peaks can be
recognized from Fig. 7(a) and there are several
false peaks near 0°, 315° and 360°. The problem
is more evident in Fig. 8(a), with a significant

300 —
250
200
150
100

50

Fig. 6. 3D accumulator plots obtained using the standard HT (a) and the improved HT (b) from the image corrupted with noise level

of 6 = 3.

300 —
250
200
150
100

50

50
100
0 150 500 250 100
350

(a)

300 —
250
200
150
100

50

50

100

0 150 59 250 300
350

(b)

Fig. 7. 3D accumulator plots obtained using the standard HT (a) and the improved HT (b) from the image corrupted with noise level

of ¢ = 10.
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300 —
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150
100

50

250
(b) 300 350 0

Fig. 8. 3D accumulator plots obtained using the standard HT (a) and the improved HT (b) from the image corrupted with noise level

of ¢ = 20.

increase in spurious peaks and resulting in a loss of
half of the line segments and peaks become even
more indistinguishable. In contrast, for the im-
proved HT, the effect of additional noise is not as
much serious as shown in Figs. 7(b) and 8(b).
Similar results were obtained when using other
synthetic images. To test our technique with real
images, we applied it to images parts. Sample re-
sults are shown in Figs. 9 and 10.

6. Discussion and future work

In this paper, we introduce a Bayesian updating
scheme that systematically ties the uncertainties
computed for each point to its contribution. The
contribution of each point to a (6, p) is propor-
tional to its likelihood. The proposed scheme is

based on an analytical propagation of input errors.
It results from theoretical and statistical deriva-
tions and therefore, possesses a great statistical
efficiency.

Our study shows that the uncertainty of a fea-
ture point depends on: (1) the input perturbation;
(2) its relative spatial location to the Hough co-
ordinate system; (3) edge detector; (4) line repre-
sentation scheme. We can always manipulate the
HT coordinate system to reduce the uncertainty
with each feature point, therefore, improving the
quality of the estimated line parameters. This im-
plies that a HT coordinate system centered at the
centroid of the image feature should yield better
line parameter estimates than a coordinate system
centered at one of the corners.

The preliminary results from the performance
characterization of the proposed scheme on

Fig. 9. Examples of detected lines for two real images. Detected lines are superimposed on the original images.
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&

Fig. 10. Examples of detected lines for two additional images.

synthetic images revealed that the proposed
scheme is superior to the standard HT in that it
can yield a better accumulator with less irrelevant
data and more prominent peaks, especially in
noisy images. The study also shows that the im-
proved HT is more robust and accurate to noise
and yields good results with real images.

A further advantage of the proposed method is
that it quantifies the uncertainties associated with
the estimated line parameters. This valuable in-
formation can be subsequently exploited by the
higher vision tasks to characterize the accuracy of
its output.

One disadvantage of the proposed scheme as
compared to the standard HT is that it is com-
putationally more involved. This problem will
become less an issue with the advent of the new
computer hardware. Another disadvantage of
our approach is that it ties to the technique used
for estimating edge orientation. For a different
edge-orientation technique, the error propagation
procedure needs to be re-derived to compute the
variance of the estimated edge orientation.
However, basic theory for error propagation with
most edge detectors like Canny and Sobel can be
derived in a similar fashion. Furthermore, error
propagation from 6 to p and the Bayesian
scheme for incrementing the accumulator remain
the same. Another potential disadvantage with
our approach as with any HT that makes use of
the edgel orientation computed from an edge
detector, the systematic positional error (bias)

Detected lines are superimposed on the original images.

associated with the estimated edgel orientation is
not accounted for. Our approach implicitly as-
sumes small systematic positional error. The
systematic positional error could be large for
certain edge detectors operating with small con-
volution kernel. We only consider random posi-
tional error.

One of the future tasks is to conduct experi-
ments to compare the proposed scheme with other
methods, especially the one proposed by Kittler
and Pamler (1994). From Eq. (17), we can see of,
depends on k. Minimizing k can therefore, reduce
the uncertainties associated with each edge point.
For a given image, k can be minimized by selecting
the origin of HT coordinate at the centroid of the
objects of interests (here are linear features). As a
result, another possible future work is to verify the
impact of different HT coordinate systems on HT
performance including accuracy and computa-
tional complexity.

The error propagation scheme discussed in this
paper is only intended for least-square line fitting.
We have, however, extended (Ji and Haralick,
1999b) this scheme to allow analytical error
propagation for general curve-fitting problems
including circles and ellipses. Given the covariance
matrix characterizing the error of the estimated
curve parameters, the Bayesian accumulator up-
dating scheme introduced in this paper can be di-
rectly applied. We can therefore, conclude that the
extended error propagation scheme can be used
with the HT for detecting any curves.
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