
Journal of Symbolic Computation 41 (2006) 818–834

www.elsevier.com/locate/jsc

A hybrid search algorithm for the Whitehead
Minimization problem

A.D. Myasnikova,∗, R.M. Haralickb

a Department of Mathematical Sciences, Stevens Institute of Technology, Hoboken, NJ, United States
b Department of Computer Science, The Graduate Center of CUNY, NY, United States

Received 9 March 2005; accepted 1 April 2006

Available online 2 May 2006

Abstract

The Whitehead Minimization problem is a problem of finding elements of the minimal length in the

automorphic orbit of a given element of a free group. The classical algorithm of Whitehead that solves

the problem depends exponentially on the group rank. Moreover, it can be easily shown that exponential

blowout occurs when a word of minimal length has been reached and, therefore, is inevitable except for

some trivial cases.

In this paper we introduce a deterministic Hybrid search algorithm and its stochastic variation for

solving the Whitehead Minimization problem. Both algorithms use search heuristics that allow one to

find a length-reducing automorphism in polynomial time on most inputs and significantly improve the

reduction procedure. The stochastic version of the algorithm employs a probabilistic system that decides

in polynomial time whether or not a word is minimal. The stochastic algorithm is very robust. It has never

happened that a non-minimal element has been claimed to be minimal.

c© 2006 Elsevier Ltd. All rights reserved.

Keywords: Automorphism problem; Free groups; Heuristic search

1. Introduction

The Whitehead Minimization problem is a problem of finding elements of the minimal length

in the automorphic orbit of a given element of a free group. This problem is of great importance

∗ Corresponding author. Tel.: +1 201 216 8598; fax: +1 201 216 8321.
E-mail addresses: amyasnik@stevens.edu (A.D. Myasnikov), haralick@ptah.gc.cuny.edu (R.M. Haralick).

0747-7171/$ - see front matter c© 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jsc.2006.04.001

A.D. Myasnikov, R.M. Haralick / Journal of Symbolic Computation 41 (2006) 818–834 819

in group theory and topology and continually attracts a great deal of attention from the research

community.
Starting from the seminal paper of Whitehead (1936), the Whitehead Minimization problem

was studied extensively for more than 70 years (see Lyndon and Schupp (1977), Cohen et al.

(1981), Lee (2003), Khan (2004), Kapovich et al. (in press), Myasnikov and Shpilrain (in press),

Kaimanovich et al. (in press), Kapovich (2006)) and still the complexity of this problem is

unknown.
One of the most important applications of the Whitehead Minimization problem is that its

solution is part of the solution to the famous Automorphism Problem in free groups introduced

by J.H.C. Whitehead in 1936. Methods used to solve the Whitehead Minimization problem can

be used to decide whether an element is a part of a generating basis of a free group. The same

methods and their generalizations are used in solving equations over free groups (see Razborov

(1985)). To practitioners, the Whitehead Minimization problem could be of interest because of its

relation to non-commutative variations of the public key cryptographic scheme by Moh (1999).
All known methods of solving the Whitehead Minimization problem have exponential

dependence on the rank of a free group. Moreover, the worst case scenario occurs when solving a

termination problem (which is to decide whether or not a given element is minimal) for a minimal

element. Since the goal of the Whitehead Minimization problem is to find a minimal element, the

worst case is inevitable for almost all elements except for elements of a very particular type. This

observation leads us to a conclusion that the known deterministic techniques are not suitable for

groups of large ranks.
Haralick et al. (2005, 2004), Miasnikov (2004) and Miasnikov and Myasnikov (2004), using

methods of pattern recognition and exploratory data analysis, show that by introducing proper

strategies one can construct a length reduction process which is very efficient on most inputs.

Furthermore, in these papers we formulate several conjectures (see 2) regarding the various

properties of the problem.
In this paper we present a new algorithm for solving the Whitehead Minimization problem.

It is a hybrid algorithm in a sense that it employs several stochastic, as well as deterministic,

procedures based on the conjectures stated by Haralick et al. (2005).
We combine a stochastic search algorithm and heuristic search procedures (both described

in Section 3.1) with the probabilistic classification system “recognizing” minimal elements

(see Section 3.2) to construct a Hybrid Deterministic Whitehead Reduction (HDWR) algorithm

solving the Length Reduction Problem in a polynomial number of steps (in terms of group rank)

on most input words from a free group. The resulting algorithm is deterministic and still requires

an exponential number of steps to prove that a word is minimal.
We present a fast probabilistic algorithm HPWR which is a slight modification of HDWR.

Algorithm HPWR is very robust and extremely fast on most input words, including words in free

groups of large ranks. Although we do not have a formal proof of the correctness of HPWR, in all

the experiments that we have performed it has never happened that the algorithm has produced

an incorrect output.
The algorithms HDWR and its probabilistic version HPWR are described in Section 3. We

give experimental results evaluating the performance of these two algorithms in Section 4.

Comparison with the standard deterministic procedure is also presented in Section 4.

2. The Whitehead Minimization problem

Let X = {x1, . . . , xn} be a finite alphabet; X−1 = {x−1 | x ∈ X} be the set of formal inverses

of letters from X and X±1 = X ∪ X−1. A word w = y1 . . . ym in the alphabet X±1 is called

820 A.D. Myasnikov, R.M. Haralick / Journal of Symbolic Computation 41 (2006) 818–834

reduced if yi �= y−1
i+1 for i = 1, . . . ,m − 1 (here we assume that (x−1)−1 = x). Applying

reduction rules xx−1 → ε, x−1x → ε (where ε is the empty word), one can reduce each word w

in the alphabet X±1 to a reduced word w. The word w is uniquely defined and does not depend

on a particular sequence of reductions. Denote by F = F(X) the set of reduced words over X±1.

The set F forms a group with respect to the multiplication u · v = uv, called a free group with

basis X . The cardinality |X | is called the rank of F(X). We write Fn instead of F to indicate that

the rank of F is equal to n.

A bijection φ : F → F is called an automorphism of F if φ(uv) = φ(u)φ(v) for every

u, v ∈ F . The set Aut(F) of all automorphisms of F forms a group with respect to the

composition of maps. Every automorphism φ ∈ Aut(F) is completely determined by the images

φ(x) of elements x ∈ X . Sometimes it is more convenient to use non-functional notation wφ to

denote the action of automorphism φ on w.

The following two subsets of Aut(F) play an important part in both group theory and

topology. An automorphism t ∈ Aut(F) is called a Nielsen automorphism if for some x ∈ X t
fixes all elements y ∈ X, y �= x and maps x to one of the elements x−1, y±1x , xy±1. Note that

automorphisms that map x to x−1, leaving everything else unchanged, cannot cause alterations of

the word length. Such automorphisms will be called length invariant automorphisms. By N (X)
we denote the set of all Nielsen automorphisms of F except the length invariant ones.

A non-trivial automorphism t ∈ Aut(F) is called a Whitehead automorphism if it has one of

the following types:

(1) t permutes the elements of X±1;

(2) t fixes a given element a ∈ X±1 and maps each element x ∈ X±1, x �= a±1 to one of the

elements x , xa, a−1x , or a−1xa.

It is easy to see that automorphisms of the first type are length invariant. By W (X) we denote the

set of Whitehead’s automorphisms of the second type. Obviously, every Nielsen automorphism

is also a Whitehead automorphism.

Observe that

|N (X)| = 4n(n − 1), |W (X)| = 2n4(n−1) − 2n

where n = |X | is the rank of F .

It is known (see Lyndon and Schupp (1977)) that every automorphism from Aut(F) is a

product of finitely many Nielsen (hence Whitehead) automorphisms.

The automorphic orbit Orb(w) of a word w ∈ F is the set of all automorphic images of w in

F :

Orb(w) = {v ∈ F | ∃ϕ ∈ Aut(F) such that wϕ = v}.
A word w ∈ F is called minimal (or automorphically minimal) if |w| ≤ |wϕ| for any

ϕ ∈ Aut(F). By wmin we denote a word of minimal length in Orb(w). Notice that since there

may be several elements of the minimal length in same orbit, wmin is not unique in general.

Problem 2.1 (Minimization Problem (MP)). For a word u ∈ F find an automorphism ϕ ∈
Aut(F) such that uϕ = umin.

Whitehead (1936) proved the following result which gives a solution to the minimization

problem.

A.D. Myasnikov, R.M. Haralick / Journal of Symbolic Computation 41 (2006) 818–834 821

Theorem 2.1 (Whitehead). Let u ∈ Fn(X). If |u| > |umin|, then there exists t ∈ W (X) such that

|u| > |ut |.
An automorphism φ ∈ Aut(F) is called a length-reducing automorphism for a given word

u ∈ F if |uφ| < |u|. The theorem above claims that the finite set W (X) contains a length-

reducing automorphism for every non-minimal word u ∈ F . This allows one to design a simple

search algorithm for (MP).

Let u ∈ F . For each t ∈ W (X) compute the length of the word ut until |u| > |ut |,
then put t1 = t, u1 = ut1. Otherwise stop and output umin = u. This procedure is called

the Whitehead Length Reduction routine (WLR). Now Whitehead Reduction (WR) algorithm

proceeds as follows. Repeat WLR on u, and then on the resulting u1, and so on, until at some

step k WLR gives an output umin. Then ut1 . . . tk−1 = umin, so φ = t1 . . . tk−1 is the required

automorphism.

Notice that the iteration procedure WR simulates the classical greedy descent method (t1 is a

successful direction from u; t2 is a successful direction from u1; etc.) Theorem 2.1 guarantees

that the greedy approach will always converge to a global minimum.

Clearly, there could be at most |u| repetitions of WLR on an input u ∈ F

|u| > |ut1| > · · · > |ut1 · · · tl | = umin, l ≤ |u|.
Hence the worst case complexity of the Whitehead’s algorithm is bounded from above by

cAn|u|2,
where An = 2n4(n−1)−2n is the number of Whitehead automorphisms in W (X) and the constant

c is a stretching factor by which the length of a word increases after a Whitehead automorphism

is applied (ignoring the low level implementation details). One letter can be mapped into a word

of length of at most 3, so c is bounded by 3 and does not depend on the rank of a group or the

word’s length. Since An depends exponentially on the rank of a free group, in the worst case

scenario the algorithm seems to be impractical for free groups with large ranks. One can try to

improve on the number of steps which it takes to find a length-reducing automorphism for a

given non-minimal element from F . In this context, the question of interest is the complexity of

the following

Problem 2.2 (Length Reduction Problem (LRP)). For a given non-minimal element u ∈ F find
a length-reducing automorphism.

We refer the reader to Haralick et al. (2005) and Miasnikov and Myasnikov (2004) for

a general discussion of this problem. Haralick et al. (2005) offers some empirical evidence

that by using smart strategies in selecting Whitehead automorphisms t ∈ W (X) one can

dramatically improve the average complexity of WLR in terms of the rank of a group. Some

of the experimental results were formulated as the following conjectures:

Conjecture 2.1 (Haralick et al. (2005)). Let Uk be the set of all non-minimal elements in F
of length k and NUk ⊂ Uk the subset of elements which have Nielsen length-reducing
automorphisms. Then

lim
k→∞

|NUk |
|Uk | = 1.

822 A.D. Myasnikov, R.M. Haralick / Journal of Symbolic Computation 41 (2006) 818–834

Conjecture 2.2 (Haralick et al. (2005)). The feature vectors of weights of the Whitehead
Graphs of elements from F are separated into bounded regions in the corresponding space.
Each such region can be bounded by a hypersurface and corresponds to a particular Nielsen
automorphism in a sense that all elements in the corresponding class can be reduced by that
automorphism.

Arguably the conjectures above are not intuitive and most likely would have been difficult

to arrive at without observations obtained using computer experiments. At this point we would

like to mention a new development in this area which was not available during the submission

of this paper. Kapovich (2006) has recently posted a preprint, giving a mathematical proof of the

Conjecture 2.2. To the best of our knowledge this is the first time non-trivial conjectures have

been obtained using statistical and exploratory data analysis techniques.

Unfortunately, one can easily see that the worst case behavior of the algorithm WR occurs

when a word of minimal length has been reached. Except for some trivial cases (when a minimal

word is a generator, for example) all Whitehead automorphisms need to be applied to a minimal

word before we can conclude that it is, indeed, minimal. It seems that no algorithm is known for

avoiding time-consuming computation in this case. We would like to emphasize the importance

of this fact by formulating it as a separate problem:

Problem 2.3 (Minimal Word Classification Problem (MWCP)). For a given u ∈ F(X), decide
whether u is minimal or not.

We discuss this problem in the previous papers. Haralick et al. (2004) gives a probabilistic

solution which is based on regression models. Miasnikov (2004) used the so-called support vector

machines to improve the performance in free groups of large ranks. In this paper we introduce

a new, significantly more efficient probabilistic system based on the empirical distribution of

minimal elements in the corresponding feature space (see Section 3.2).

3. Description of the hybrid algorithms

3.1. Heuristics for the Length Reduction problem

We have addressed this problem in the preceding papers. Our first approach was to develop a

simple Stochastic Whitehead Reduction (SWR) algorithm to solve LRP. It is implemented as a

combination of a greedy descent procedure with genetic search techniques.

Define the search space S as the set of all finite sequences

μ = 〈t1, . . . , ts〉
of Whitehead automorphisms ti ∈ W (X). For such μ and a word u ∈ F define uμ = ut1 . . . ts .

The solution to LRP is any sequence μ∗ ∈ S such that

|uμ∗| < |u|.
Among all such solutions we prefer the ones that give maximal length reduction of the image. In

SWR, we define the criterion function which evaluates a solution μ as

F(μ) = |uμ|.
The details on the implementation and evaluation of SWR can be found in Miasnikov and

Myasnikov (2004).

A.D. Myasnikov, R.M. Haralick / Journal of Symbolic Computation 41 (2006) 818–834 823

To our great surprise, this naive stochastic algorithm significantly outperformed the standard

algorithm, especially in free groups of large ranks. For example, there were very few runs of WR

for words w ∈ F10 with |w| > 100 that finished within an hour and there were no such runs

for |w| > 200. Nevertheless, the stochastic algorithm still was able to find minimal words in a

matter of seconds. What seemed to be more important is that the stochastic algorithm did not

show exponential dependence on the group’s rank.

We strongly believe that if a stochastic algorithm performs very well, then there must be

a purely mathematical reason behind this phenomenon which can be uncovered by a proper

statistical analysis. Following this philosophy, we performed an analysis of successful solutions

produced by SWR. The results helped us to define a number of search heuristics described by

Haralick et al. (2005). Below we give a brief description of these heuristics.

First, we observed that among all Whitehead automorphisms in the successful solutions,

Nielsen automorphisms statistically had a greater chance to occur. Further experiments

showed that more than 99% of non-minimal elements can be reduced by one of the Nielsen

automorphisms. Our first heuristic is based on this observation and simply suggests trying

Nielsen automorphisms first in the routine WLR, i.e., in this case we assume that in the fixed

listing of automorphisms of W (X), the automorphisms from N (X) come first. We refer to this

heuristic as Nielsen First. Note that the Nielsen First heuristic is very general and does not

use information about the input word itself. We showed that one can significantly improve the

performance of the search procedure by incorporating heuristics that use some knowledge about

the input.

Let u ∈ F(X). The undirected Labeled Whitehead graph W (u) = (V, E(u)) of the word

u is a complete undirected graph, where the set of vertices V is equal to the set X±1. Every

edge e = (x, y), x �= y of the Whitehead graph is assigned a weight ωe = ne/|u|, where ne
is the number of times subwords xy−1 or yx−1 occur in u. Note that ωe = 0 if the subwords

corresponding to the edge e do not occur in v. Now, for a given word u ∈ F define a special

vector representation (called a feature vector) f (u) ∈ R
|E(u)| such that

f (u) = 〈ωe1 , . . . , ωe|E(u)| 〉.
The edges ei are assumed to be taken in some fixed order. Since the Whitehead graph is complete,

the number of edges and, therefore, the size of feature vectors is 3n2 −n for all elements in a free

group Fn . The set of all feature vectors is usually called a feature space and is denoted by F .

Experiments show that there is a correlation between the location of the feature vectors in the

corresponding space and the length-reducing Nielsen automorphisms.

Let t ∈ N (X) be a Nielsen automorphism. Define the set

Ot = {w | r ∈ N (X) and |wr | < |w| ⇐⇒ r = t}
as a set of all elements that can be reduced only by t and no other Nielsen automorphism. We

also define a set Bm,t ⊂ Ot :

Bm,t = {w | w ∈ Ot , |w| ≤ m},
which is a finite set of elements from Ot with the length of at most m. For a large m we define

λt = 1

|Bm,t |
∑

w∈Bm,t

f (w)

as an estimate of the mean feature vector of the elements in Ot .

824 A.D. Myasnikov, R.M. Haralick / Journal of Symbolic Computation 41 (2006) 818–834

Now, let

d(w, t) = || f (w)− λt ||
be the distance (in this case, Euclidean distance) between the feature vector of a given word w

and the estimate λt of the mean feature vector corresponding to the Nielsen automorphism t .
Haralick et al. (2005) experimentally show that in about 99% of the time a randomly generated

non-minimal element w can be reduced by a Nielsen automorphism t∗ such that

d(w, t∗) = min{d(w, t) | t ∈ N (X)}.
Now we define the second heuristic, which is called the Centroid heuristic. For a given word u
compute distances d(u, t) for all t ∈ N (X) and sort them in the increasing order:

d(u, t1) ≤ d(u, t2) ≤ · · · ≤ d(u, tk).

Apply automorphisms t1, . . . , tk sequentially until a length-reducing Nielsen automorphism (if

any) is found.

Now let e = (x, y−1), x, y−1 ∈ V be an edge in the Whitehead graph of a word w such that

x �= y. By construction of the Whitehead graph, e corresponds to subwords se = (xy)±1.

There are only two Nielsen automorphisms that reduce lengths of subwords in se:

ψ x
e : x → xy−1, z → z ∀z �= x

and

ψ
y
e : y → x−1 y, z → z ∀z �= y.

Define ψe = {ψ x
e , ψ

y
e }. We call automorphisms ψe length reducing with respect to the edge e.

We can order Nielsen automorphisms ψei ⊂ N (X):

〈ψe1 , ψe2 , . . . , ψek 〉 (1)

such that the corresponding edges e1, . . . , ek are chosen according to the decreasing order of the

values of their weights:

ω(e1) ≥ ω(e2) ≥ · · · ≥ ω(ek).

In the third heuristic we apply Nielsen automorphisms in the order given by (1). This heuristic

is called the Maximal Edge heuristic. In the paper (Haralick et al., 2005) we present empirical

evidence that most non-minimal elements can be reduced by one of the automorphisms in ψe1 ,

given that ω(e1) is maximal.

To get a better understanding of how effective these methods are, we estimate the 99th

percentile of the number of Nielsen automorphisms required to reduce a non-minimal word from

a given test set (see Table 1).

We can see that the Centroid heuristic is the most effective and is able to predict a length-

reducing automorphism with very high accuracy. The Maximal Edge heuristic also uses very

few automorphisms where the Nielsen First heuristic must apply at least 60% of Nielsen

automorphisms in the best case.

The Nielsen First heuristic does not require any additional computations and, therefore, its

computational complexity is of order O(1). The Maximal Edge heuristic requires O(|w| + n2)

steps. The Centroid heuristic requires O(|w| + n4) elementary steps, where n is the rank of a

free group. Therefore, one becomes aware of a tradeoff between the length of the input word

A.D. Myasnikov, R.M. Haralick / Journal of Symbolic Computation 41 (2006) 818–834 825

Table 1

99th percentile of the number of Nielsen automorphisms computed for different heuristics applied to test sets S1 and S10

in free groups F3, F4 and F5

F3 F4 F5

|N | 24 48 80

S1 1 1 1

S10 1 2 3

Centroid

F3 F4 F5

|N | 24 48 80

S1 2 3 4

S10 6 7 6

Maximal Edge

F3 F4 F5

|N | 24 48 80

S1 23 45 70

S10 21 37 50

Nielsen First

and the rank of a group. Since the Centroid and Maximal Edge heuristics are more accurate they

become more attractive when the length of the input word increases because fewer superfluous

automorphisms will be applied to the input word.

In Section 3.3 we show how the stochastic algorithm SWR can be combined with Centroid

and Maximal Edge heuristics to improve the solution of the Whitehead Minimization problem.

3.2. Probabilistic system for classification of Minimal Words

We have already mentioned that the worst case of the standard Whitehead algorithm applied to

solve LRP occurs when the word is already minimal. Note that exponential blowout is inevitable

in the WR algorithm, unless minimal words are of a very special type. Being able to solve

the Minimal Word Classification Problem efficiently is crucial for an efficient solution to the

Whitehead Minimization Problem. In Haralick et al. (2004) and Miasnikov (2004) we describe

several stochastic classification systems (classifiers) based on pattern recognition techniques such

as regression and support vector machines. These classifiers are able to decide whether a given

word is minimal in polynomial time (with respect to group rank) with a very small error of

misclassification.

Conclusions in Miasnikov (2004) suggest that one of the classes (minimal or non-minimal) of

elements could be located in a compact region in the feature space F and can be bounded by a

hypersurface.

To support this conjecture we perform the following experiment. Assume that the feature

vectors of minimal elements follow the multivariate normal distribution N (μ,Σ) with the mean

μ and the covariance Σ . We estimate μ and Σ from a set of randomly generated minimal

elements. Experiments show that more than 97% of minimal elements lie inside the hyperellipse,

corresponding to the 99.9% confidence interval for μ. Moreover, no non-minimal elements fall

inside that region. This is a very strong indication that the feature vectors of minimal elements

indeed lie compactly in F .

Using this result we construct a new probabilistic system WMIN to solve the Minimal Word

Classification Problem. We decide that a given word u is minimal if its feature vector f (u) falls

inside the corresponding hyperellipsoid and we decide that u is otherwise non-minimal. To be

more precise, let μ and Σ be, respectively, the mean and the covariance matrix of feature vectors

of minimal elements. Using the so-called Mahalanobis distance we define the decision rule:

decide(u) =
{

minimal, if (x − μ)TΣ−1(x − μ) < ρ;
non-minimal, otherwise

where (x − μ)T is the transpose of a column vector x − μ. One way of estimating the threshold

ρ was indicated above, where it was taken to correspond to the 99.9% confidence interval of μ,

given that feature vectors follow multivariate normal distribution. However, in this case the error

826 A.D. Myasnikov, R.M. Haralick / Journal of Symbolic Computation 41 (2006) 818–834

of misclassifying minimal elements is unacceptably large (greater then 5%). This indicates that

the feature vectors actually are not normally distributed.

A practical way to estimate ρ is to estimate the distribution of distances from feature vectors

of minimal elements to their mean. Then we take ρ such that 100(1 − α) per cent of minimal

elements have distances less than ρ for a given α. Note that α corresponds to a confidence level

in a non-parametric hypothesis testing.

To compute Mahalanobis distance we need to obtain μ and Σ . One way is to estimate them

from a set of randomly generated minimal elements. This process is usually called “training”

the classifier. Unfortunately, to generate the sample of minimal elements we require to solve the

length reduction problem which, as we have argued, is hard in groups of large ranks. Below we

suggest a more efficient training procedure.

Kapovich et al. (in press) show that a random cyclically reduced element in a free group

is minimal with asymptotic probability 1. It is also easily shown that any minimal element is

already cyclically reduced. Following these two facts, we suggest estimating μ and Σ from

a set of randomly generated elements of a whole free group. This can be implemented very

efficiently even in groups with large ranks (see Miasnikov and Myasnikov (2004) for more details

on generating random elements in a free group).

We would like to mention here the two kinds of errors that may occur when solving the

Minimal Word Classification Problem. The first is the error of classifying a non-minimal element

as minimal. It is called the false positive error. The second is the error of classifying a minimal

element as a non-minimal element. It is called the false negative error. The rate of the false

positive error in all our experiments was zero. This property of the classifier is very important for

a successful implementation of the probabilistic version of the hybrid algorithm. We will return

to this discussion when we describe HPWR in Section 3.4.

3.3. HDWR

The deterministic hybrid procedure HDWR is given in Fig. 1. The algorithm contains two

major parts. The first part consists of a number of so-called fast checks — linear or polynomial

procedures that can solve the length reduction problem on some inputs. In fact, the fast checks

used in HDWR are expected to reduce most non-minimal elements in a free group. The problem

is that there are non-minimal words which cannot be reduced by fast procedures. Using the

fast checks alone, one cannot decide whether an input word is minimal or not. We need to

provide a termination condition of the algorithm. This task is solved by the second part of the

algorithm which is a version of the standard deterministic algorithm WR. Note that in most

cases, the computationally ineffective procedure WR is expected to be executed only on minimal

elements.

HDWR is an iterative procedure. On each iteration, the length reduction problem is solved for

the word wc, which is an automorphic image of the minimal length of the input word w found

so far. The algorithm terminates when there are no reductions possible and the current word wc
is returned as a minimal word wmin.

The first step in the algorithm is the classification procedure WMIN (line 5) which decides

whether a current word is minimal or not. Even though reduction procedures used as fast

checks do not require significant computational resources, this step helps avoiding superfluous

computations by distinguishing minimal elements on the first stage of the algorithm.

Fast reduction procedures are based on the search heuristics described in Section 3.1. We use

the Maximal Edge heuristic as the first fast check because it requires the least number of steps

A.D. Myasnikov, R.M. Haralick / Journal of Symbolic Computation 41 (2006) 818–834 827

DETERMINISTIC HYBRID ALGORITHM

1: SET the current word wc; reduced = true;

2: WHILE reduced BEGIN

3: reduced = false;

4: /* Begin fast checks */

5: IF wc NOT classified as minimal BEGIN

6: IF ψemax (Maximal Edge) reduces wc

7: wc = reduced word; reduced = true;

8: ELSE IF Centroid reduces wc

9: wc = reduced word; reduced = true;

10: ELSE IF Stochastic Algorithm reduces wc

11: wc = reduced word; reduced = true;

12: END IF

13: /* End fast checks */

14: IF NOT reduced AND W (X) reduce wc

15: wc = reduced word; reduced = true;

16: END WHILE

17: STOP;

Fig. 1. Algorithm HDWR.

(O(n2 +|w|)) when compared to other methods. Moreover, an n2 part appears when we construct

the Whitehead graph which is required for all heuristics. Note that more than 90% of non-

minimal elements are expected to be reduced using one of the two automorphisms corresponding

to the maximal weight edge of W G(wc).

Let emax(wc) be the maximal edge in W G(wc) and ψemax be the set of two length-reducing

automorphisms with respect to the edge emax(wc). On line 6 of the algorithm HDWR we apply

automorphisms ψemax to wc. The maximal number of steps required to perform the fast check is

O(n2 + |wc|).
These steps include the construction of the feature vector fW G(wc) and the application of the

automorphisms ψemax . Following the observations from Haralick et al. (2005) we expect most

non-minimal elements to be reduced at line 6. If the word wc has been reduced by one of the

two automorphisms, say ψ ′
emax

, we replace wc with ψ ′
emax

(wc) and start a new iteration. If the

Maximal Edge check fails, we continue the reduction process utilizing the next step.

As the next fast check we use the Centroid heuristic. Let ψemax be the set of two

automorphisms applied at line 6 and N (X) be the Nielsen. We order automorphisms

828 A.D. Myasnikov, R.M. Haralick / Journal of Symbolic Computation 41 (2006) 818–834

〈ϕ1, . . . , ϕk〉, ϕi ∈ Nn − ψemax , (2)

such that

d(wc, ϕ1) ≤ d(wc, ϕ2) ≤ · · · ≤ d(wc, ϕk).

We apply automorphisms ϕ1, . . . , ϕk in the order given by (2) to the word wc. If one of the

automorphisms has reduced the length of wc, we stop and start a new iteration with the new,

reduced word wc. The maximal number of steps required to execute this fast check is

O(n4 + n2|wc|).
By line 10 we already know that the word wc does not have Nielsen length-reducing

automorphisms. The suggested strategy at this point is to try to reduce wc by executing SWR for

a predefined number of generations. If SWR fails to find a length-reducing automorphism, we

continue with the algorithm WR. A very conservative bound for the expected maximal number

of generations of the stochastic algorithm was given in Miasnikov and Myasnikov (2004). Note

that since algorithm SWR performs better than WR only in groups with relatively large ranks

(greater than 5), it might happen that performance improves if we omit step 10 when the rank of

a free group is small.

The maximal time complexity to find a length-reducing automorphism for wc using HDWR

is still

O(2n|wc|).
However, following the discussion in Section 3.1, we expect the length reduction process to be

extremely efficient for most non-minimal words. Unfortunately, as previously stated, the worst

case behavior of the algorithm occurs when the current wordwc becomes minimal and, therefore,

it is inevitable except for some trivial cases. In the next section we introduce a probabilistic

algorithm that addresses this problem.

3.4. HPWR

Words of both types, minimal and non-minimal, may cause an exponential blowout in the

algorithm WR. However, non-minimal words do not seem to be a major problem since we have

shown that most of them can be reduced by one of the Nielsen automorphisms.

The bottleneck in solving the length reduction problem occurs in the lack of a fast algorithm

to decide whether a word is minimal or not. In fact, the only known deterministic solution is the

algorithm WR itself. Recall that the worst case of the algorithm occurs when the input word is

already minimal. In this case all of the Whitehead automorphisms have to be applied to the word

before the decision that the word is minimal can be made.

In this section we introduce a Hybrid Probabilistic Whitehead Reduction algorithm HPWR

for solving Whitehead’s Minimization problem. In HPWR the decision on whether or not a word

is minimal is made using a probabilistic classification system WMIN. This allows one to avoid

the exponential blowout for the cost of a possibility of a very small classification error.

We construct HPWR from HDWR first by removing the last step (line 14) from the algorithm

(see Fig. 2). Note the increased role the stochastic algorithm SWR plays. This is the only method

in HPWR which is capable of reducing non-minimal elements that do not have Nielsen length-

reducing automorphisms.

A.D. Myasnikov, R.M. Haralick / Journal of Symbolic Computation 41 (2006) 818–834 829

STOCHASTIC HYBRID ALGORITHM

1: SET the current word wc; reduced = true;

2: WHILE reduced BEGIN

3: reduced = false;

4: IF ψemax (Maximal Edge) reduces wc

5: wc = reduced word; reduced = true;

6: ELSE IF Centroid reduces wc

7: wc = reduced word; reduced = true;

8: ELSE IF wc classified as minimal

9: STOP;

10: ELSE IF Stochastic Algorithm reduces wc

11: wc = reduced word; reduced = true;

12: END WHILE

13: STOP;

Fig. 2. Algorithm HPWR.

Secondly, we move the classification step behind the fast reduction procedures. To explain

this modification we would like to return to the discussion of the roles played by the two types

of classification errors of the classifier WMIN in the view of its new application.

Recall that the two errors are: the false positive error (classifying a non-minimal element as

minimal) and the false negative error (classifying a minimal element as a non-minimal element).

Now observe that once the classifier WMIN decides that the word wc is minimal, algorithm

HPWR terminates and returns wc as the result. There is no backtracking or additional checking

performed after the decision is made. This means that if a non-minimal word wc is classified

as minimal the algorithm will produce an incorrect result. In contrast, when a minimal word is

misclassified as non-minimal, the cost of such error is the number of extra computational steps

performed by the algorithm in order to reduce a non-reducible word. What is important is that

the algorithm still produces a correct result.

Let ε be the probability of committing the false positive error by WMIN. Now assume that

during the reduction process classifier WMIN was called k times to decide whether an element

wc is minimal or not. The probability that the algorithm terminates with a correct answer is

(1 − ε)k . This shows that the probability of giving an incorrect answer grows rapidly with the

number of times the minimality decision is made.

Note that most of the reductions are expected to be done by fast check procedures. Moving the

classification step behind the fast checks allows us to reduce the error of producing an incorrect

answer while still maintaining a small computational cost on average.

The arguments above show that the false positive error of the classifier has crucial importance.

It is necessary to keep the rate of the false positive error as minimal as possible in order for the

algorithm to perform correctly.

830 A.D. Myasnikov, R.M. Haralick / Journal of Symbolic Computation 41 (2006) 818–834

Table 2

Description of the test sets of non-minimal elements in free groups F3, F4 and F5

Data set Size Min. length Avg. length Max. length Std. deviation

S1 10 143 3 605.8 1 306 359.3

S10 2 535 3 1507.9 13 381 1527.9

SP 5 645 3 1422.1 143 020 5379.0

(a) F3;

Data set Size Min. length Avg. length Max. length Std. deviation

S1 10 176 4 629.3 1 366 374.9

S10 2 498 5 2273.7 34 609 2679.1

SP 5 741 4 4785.3 76 3650 19266.4

(b) F4;

Data set Size Min. length Avg. length Max. length Std. deviation

S1 10 165 5 650.6 1 388 385.4

S10 2 566 7 2791.1 28 278 3234.9

SP 3 821 5 2430.5 160 794 6491.0

(c) F5;

It has been noted in Section 3.2 that the error of misclassifying non-minimal elements was

zero in all our experiments and, therefore, we expect it to be very small in all instances.

4. Evaluation

In this section we evaluate the algorithms HDWR and HPWR and compare their performance

to the performance of the algorithm WR.

We evaluate these algorithms on the following test sets of randomly generated cyclically

reduced non-minimal elements:

S1: contains minimal and non-minimal elements in equal proportions. Non-minimal elements are

obtained with one Whitehead automorphism.
SP : set of pseudo-randomly generated primitive elements in F . Recall thatw ∈ F(X) is primitive

if and only if there exists an automorphism α ∈ Aut(F) such that α(w) ∈ X±.
S10: generated similarly to S1, but up to 10 automorphisms are used to generate non-minimal

elements.

Some characteristics of the sets in free groups F3, F4 and F5 are given in Table 2.

Let A be one of the algorithms WR, HDWR and HPWR. By an elementary step of the

algorithm A, we mean one application of a Whitehead automorphism to a given word. Below

we evaluate the performance of A with respect to the number of elementary steps.

Let Ns = Ns(A, S) be the average number of elementary steps required by A to find a

minimal element for a given input w ∈ S, where S ⊂ Fn is a test set.

By Nred = Nred(A, S) we denote the average number of elementary length-reducing steps

required by A to reduce a given element w ∈ S to a minimal one, so Nred is the average

number of “productive” steps performed by A. It follows that if t1, . . . , tl are all the length-

reducing automorphisms found by A when executing its routine on an input w ∈ S then

|wt1 . . . tl | = |wmin| and the average value of l is equal to Nred.

We use values Ns and Nred as measures evaluating the performance of the algorithms.

In addition we record the CPU time T (w) spent by an algorithm to produce a solution for

A.D. Myasnikov, R.M. Haralick / Journal of Symbolic Computation 41 (2006) 818–834 831

Table 3

Comparison of algorithms WR, HDWR and HPWR on the test sets of primitive elements SP in free groups F3, F4 and

F5, where Ns is the average number of elementary steps for finding a minimal element, Nred the average number of

length-reducing steps, Tavg the average time (in seconds) spent on an input

Ns Nred Tavg, s

A Mean Std Mean Std Mean Std

WR 360.2 267.5 27.3 18.5 0.11 0.46

HDWR 41.2 29.1 24.2 15.0 0.01 0.05

HPWR 41.1 29.6 24.2 15.0 0.01 0.05

(a) F3;

Ns Nred Tavg, s
A Mean Std Mean Std Mean Std

WR 2679.7 2356.5 57.5 37.3 2.03 8.75

HDWR 118.1 114.8 45.5 28.0 0.08 0.31

HPWR 118.3 117.1 45.5 28.0 0.07 0.26

(b) F4;

Ns Nred Tavg, s
A Mean Std Mean Std Mean Std

WR 16 319.9 20 284.53 79.3 52.6 5.52 16.4

HDWR 276.5 539.4 58.9 38.6 0.12 0.29

HPWR 239.2 324.8 58.0 35.6 0.08 0.16

(c) F5;

a particular word w. Since HPWR is a probabilistic algorithm there exists a possibility of

producing an incorrect solution. We measure the error of a probabilistic Whitehead reduction

algorithm A by computing the fraction of elements for which A failed to return a minimal

element. Let SolA(w) ∈ Fn be a solution produced by algorithm A. If result is correct, then

|SolA(w)| = |wmin|. The error rate of A with respect to the test set S

E(A) = |{w ∈ S | |SolA(w)| > |wmin|}|
|S| .

In all the experiments we have done with the stochastic algorithm HPWR the error rate was zero,

i.e. it has never happened that a non-minimal element has been claimed to be minimal.

First, we experiment with groups of smaller ranks. For elements in free groups F3, F4 and F5,

algorithm WR can decide in a practically acceptable amount of time on whether an element is

minimal or not. This allows us to obtain the true values of lengths of minimal elements for each

of the input words and access the error rate of probabilistic algorithms. Results are presented in

Table 3–5, where

Tavg = 1

|S|
∑
w∈S

T (w)

and S is the corresponding test set.

From the tables we can see that both algorithms, HDWR and HPWR, significantly outperform

WR on the sets of primitive elements with the error of HPWR being small (actually zero). This

shows that the fast checks are efficient reduction heuristics. The same picture holds for other sets

as well. However, the performance of HDWR deteriorates on sets S1 and S10, where it is much

832 A.D. Myasnikov, R.M. Haralick / Journal of Symbolic Computation 41 (2006) 818–834

Table 4

Comparison of algorithms WR, HDWR and HPWR on the test sets S1 in free groups F3, F4 and F5, where Ns is the

average number of elementary steps for finding a minimal element, Nred the average number of length-reducing steps,

Tavg the average time (in seconds) spent on an input

Ns Nred Tavg, s

A Mean Std Mean Std Mean Std

WR 129.0 33.1 2.14 1.15 0.05 0.03

HDWR 117.5 10.4 1.69 0.81 0.04 0.03

HPWR 53.6 142.4 1.70 0.82 0.011 0.01

(a) F3;

Ns Nred Tavg, s
A Mean Std Mean Std Mean Std

WR 734.9 188.3 3.24 1.72 0.30 0.20

HDWR 552.1 61.1 2.42 1.19 0.21 0.12

HPWR 140.7 387.9 2.43 1.29 0.02 0.06

(b) F4;

Ns Nred Tavg, s
A Mean Std Mean Std Mean Std

WR 3541.3 908.2 4.28 2.19 1.45 1.05

HDWR 2601.6 341.7 3.29 1.73 0.70 0.41

HPWR 316.8 895.2 3.29 1.73 0.05 0.06

(c) F5;

Table 5

Comparison of algorithms WR, HDWR and HPWR on the test sets S10 in free groups F3, F4 and F5, where Ns is the

average number of elementary steps for finding a minimal element, Nred the average number of length-reducing steps,

Tavg the average time (in seconds) spent on an input

Ns Nred Tavg, s

A Mean Std Mean Std Mean Std

WR 203.5 86.5 8.45 5.49 0.12 0.13

HDWR 124.5 13.5 6.54 3.94 0.05 0.03

HPWR 64.7 153.9 6.54 3.94 0.02 0.01

(a) F3;

Ns Nred Tavg, s
A Mean Std Mean Std Mean Std

WR 1278.6 527.5 17.1 10.7 1.01 0.65

HDWR 569.7 67.5 11.6 7.16 0.36 0.33

HPWR 172.0 416.0 11.6 7.16 0.04 0.03

(b) F4;

Ns Nred Tavg, s
A Mean Std Mean Std Mean Std

WR 7650.5 4468.0 27.1 17.8 5.87 8.81

HDWR 2650.5 342.9 17.1 10.8 1.06 0.63

HPWR 360.7 904.5 16.9 10.6 0.08 0.08

(c) F5;

A.D. Myasnikov, R.M. Haralick / Journal of Symbolic Computation 41 (2006) 818–834 833

Table 6

Performance of the algorithm HPWR on sets of primitive elements in free groups F10, F15 and F20, where Ns is the

average number of elementary steps for finding a minimal element, Nred the average number of length-reducing steps,

Tavg the average time (in seconds) spent on an input

Ns Nred Tavg, s

Mean Std Mean Std Mean Std

F10 595.2 9195.5 55.5 37.0 0.20 0.58

F15 671.1 883.1 106.1 55.5 1.03 0.59

F20 736.3 874.4 128.4 61.8 2.80 1.41

more difficult to decide whether or not an element is minimal. We have already mentioned that

in the case of a minimal element all of the Whitehead automorphisms must be applied to confirm

that it is indeed minimal. The sizes of the sets of Whitehead elementary automorphisms in free

groups F3, F4 and F5 are |Ω3| = 90, |Ω4| = 504, |Ω5| = 2550 respectively. From the Tables 4

and 5 we can see that the values of Ns in all cases is just a little greater than the size of Ωn .

This indicates that HDWR spends most of its automorphisms and, therefore, time, on elements

of minimal length. In contrast, algorithm HPWR seems to be able to avoid exponential blowout

by quickly recognizing minimal elements using the classifier WMIN. Note that Ns computed for

HPWR is smaller than |Ωn| in all experiments.

To show that algorithm HPWR is applicable to groups of large ranks, we perform experiments

with primitive elements in free groups F10, F15 and F20 (see Table 6). We can see that HPWR

was able to find solutions quickly with Ns growing very slowly with the rank.

5. Conclusion

The search heuristics described in Haralick et al. (2005) can be successfully applied for

solving the Whitehead Reduction problem. Probabilistic algorithm HPWR is very robust and

can be used in groups with large ranks whereas any other known algorithm fails to produce

similar results due to the fact that the worst case is inevitable for most inputs. The computational

advantage of HPWR increases when the rank of a free group increases. Indeed, HPWR performs

about 11 times faster than WR in F3 and more than 60 times faster than in F5.

Acknowledgements

The authors thank Alexei G. Miasnikov for his inspiring support of this work. We also would

like to thank Mike Newman for his valuable comments and suggestions on this paper.

References

Cohen, M., Metzler, W., Zimmermann, A., 1981. What does a basis of f (a, b) look like? Math. Ann. 257, 435–445.

Haralick, R.M., Miasnikov, A.D., Myasnikov, A.G., 2004. Pattern recognition approaches to solving combinatorial

problems in free groups. Contemp. Math. 349, 197–213.

Haralick, R.M., Miasnikov, A.D., Myasnikov, A.G., 2005. Heuristics for the Whitehead Minimization problem. J. Exp.

Math. 14 (1), 7–14.

Kaimanovich, V., Kapovich, I., Schupp, P., 2005. The subadditive ergodic theorem and generic stretching factors for free

group automorphisms. Israel J. Math. (in press). http://arxiv.org/abs/math.GR/0504105.

Kapovich, I., 2006. Clusters, currents and Whitehead’s algorithm (preprint). http://lanl.arxiv.org/abs/math.GR/0511478.

Kapovich, I., Schupp, P., Shpilrain, V., 2006. Generic properties of Whitehead’s algorithm and isomorphism rigidity of

random one-relator groups. Pacific J. Math. 223, 113–140.

834 A.D. Myasnikov, R.M. Haralick / Journal of Symbolic Computation 41 (2006) 818–834

Khan, B., 2004. The structure of automorphic conjugacy in the free group of rank two. Computational and experimental

group theory. Contemp. Math. 349, 115–196.

Lee, D., 2003. Counting words of minimum length in an automorphic orbit (preprint).

http://www.arxiv.org/math.GR/0311410.

Lyndon, R., Schupp, P., 1977. Combinatorial Group Theory. In: Series of Modern Studies in Math., vol. 89. Springer-

Verlag.

Myasnikov, A.G., Shpilrain, V., 2003. Automorphic orbits in free groups. J. Algebra 269, 18–27.

Miasnikov, A.D., 2004. Recognition of Whitehead-minimal elements in free groups of large ranks. In: Artificial

Intelligence and Symbolic Computation. In: Lecture notes in Artificial Intelligence, vol. 3249. pp. 211–221.

Miasnikov, A.D., Myasnikov, A.G., 2004. Whitehead method and genetic algorithms. Contemp. Math. 349, 89–114.

Moh, T.T., 1999. A public key system with signature and master key functions. Comm. Algebra 27 (5), 2207–2222.

Razborov, A., 1985. On systems of equations in a free group. Math. USSR Izv. 25 (1), 115–162.

Whitehead, J.H.C., 1936. On equivalent sets of elements in a free group. Ann. of Math. 37, 782–800.

