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Abstract

In this paper, we "rst introduce a recursive procedure for e$ciently computing cubic facet parameters for edge

detection. The procedure allows to compute facet parameters in a "xed number of operations independent of kernel size.

We then introduce an image independent quantitative criterion for analytically evaluating di!erent edge detectors (both

gradient and zero-crossing based methods) without the need of ground-truth information. Our criterion is based on our

observation that all edge detectors make a decision of whether a pixel is an edgel or not based on the result of convolution

of the image with a kernel. The variance of the convolution output therefore directly a!ects the performance of an edge

detector. We propose to analytically compute the variance of the convolution output and use it as a measure to

characterize the performance of four well-known edge detectors. � 2001 Pattern Recognition Society. Published by

Elsevier Science Ltd. All rights reserved.
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1. Introduction

There has been an abundance of work on di!erent

approaches to edge detection. These approaches can be

grouped into two main categories: gradient and zero-

crossing based methods. While the gradient approach

uses the "rst-order directional derivatives of the image to

compute a quantity related to edge contrast for edge

detection, the zero-crossing approach requires computa-

tion of the second-order directional derivatives to ident-

ify locations with zero crossings.

Some of the early gradient operators include the

Roberts [1], Sobel [2], and Prewitt [3] edge operators.

They all involve using small kernels to convolve with an

image to estimate the "rst-order directional derivatives of

the image brightness function. While simple to use, these
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"lters give very little control over image noise and edge

location. To overcome these problems, Canny [4] de-

scribed a gradient-based edge-"nding algorithm that has

since become one of the most widely used edge detectors.

The algorithm uses an optimal "lter kernel for computing

the "rst-order directional derivatives of an image in two

orthogonal directions. The optimal "lter is obtained by

maximizing a criterion function consisting of signal-to-

noise ratio of the image, the edge location accuracy, and

the false positive probability. In practice, the optimal "lter
can be closely approximated by the "rst-order derivative

of a Gaussian function which allows noise suppression

and an e$cient implementation. Zuniga and Haralick [5]

introduced the integrated directional derivative gradient

operator based on the cubic facet model. Here the gradient

strength is the maximum value of the integral of the "rst
directional derivative taken over a small neighborhood

and over all possible directions. The direction that maxi-

mizes the integral de"nes the estimated gradient direction.

Experimental study [5] demonstrated the superiority of

this type of gradient operator to others like Roberts in

reducing noise sensitivity and estimate bias.
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While the gradient approach approximates the "rst-
order directional derivatives of pixel values in an image,

it is also possible to use the second-order derivatives to

detect edges since an edge may generate zero-crossings

for the second-order derivatives. A very popular second-

order derivative operator is the Laplacian operator. The

problem with the second-order derivative approach is

that the second-order derivatives tend to exaggerate

noise twice as much. Some sort of noise suppression is

needed. Marr and Hildreth [6] proposed the use of

zero-crossings of the Laplacian of a Gaussian (LOG) for

edge detection. The Gaussian serves the purpose of

smoothing for noise reduction. Isotropic digital LOG

kernels are used to convolve with an image to compute

the Laplacian value at each pixel. Haralick [7] proposed

the use of the zero-crossings of the second directional

derivatives of the image brightness function. Unlike the

LOG approach where data smoothing is accomplished

using a Gaussian "lter, data smoothing is achieved with

approximation. The image data are approximated by

a smooth function and directional derivatives are then

obtained analytically from di!erentiating the smooth

function. A pixel is declared an edgel if its second direc-

tional derivative, taken in the direction of the gradient,

has a negatively sloped zero-crossing located near the

center of the pixel. In spite of the use of discrete

Chebyshev polynomials, a problem with the facet model

based edge detection is that it is rather time consuming. It

requires to convolve a 2D kernel with image to compute

each facet coe$cient. In this paper, we will introduce an

e$cient method that implements the 2D convolution

with two 1D convolutions and that allows the 1D convo-

lution to be implemented recursively. This signi"cantly

reduces the computation time by rendering the computa-

tion independent of kernel size.

Despite the enormous amount of literature on edge

detectors, there are only a few papers on evaluating

and/or comparing the performance of di!erent edge de-

tectors. Such a study is important since it helps us under-

stand the strengths and the weakness of an edge operator

as well as its applicability to a particular application.

Abdou and Pratt [8] proposed Pratt's "gure of Merit

criterion for analytically evaluating the edge detectors for

synthetic images or real images with ground-truth data.

Kitchen and Rosenfeld [9] proposed an edge detection

evaluation criterion based on edge coherence without

requiring knowledge of the ideal edge position. Ramesh

and Haralick [10] proposed a method for evaluating

a facet-based edge detector with known perturbation

model for the input image. From the input perturbation

model, the output perturbation model and the output

perturbation can be analytically derived, based on which

probabilities of misdetection and false alarm rates are

computed analytically. Wang and Binford [11] analyti-

cally evaluated the performance of a step-edge detection

method by "tting a surface to the gradient magnitude

values. Heath et al. [12] recently proposed an empirical

method for evaluating the edge detectors for real images

based on subjective evaluation of edge images by people

without the need of groundtruth information.

In this paper, we describe a new image independent

measure for analytically evaluating di!erent edge de-

tectors (both gradient and zero-crossing based methods)

without the need of ground-truth information. The cri-

terion, called kernel-variance, evaluates each edge de-

tector based on the variance of its output quantity. For

any edge detector, its decision as to whether a pixel is an

edgel or not is largely determined by the quantity (gradi-

ent or zero-crossing) it computes. The variance of the

computed quantity can therefore signi"cantly a!ect its

decision, which, in turn, a!ects the misdetection and false

alarm rates. For comparison, we will evaluate the perfor-

mance of two gradient operators: the Canny edge de-

tector and the integrated gradient operator; and two

zero-crossing edge detectors: the facet zero-crossing edge

detector (hereafter referred to as the Haralick edge de-

tector) and the Laplacian of Gaussian (LOG) using both

synthetic and real images. This paper is arranged as

follows. In Section 2, we introduce the cubic facet model

and the conventional method for computing facet coe$-

cients. Section 3 introduces a separable and recursive

procedure to e$ciently compute the facet parameters.

The theory of the integrated gradient edge detector and

the Haralick edge detector are brie#y covered in Section

4. The performance comparison of the four edge de-

tectors is reported in Section 5. This paper ends with

a summary and discussion in Section 6.

2. Cubic facet model

2.1. Discrete orthogonal polynomials

The cubic facet model assumes that the underlying

gray level intensity surface of a small neighborhood can

be approximated by a bivariate cubic function f. In ca-

nonical form, f can be represented as

f (r, c)"k
�
#k

�
r#k

�
c#k

�
r�#k

�
rc#k

�
c�#k

	
r�

#k


r�c#k

�
rc�#k

��
c�, (1)

where k
�
,2, k

��
are the "tting coe$cients obtained

through a least-squares surface "tting.

Least-squares surface "tting using the canonical form,

however, is computationally intense. An e$cient imple-

mentation of the surface "tting can be realized if f can

be represented as a linear combination of a discrete

orthogonal polynomial (DOP) basis set. Also referred to

as the discrete Chebyshev polynomials, discrete ortho-

gonal polynomials allows independent estimation of each

"tting coe$cient. In one dimension, the DOP can be

summarized as follows. Let P
�
(r),2,P

�
(r) be the 0 to
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N order of orthogonal polynomials de"ned over a

domain R. In general, P
�
(r)"r�#a

�
�
r�
�#2#

a
�
r#a

�
and it must be orthogonal to each of the

P
�
(r),2,P

�
�
(r) polynomials, i.e.,

�
���

P
�
(r)(r�#a

�
�
r�
�#2#a

�
r#a

�
)"0, (2)

where i"0,2,N!1.

Given N!1 equations, we can easily solve for the

N!1 unknowns a
�
,2, a

�
�
. In practice, for a symmet-

ric domain R, the DOP basis set can be computed recur-

sively using the following relation [13]:

P
���

(r)"rP
�
(r)!�

�
P
�
�

(r), (3)

where

�
�
"

�
���

P
�
(r)P

�
�
(r)

�
���

P
�
�

(r)�
.

For a cubic polynomial function, the four orthogonal

basis functions are therefore

P
�
(r)"1,

P
�
(r)"r,

P
�
(r)"r�!�

�
�
�

,

P
�
(r)"r�!�

�
�
�

r, (4)

where �
�
"�

���
s�.

For example, given a symmetric neighborhood

R"�!2 !1 0 1 2�, the discrete orthogonal polynomial

set for a cubic function is

P
�
(r)"1,

P
�
(r)"r,

P
�
(r)"r�!2,

P
�
(r)"r�!�	

�
r.

The two dimensional DOP basis set can be construc-

ted from the tensor product of the two sets of one dimen-

sional discrete polynomials [13]. Let R and C be the

index sets that satisfy the symmetric conditions, i.e., r3R
and c3C imply !r3R and !c3C. Let �P

�
(r),2,

P
�
(r)� be a set of discrete polynomials on R and

�Q
�
(c),2,Q

	
(c)� be a set of discrete polynomials on C,

then the set �P
�
(r)Q

�
(c),2, P



(r)Q

�
(c),2,P

�
(r)Q

	
(c)� is

a set of discrete polynomials on R�C. For example, let

R be de"ned as R"�!2 !1 0 1 2� and C be de"ned as

C"�!2 !1 0 1 2�, the set of 2D discrete orthogonal

polynomials de"ned over R�C is

�1, r, c, r�!2, rc, c�!2, r�!r �	
�
, (r�!2)c, r(c�!2),

c�!c �	
�
, (r�!c �	

�
)c, (r�!2) (c�!2), r(c�!c �	

�
),

(r�!c �	
�
) (c�!2), (r�!2) (c�!c �	

�
),

(r�!r �	
�
) (c�!c �	

�
)�.

For a cubic function, the polynomial basis with an

order higher than 3 can be ignored. Hence, the set of

discrete orthogonal polynomials for a cubic function for

the example above is

�1, r, c, r�!2, rc, c�!2, r�!r �	
�
, (r�!2)c,

r(c�!2), c�!c �	
�
�.

As a result, the bivariate cubic function f (r, c), expressed

using discrete orthogonal polynomials, is

f (r, c)"K
�
#K

�
r#K

�
c#K

�
(r�!2)#K

�
rc

#K
�
(c�!2)#K

	
(r�!�	

�
r)#K



(r�!2)c

#K
�
r(c�!2)#K

��
(c�!�	

�
c), (5)

where K
�
, i"1, 2,2, 10 are coe$cients for bivariate

cubic function expressed in discrete orthogonal poly-

nomials. From Eqs. (1) and (5), the coe$cients k
�

and

K
�
are related. For i"4, 5,2, 10, k

�
"K

�
. The remain-

ing coe$cients are related as follows:

k
�
"K

�
!2K

�
!2K

�
,

k
�
"K

�
!�	

�
K

	
!2K

�
,

k
�
"K

�
!�	

�
K

��
!2K



. (6)

2.2. Least-squares surface xtting with discrete orthogonal
polynomials

With the 2D discrete polynomials de"ned, least-

squares surface "tting using the 2D discrete orthogonal

polynomials can be described as follows. Let S be a

symmetric 2D neighborhood de"ned on R�C and

I(r, c) be the observed intensity value at (r, c)3S. Let

�g
�
(r, c), g

�
(r, c),2, g

�
(r, c)� be the set of 2D DOP

basis functions. Then the "tting function f can be

expressed as

f (r, c)" �
�
���

K
�
g
�
(r, c), (7)

where K
�

are the "tting coe$cients. The least-squares

surface "tting problem is to determine the coe$cients

K
�
,2,K

�
such that

��" �
������


[I(r, c)!f (r, c)]� (8)
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Table 1

Weight kernels =
�

and =
�

for coe$cients K
�

and K
�

for

a 5�5 neighborhood

!2 !2 !2 !2 !2 !2 !1 0 1 2

!1 !1 !1 !1 !1 !2 !1 0 1 2

�
��

0 0 0 0 0 �
��

!2 !1 0 1 2

1 1 1 1 1 !2 !1 0 1 2

2 2 2 2 2 !2 !1 0 1 2

is minimized. Using the orthogonal property that

�
������


g
�
(r, c)g

�
(r, c)"0 for iOj, we have

K
�
"

�
������


g
�
(r, c)I(r, c)

�
������


g�
�
(r, c)

. (9)

Eq. (9) shows that each "tting coe$cient K
�

can be

computed individually as a linear combination of the

intensity values I(r, c). The weight associated with each

I(r, c) for ith coe$cient is determined by

=
�
"

�
������


g
�
(r, c)

�
������


g�
�
(r, c)

. (10)

Each coe$cient K
�

can therefore be computed inde-

pendently by convolving the image with the correspond-

ing weight kernel computed using Eq. (10). Given the

estimated "tting coe$cients KK
�
, the estimated function

f K is

f K" �
�
���

KK
�
g
�
(r, c), (11)

f K is a well-de"ned function and allows to estimate the

directional derivatives at each pixel analytically.

For a rectangular neighborhood, the weights for each

"tting coe$cient can be represented by a kernel of the

same size using Eq. (10). For example, the weights for

K
�

and K
�

for the example given above are shown in

Table 1. Given=
�
, the ith coe$cient K

�
can be obtained

simply by convolving the weight kernel with the image.

3. Separable recursive implementation

Despite that each coe$cient can be computed inde-

pendently, it is still rather computationally intense to

perform a 2D convolution for each coe$cient. That is

especially true considering we need compute 10 coe$-

cients for each image pixel. It is therefore necessary to

further reduce time associated with the computation of

each coe$cient. The fact that a 2D DOP basis can be

obtained from the tensor product of two 1D polynomial

function implies that the 2D weight kernel is separable,

i.e., its convolution with an image can be accomplished

using two separate 1D convolutions, leading to substan-

tial saving in computation. For example, the polynomial

basis corresponds to K
�

in the above example is r, which

is obtained by multiplication of zero-order polynomial

in C and a "rst-order polynomial for R. Let w�
�

be the

1D weight kernel for the zero degree polynomial in C
and w�

�
be the 1D weight kernel for the "rst-degree

polynomial in R, then from Eqs. (4) and (10), we have two

vectors

w�
�
"�

�
[1 1 1 1 1]�,

w�
�
" �

��
[!2 !1 0 1 2]�.

It is clear that =
�

can be obtained from the tensor

product� of w�
�

and w�
�

while =
�

can be obtained from

the vector product of w�
�

and w�
�
. With this K

�
can be

obtained by two separate 1D convolutions, i.e., convol-

ving the image with w�
�
, followed by convolving the

results with w�
�
. This is applicable to other coe$cients

too. This can drastically reduce the computational com-

plexity for each pixel from O(n�) to O(n), where n is the

kernel size. This computational saving is substantial for

large weight kernels and images.

Our further study shows that the computation for the

one dimensional convolution can be further reduced by

a recursive computation involving only a "xed number of

operations independent of the size of the neighborhood.

The recursive procedure can be described as follows. Let

a
�
,2, a



be given input. We desire to compute for each

n"1,2,N, the following quantities, representing the

convolution of the four basis functions (Eq. (4)) of a cubic

function with the input data:

x


" �

�
��
�

a

��

,

y


" �

�
��
�

ra

��

,

z


" �

�
��
�

(r�!a)a

��

,

v


" �

�
��
�

(r�!br)a

��

,

where a and b may be computed from the input using

Eq. (4). It is apparent from the above equations that

a direct implementation of this computation would

require 2K#1 operations per parameter. The above

quantities can be computed recursively using the pro-

cedures described below. First, we consider recursive

�Tensor product of two vectors v
�

and v
�

is de"ned by v
�
v�
�
.
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computation of x


. We have

x

��

" �
�

��
�

a

����

and x


" �

�
��
�

a

��

,

let r�"r#1 and substitute it into x

��

, we have

x

��

" ���
�

���
���

a

���

"a

����

!a


�

# �
�

���
�

a

���

"x


#a


����
!a



�
.

Next let us consider the recursive computation of y


. We

have

y

��

" �
�

��
�

ra

����

and y


" �

�
��
�

ra

��

,

let r�"r#1 and substitute it into y

��

, we have

y

��

" ���
�

���
���

(r�!1)a

���

"(K#1)a

����

#Ka


�

# �
�

���
�

r�a

���

!x

��

"y


!x


��
#(K#1)a


����
#Ka



�
.

The recursive computation for Z

��

, and v

��

can be

obtained by applying the similar derivations, yielding

z

��

"z


!x


��
!2y


��
#[(1#K)�!a]a


����

!(K�!a)a


�

v

��

"v


!3(z


��
!y


��
)!(3a!b#1)x


��

!(K�!bK)a


�

#[(K#1)�!b(K#1)]a

����

.

It is clear from above equations that each convolution

can be performed with "xed computations independent

of the kernel size.

4. The facet-based edge detectors

Given fK from Eq. (11), the "rst- and second-order

directional derivatives of each pixel are then analytically

approximated by the derivatives of fK . In this section, we

brie#y describe two edge detectors due to Haralick that

determine if a pixel is an edgel based on fK , the facet

approximation of image intensity.

4.1. The Haralick edge detector

Based on the image directional derivatives computed

from fK , Haralick [7] proposed that the second directional

derivative of the pixel must have a negatively sloped zero

crossing, taken in the direction of the gradient and su$-

ciently near the center of the pixel. This criterion requires

the second directional derivative to be zero and the third

directional derivative to be negative. For ideal step edge,

the detection criterion can be re"ned using a new quanti-

ty called contrast C, which measures the height di!erence

between the relative extrema of the "tted cubic function.

Experimentally, C is found to be constant independent of

the neighborhood size.

4.2. Integrated gradient edge detector

Given a graytone intensity I(r, c) de"ned in the row

and column coordinate system, the gradient operator

�I(r, c) is de"ned as

�I(r, c)"�
RI(r, c)
Rr ,

RI(r, c)
Rc � (12)

where RI(r, c)/Rr and RI(r, c)/Rc represent partial deriva-

tives in two orthogonal directions (row and column di-

rections), respectively.

Under the cubic model, each surface facet centered

about a given pixel may be approximated by the bivari-

ate cubic in canonical form

I(r, c)"k
�
#k

�
r#k

�
c#k

�
r�#k

�
rc#k

�
c�#k

	
r�

#k


r�c#k

�
rc�#k

��
c�.

Evaluating the "rst row and column partial derivatives at

the neighborhood center (0, 0) yields

RI(r, c)
Rr "k

�
,

RI(r, c)
Rc "k

�
.

According to Zuniga and Haralick [5], the integrated

directional derivative can be de"ned as follows. Let

I�� (r, c) represent the "rst directional derivative along the

direction 	, then we have

I�� (r, c)"
RI(r, c)
Rr sin 	#RI(r, c)Rc cos 	.

The integrated directional derivative F� for an N�N
neighborhood along the 	 direction is de"ned as

F�"
1

4N��
�


�
�

�


�

I�� (r, c) drdc, (13)

where the integral limits ¸ and = are parameters that

need to be adjusted to achieve the best performance.

When ¸"="0, the integrated gradient degrades to

the standard cubic gradient operator. As ¸ and =
increase, the performance is expected to improve

and reaches a maximum before they are equal to half

of the kernel size. The 	 that maximizes F� is the esti-

mated gradient direction, i.e., the integrated gradient

estimate is

G"F����
u����

,
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where F����
"���� F� , 	���

"arg���� F� , and u����
is the unit

vector in the direction that maximizes F� . For ¸"=,

the 	 that maximizes F� is

	"tan
�
B

A
, (14)

F����
"�A�#B� , (15)

where A"¸�k
	
#�

�
¸�k

�
#k

�
and B"¸�k

��
#

�
�
¸�k



#k

�
. The integrated gradient operator, however,

treats each pixel equally while performing integration.

From Eq. (6), we know that k
�

can be computed as

a linear combination of K
�
. Like K

�
, k

�
can therefore be

computed by convolving its kernel w
�

with an image,

where w
�
can be obtained from a linear combination of

kernels for K
�
using Eq. (6). For example, weight kernel

w
�

for coe$cient k
�

is

w
�
"=

�
!�	

�
=

	
!2=

�
,

where =
�
, =

	
, and =

�
are weight kernels for co-

e$cients K
�
, K

	
, and K

�
, respectively. The weight

kernels =
�

and =
�

for A and B can obtained as a li-

near combination of weight kernels w
�
. For example,

for a 5�5 neighborhood, ¸"2 and =
�

"4w
	
#

�
�
w
�
#w

�
.

5. Performance evaluation

Most edge detectors, be the gradient-based methods or

zero-crossing approaches, require convolving an image

with a kernel to compute gradients or zero-crossings.

A decision is then made as to whether a pixel is an edgel

or not based on the result of the convolution. The perfor-

mance of an edge detector therefore largely depends on

the result of the convolution, which is determined by the

kernel. The variance of the convolution output therefore

directly a!ects the performance of the edge detector.

A larger variance with the convolution result usually

leads to a higher misdetection and false alarm rate. Based

on the above analysis, we adopt the kernel-variance

criterion for comparing di!erent edge detectors. An opti-

mal edge detector has a convolution kernel that yields

the smallest variance on its output given the same input

perturbation subject to constraints imposed on the ker-

nel such symmetry. Using this criterion, we studied the

performance of four edge detectors, two of which are

gradient-based edge detectors and two of which are

zero-crossing based edge detectors. The two gradient-

based edge detectors are the Canny edge detector and the

integrated gradient edge detector. The two zero-crossing

based edge detectors are the Haralick edge detector and

Marr's Laplacian of a Gaussian (LOG) operator. The

results of this study are summarized in Sections 5.1 and

5.2, respectively.

5.1. Performance comparison of gradient edge detectors

This section discusses the results from a quantitative

performance analysis and characterization of the Canny

gradient edge detector and the integrated gradient edge

detector using the minimum-variance criterion. To have

a fair comparison between the two gradient operators,

the gradient information obtained from the integrated

gradient operator is input to the Canny's hysteresis link-

ing procedure. The resulting edge image is then com-

pared with the output of the Canny edge image. Since

both use the same edge linker, any performance di!er-
ence in the edge detection must be due to the perfor-

mance di!erence of the two gradient operators.

Given a 2M�2N kernel, let y be its output and w(r, c)
be the entries of the kernel, then its response to the image

I(r, c) is

y" 	
�

��
	

�
�

��
�

w(r, c)I(r, c)"=�I,

where= is a 4MN�1 vector whose elements are w(r, c)
and I is a vector containing the corresponding intensity

values I(r, c). 
�
�
, the variance of y, is


�
�
"E(=�II�=)

"=��
�
=,

where �
�

is the covariance matrix of vector I.
If elements of I are contaminated by an independently

and identically Gaussian distributed noise with zero

mean and a standard deviation of 
, then we have


�
�
"
�=�=. Fig. 1 plots the output variances of the

horizontal Canny gradient kernel and the horizontal

integrated gradient kernel (=
�
) versus kernel size.

The Canny kernel is approximated with the "rst order

derivative of a 1D Gaussian function. Tables 2 and 3 give

examples of two 5�5 horizontal Canny and integrated

gradient kernels. For the Canny kernel, kernel size is

related to the smoothing factor 
. Increasing kernel size

requires increasing 
 accordingly to avoid a truncated

kernel.

In reality, the iid perturbation assumption may not

hold. Perturbations on each pixel may be correlated,

especially for neighboring pixels. To model the inherent

correlation between pixel perturbations resulted from

image acquisition, we assume that the iid perturbed im-

age is subsequently convolved with a Gaussian kernel.

The Gaussian kernel introduces correlations to image

pixel perturbation. Please note that the Gaussian kernel

is for modeling local correlation among image pixels. It is

not used for noise smoothing. Let the Gaussian kernel be

g, the gradient kernel be h, and the iid perturbed image

be I, then the process of introducing correlation and

subsequent convolution with a gradient kernel can be

described as

y"h*(I*g),
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Fig. 1. Kernel output variance versus kernel size for iid input

perturbation.

Table 2

An example of 5�5 horizontal Canny kernel

0.000001 0.000231 0.001708 0.000231 0.000001

0.000116 0.046640 0.344628 0.046640 0.000116

0.000000 0.000000 0.000000 0.000000 0.000000

!0.000116 !0.046640 !0.344628 !0.046640 !0.000116

!0.000001 !0.000231 !0.001708 !0.000231 !0.000001

where * represents convolution and y is output. Since

convolution is communicative, we have

y"(h*g)*I. (16)

Eq. (16) suggests that convolving h with a non-indepen-

dently perturbed image is the same as convolving the

gradient kernel h "rst with g and then convolving an

independently contaminated image with the resulting

kernel h�"h*g. To study the Canny gradient and integ-

rated gradient operators on non-iid perturbed images, we

can convolve each gradient kernel with a Gaussian g and

then study the output variance of the resulting kernels.

Tables 5 and 6 give examples of two kernels resulted from

convolving kernels in Tables 2 and 3 with the Gaussian

kernel shown in Table 4.

Fig. 2 shows the performance of the two kernels for an

image smoothed by Gaussian kernels of di!erent sizes

3 and 5, respectively. An example of 5�5 Gaussian

kernel is shown in Table 4.

Both Figs. 1 and 2 show that as kernel size increases,

the output variance reduces, i.e., larger kernel window

yields better estimate. This agrees with our intuition.

However, larger window size introduces more locational

errors and requires more computation. In reality, a

balance must be stricken between the estimate precision,

the locational errors, and the computational complexity.

From the minimum-variance point of view, both Figs.

1 and 2 show the integrated gradient operator is superior

to the Canny optimal gradient operator. This result

agrees with the conclusions drawn by Zuniga and

Haralick [5]. Fig. 2 also shows that the impact of the size

of Gaussian smoothing kernel on output variance is not

signi"cant, especially when the edge kernel is large.

To validate this conclusion, we perform further perfor-

mance evaluation of the two edge detectors using both

synthetic and real images. Fig. 3 shows the synthetic

test image used. Downloaded from the Internet, the

SUSAN image [14] is selected because it contains di!er-
ent types of edges such as step edge, roof edge, and ramp

edge.

The test performed is to evaluate the robustness of the

edge detectors under di!erent noise levels. The input test

image was perturbed with independently and identically

a Gaussian distributed noise with zero mean and a stan-

dard deviation of 
. Amount of perturbation is controlled

by varying 
. For the integrated gradient operator and

Canny edge detector, the low and high thresholds for

hysteresis linker are "xed at 1 and 3. The smoothing

factor for Canny is set at 0.8. All other parameters are

optimally tuned. Figs. 4 and 5 show edge detection re-

sults for the two edge detectors when noise level is at 5.

We also applied the two edge detectors to real images.

Figs. 6 and 7 give the sample outputs from a real image.

We can conclude from both the synthetic and real images

that Canny tends to generate more false edges but fewer

missing edges than the integrated gradient method. This

echos the conclusion drawn from the minimum-variance

analysis.

5.2. Haralick facet zero-crossing operator versus
Laplacian zero-crossing operator

In this section we study the performance di!erence

between the LOG zero-crossing operator and Haralick's
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Table 3

An example of 5�5 horizontal integrated gradient kernel

!0.011048 !0.050476 !0.063619 !0.050476 !0.011048

!0.012190 !0.031905 !0.038476 !0.031905 !0.012190

0.000000 0.000000 0.000000 0.000000 0.000000

0.012190 0.031905 0.038476 0.031905 0.012190

0.011048 0.050476 0.063619 0.050476 0.011048

Table 4

An example of 5�5 Gaussian kernel

2.2795779e!05 0.00106058409 0.00381453967 0.00106058409 2.2795779e!05

0.00106058409 0.0493441855 0.177473253 0.0493441855 0.00106058409

0.00381453967 0.177473253 0.638307333 0.177473253 0.00381453967

0.00106058409 0.0493441855 0.177473253 0.0493441855 0.00106058409

2.2795779e!05 0.00106058409 0.00381453967 0.00106058409 2.2795779e!05

Table 5

An example of 5�5 correlated Canny kernel after convolving a Canny kernel with a Gaussian kernel

0.002735 0.025790 0.066938 0.025790 0.002735

0.009621 0.090713 0.235447 0.090713 0.009621

!0.000000 0.000000 !0.000000 0.000000 !0.000000

!0.009621 !0.090713 !0.235447 !0.090713 !0.009621

!0.002735 !0.025790 !0.066938 !0.025790 !0.002735

Table 6

An example of 5�5 correlated integrated gradient kernel after convolving a integrated gradient kernel with a Gaussian kernel

!0.020031 !0.053859 !0.068612 !0.053859 !0.020031

!0.018028 !0.041999 !0.052058 !0.041999 !0.018028

!0.000000 0.000000 0.000000 0.000000 0.000000

0.018028 0.041999 0.052058 0.041999 0.018028

0.020031 0.053859 0.068612 0.053859 0.020031

facet zero-crossing operator in terms of the minimum

variance criterion we established in the previous section.

The Laplacian of each pixel can be approximated using

a LOG kernel or can be obtained analytically from the

"tted facet coe$cients. We "rst analyze the di!erence

between the two methods in terms of the variance of the

estimated Laplacian coe$cients, assuming each pixel is

perturbed by an iid Gaussian distributed noise of mean

0 and variance 
�. Any di!erence reveals the di!erence

between the two di!erent data smoothing approaches,
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Fig. 2. Kernel output variance versus kernel size with correlated

input perturbations generated by two di!erent sizes of Gaussian

kernels.

Fig. 3. The synthetic test image.

Fig. 4. Output of integrated edge detector when noise level is 5.

Fig. 5. Output of Canny edge detector when noise level is 5.

i.e., Gaussian smoothing and smoothing via surface

"tting.

A 2D LOG kernel can be obtained from

LOG(r, c)"!1

2�
��2!r�#c�


�
exp�
����������

�������. (17)

Under the cubic model, each surface facet centered about

a given pixel may be approximated by the bivariate cubic

in canonical form

I(r, c)"k
�
#k

�
r#k

�
c#k

�
r�#k

�
rc#k

�
c�#k

	
r�

#k


r�c#k

�
rc�#k

��
c�.

From the cubic "t I(r, c), its Laplacian is 2k
�
#2k

�
,

where k
�

and k
�

are obtained from the cubic facet "tting

procedure described in Section 2.1. Figs. 8 and 9 plot

the output variances of the LOG kernel and the

facet Laplacian kernel versus the kernel sizes, with iid

input perturbation and correlated input perturbation
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Fig. 6. Output of Canny edge detector.
Fig. 8. Kernel output variance versus kernel size for LOG and

facet Laplacian kernel with iid perturbation.

Fig. 9. Kernel output variance versus kernel size for LOG and

facet Laplacian kernel with correlated input perturbation.
Fig. 7. Output of the integrated gradient edge detector.

respectively. It is clear from the two "gures that for iid

input perturbation, the Laplacian of a pixel computed

using facet parameters has a much lower variance than

that obtained using LOG kernel, especially when kernel

size is small. However, for real images (image with corre-

lated pixel perturbations), the two techniques generate

comparable variance. They also show that if LOG must

be used, do not use LOGs with kernel size less than 11

since they may yield very unreliable results. For kernel

sizes larger than 30 pixels, the two methods yield very

comparable results.

5.3. Edge detector performance comparison via ROC
analysis

To further study the performance of the edge detectors

under di!erent parameters settings, we performed an

receiver operating characteristics (ROC) analysis of dif-

ferent edge detectors using the synthetic image shown in

Fig. 3. The analysis yields the ROC curves of each edge

detector. A ROC curve plots the false alarm probability

versus the misdetection probability. It de"nes the in-

herent tradeo! between false alarm and misdetection.

Each point on the ROC curve results from a particular

combination of selected parameters. For the two gradient

detectors, the parameters that vary are the high and low

thresholds. For the Haralick edge detector, edge contrast

is the parameter that changes. Furthermore, the smooth-

ing factor of the Canny edge detector is "xed, conse-

quently the kernel size. The kernel size for the integrated

gradient operator is "xed at 5�5. Perturbation for all

three edge detectors are set at 5. Fig. 10 plots the ROC

curves (false alarm versus misdetection) of each edge

detector investigated.
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Fig. 10. The ROC curves: false alarm versus misdetection.

The area under the ROC curve (estimated visually) can

be used as an index for measuring the performance of the

edge detectors. The smaller the area under the ROC

curve is, the better performance of the detector is. From

Fig. 10, we can see integrated gradient detector yields the

best performance, followed by the Canny and Facet edge

detector. This basically echos the conclusions we drew

from kernel variance analysis.

6. Summary

In this paper, we "rst describe the cubic facet model

and related edge detectors. We then introduce a separ-

able and recursive procedure for e$ciently computing

the facet parameters. The procedure allows to compute

each facet parameter in a "xed number of operations

independent of kernel size. To evaluate and compare the

performance of di!erent edge detectors, we propose

a quantitative measure based on the variance of the edge

detector's output. The comparative study based on this

measure reveals that the integrated gradient operator

coupled with Canny's hysteresis linking procedure can

yield better edge detection result than the Canny edge

detector. While computationally Canny is still more e$-

cient, the recursive procedure introduced in the paper

can dramatically reduce the computations associated

with the integrated gradient operator. The study also

shows the superiority of facet Laplacian kernel to the

LOG kernel in terms of the variance with the computed

zero-crossings.

Like other proposed evaluation criteria without the

use of groundtruth [6,15}17], the proposed kernel-vari-

ance criterion, however, has a drawback. While it can

accurately characterize the performance of an edge de-

tector in terms of its misdetection and false alarm rates, it

fails to consider location accuracy. Locational errors are

a!ected by the window size. While large window size

tend to generate small variance for any type kernel, it,

however, tends to lead to a large location errors. The use

of Canny's hysteresis linking procedure can yield an

optimal edge location for a given kernel size.
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