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Consistent labelling problems are a family of NP-complete constraint satisfaction problems such as school timetabling,
for which a conventional computer may be too slow. There are a variety of techniques Sfor reducing the elapsed time to
find one or all solutions to a consistent labelling problem. In this paper we discuss and illustrate solutions consisting of
special hardware to accomplish the required constraint propagation and an asynchronous network of intercommunicating

computers to accomplish the tree search in parallel.

1. INTRODUCTION

School-timetabling,subgraphisomorphism, graphcolour-
ing, propositional theorem proving, and scene labelling
problems can be formulated as special cases of the
consistent labelling problem.! The consistent labelling
problem is NP-complete, which means that in the worst
case we may have to resort to exhaustive enumeration in
order to find a solution, and the time needed for this
enumeration may increase exponentially with the number
of variables. Despite the possibility of this combinatorial
explosion, problems such as school timetabling have to
be solved in practice. Haralick and Elliott® have shown
that the combinatorial explosion of consistent labelling
can be mitigated by pruning the search tree.

The present paper is theoretical, and its primary
purpose is to show how the successful tree-pruning
technique of Haralick and Elliott can be implemented
using various forms of parallelism to reduce the elapsed
time for solving consistent labelling problems. The
present paper also generalises the formulation of the
consistent labelling problem as an N-ary constraint
satisfaction problem, where N may be different for
different constraints. In previous papers (Haralick and
Shapiro, 1979),! N has been the same for all constraints.

Earlier papers on special architecture for solving the
consistent labelling problem include Cherry and Vaswani,
who had actually built special architecture for a boolean
satisfiability problem?® (which is a consistent labelling
problem (Haralick and Shapiro, 1979)).! We believe,
however, that the general possibilities of using special
architecture to soften the practical effects of the
combinatorial explosion have not previously been
explored adequately. Forexample, Schmidtand Strohlein*
remark that ‘ recent developments in computer technology
and software engineering have not yet reached the area
of timetable programming’.

2. AFORMULATION OF THE
CONSISTENT LABELLING PROBLEM

Let U be a set of objects called units, and L be a set of
possible labels for those units. Let T < {f | f < U} be the
collection of those subjects of units from U that mutually

constrain one another. That is, if /= {u,, 4, ..., 4} is an
element of T, then not all possible labellings of u,, ..., u;
are legal labellings. Thus there is at least one label
assignment /,, [,, ..., [, so that u, having label /,, u, having
label /,, ..., u; having label /, is a forbidden labelling. T
is called the unit constraint set. Finally, let R {g|g <
Ux L, g single-valued, and Dom (g)e T} be the set of
unit-label mappings in which constrained subsets of units
are mapped to their allowable subsets of labels. If
g = ((uy, 1), (ug, L), ..., (ug, Iy)} is an element of R, then
Uy, Uy, ..., Uy are distinct units, {u,, u,, ..., 4} is an element
of T meaning u,u,,...,4 mutually constrain one
another, and u, having label /;, u, having label /,, ..., and
u, having label /, are all simultaneously allowed.

In the consistent labelling problem, we are looking for
functions that assign a label in L to each unit in U and
satisfy the constraints imposed by T and R. That is, a
consistent labelling is one which when restricted to any
unit constraint subset in 7 yields a mappingin R. In order
to state this more precisely, we first define the restriction
of a mapping. Let : U — L be a function that maps each
unit in U to a label in L. Let f < U be a subset of the
units. The restriction k|, (read ‘h restricted by f7) is
defined by h|; = {(u, /)€ h|ue f}. With this notation, we
define a consistent labelling as follows.

A function h: U — L is a consistent labelling if and only
if for every f€T, h|, is an element of R.

A simple example
Suppose the inputs to the problem are as follows:
U={1,2,3,4,5}

L ={a,b,c}

T ={{1}, unary constraint
{1,2}, binary constraints
{2,5},

{1,3,4}} ternary constraint

R={(1,a)} {(1,b)},
{(1,a), (2,a)},
{(1,a), (2,0)},

unary constraint

binary constraints
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{(1,6), (2,b)},
{2,a), (5,a)},
{(2,b), (5,0},
{(1,a), (3,a), 4,0)},
{(1,6), 3,a), (4, a)}}

Then h ={(1,a)(2,a)(3,a)(4,c) (5,a)} is a consistent
labelling. To see this note that

h'{l} =~ {(l»a)}t h F{1.2E = {(lsa)a (2! ﬂ)}, hl{'},,sl = {(29a}a
(5,a)}, and

hly 5.4 =1{(,0a), (3,a), (4,c)} are all elements of R.

ternary constraints

Simplified examples of practical consistent labelling
problems

In the Appendix we show that a school timetabling
problem and a three-dimensional packing problem can be
formulated as consistent labelling problems. Further
examples of consistent labelling problems are given by
Haralick and Shapiro.!

The practical usefulness of a consistent labelling
formulation depends on the actual constraints that are
employed. Subgraph isomorphism is an example in which
careful scrutiny of graph-theoretic factors has experimen-
tally yielded greater efficiency than can be obtained using
the simplest consistent labelling formulation.® The
formulations given in the Appendix to the present paper
are merely simple examples; and we are not now
concerned to explore application-specific refinements
that may enhance efficiency. Instead we are concerned, in
Sections 4, 5 and 6, with introducing parallelism to reduce
elapsed time for all consistent labelling problems.

In the next section we introduce a natural generalisation
of the forward checking algorithm of Haralick and
Elliott.* Our algorithm is identical to the forward
checking algorithm in the case where every constraint
involves exactly two units.

3. A CONSTRAINT PROPAGATION
ALGORITHM FOR CONSISTENT
LABELLING PROBLEMS

In principle consistent labellings can be found by
exhaustively checking whether each possible assignment
of exactly one label to each unit satisfies all the
constraints. This inefficient brute-force method can be
organised as a backtrack search.

To improve efficiency we check for satisfaction of
constraints after each successive unit has been instantiated
(i.e. has had a single label assigned to it) in the course of
a backtrack search. For the simple example given above
in Section 2, suppose that the units are instantiated in the

Table 1. An example of the relation H

Unit Label

[V SRS
=]
=
[

sequence 1, 2, 3, 4, 5. After units 1 and 2 have been
instantiated, the labels currently permitted for each unit
might, for example, be as shown in Table 1.

In Table 1, units 3, 4 and 5 have not yet been
instantiated: that is why they have more than one label.
If at this stage the constraints cannot be satisfied then we
can omit that part of the tree search which would proceed
to instantiate units 3, 4 and 5. Our algorithm uses this
principle to prune the search tree.

The unit that has just been instantiated is the current
unit; and units that have not yet been instantiated are
future units. We denote the set of future units by UF. After
the current unit has been instantiated, we check only for
satisfaction of constraints belonging to a set Q defined by

Q={feT|(fnUF) # 9 and f contains the current
unit}

Thus Q is the subset of T in which each constraint
includes the current unit and at least one future unit.

We denote by H, H < U x L, the relation or unit-label
table of possible label assignments currently permitted for
each unit. Table 1 is a simple example of a relation H.
If a unit u is not in UF then

(1) (u,!)e H implies that / is the instantiated label for
unit u.

(2) (u,/)e H and (u,n)e H imply n = /, since only one

label can have been assigned to an instantiated unit.
If ue UF then u is a unit yet to be instantiated, and H(u)
is the set of labels still permitted for unit u. The algorithm
is designed so that H is always defined everywhere; that
is, every unit always has at least one possible label
(H(u) # 0 for every u).

After instantiating the current unit, the result of
constraint checking is to delete labels that cannot possibly
belong to any consistent labelling that is a subset of the
current H. The result is a new H given by

H:= ﬂ R(H, f)
feQ
where R(H, f) is the set of unit-label pairs that constraint
f does not rule out. That is,

R(H, ) ={(uw,)eH|(u¢f) or

and there exists

(ue f)

geR with (y,l)eg,
satisfying
dom(g)=f and gc< H}

Ifue fthen (u,!)e R(H, f) only if / belongs to at least one
of the labellings of all the units in f allowed by R and
included in H.

From the definition of consistent labelling it immedia-
tely follows that a function h: U — L satisfies

H= ﬂ R(h, )
feT
if and only if h is a consistent labelling. When the
algorithm yields a relation H that comprises exactly one
label for each unit, H is recognized as a consistent
labelling. At an intermediate stage, before there is exactly
one label for each unit, the current A must contain all the
consistent labellings that can possibly be produced from
it. If there were any unit in H having no label then no
consistent labelling could possibly be produced from H;
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and our algorithm would therefore not try further
instantiation within H. Our algorithm is a constraint
propagationalgorithm because deletion of one inconsistent
label may cause deletion of another, which may cause
deletion of another, and so on.

The algorithm can be implemented using a recursive
procedure TREESEARCH for which the inputs are

UF: the set of units requiring labels (initially all the units),
T: the unit constraint set,
R: the allowable unit-label mappings, and
H: the partial or incomplete labelling (initially
H = {(u,l)eUx L|(u,1) is not ruled out by any
constraint in R}.

Note that all unary constraints have been removed from
T and used to produce the initially constrained H.

The predicate ISEMPTY returns true if its argument
is the empty set and false otherwise. The predicate
DEFINED_EVERYWHERE returns true if its argument
is a set of unit-label pairs including every unit and false
otherwise. The procedure OUTPUT outputs a mapping.
The function DELETEFIRST removes and returns the
first element of its argument set. The function RESTRICT
inputs a binary relation H, a unit « and a label / and
returns a subset of H consisting of all pairs (v, m) such
that if v = u, then m = [. Procedure TREESEARCH is
given below.

procedure TREESEARCH (UF, T, R, H)
local u,Q0,S,I,H, ,,H’
by-reference T, R, H,
by-value UF
u := DELETEFIRST(UF):
Q:={feT|fnUF#Pand uef}
S:={l|(u,l)eH};
while not ISEMPTY(S) do
begin
/:= DELETEFIRST(S);
H, ,:= RESTRICT(H, u,l)

H':= | RH,,.. /)

€
if DEFfIISIED_EVERYWHERE (H")
then if SINGLE VALUED(H")
then OUTPUT(H")
else call TREESEARCH(UF, T, R, H’) endif
endif;
end;
return;
end TREESEARCH

For the simplified example of Section 2, we have
initially
UF=U=/{1,2,3,4,5},
= {{1,2},{2,5},{1,3,4}}
(the unary constraints have been removed,
since they will be used to determine the initial
H),
R= {{(1,a),(2,a)}, {(1,a), (2,b)}, {(1,D), (2,b)},
{2,a), (5,a)}, {(2,0), (5,0)}, {(1,a), (3,a),
4,0}, {(1,6), (3,0), (4,a)}}
(the unary unit-label pair sets have been
removed here also),

H= {(l,a),(1,b),(2,a),(2,b), (3,a), (4,a), (4,¢),
(5,a), (5,0)}

(the initial R was used to determine the legal
labels for each unit).

In the first call to TREESEARCH, uis set to 1, UF to
{2,3,4,5}, and S to {a, b}. Next [ is set to a, S reduced to
{6}, and H, , becomes {(l,a), (2,a), (2,b), (3,q), (4,q),
(4,¢), (5,a), (5,c)}. Now the constraint propagation
calculates

R(Hy 1, {1,2}) ={(1,a), (2,a),
(2,6), (3,a), (4,a), (4,¢), (5,a), (5,¢)}

R(Hu_Is {2! S}) = {(Ia a)v (2‘ ﬂ),
(2,8), (3,a), (4,a), (4,¢), (5,a), (5,0)}
R(H, ;,{1,3,4} ={(1,a), (2,0),
(2,b), 3,a), (4,¢), (5,a), (5,0)}.
Thus the intersection H’ becomes

H’={(1,a),(2,a), (2,b), (3,a), (4,¢), (5,a), (5,c)}.

Since H’ is defined everywhere but not single-valued,
TREESEARCH is called again. This time we have

UF ={2,3,4,5},
H={(1,a),(2,a),(2,b),3,a), (4,0), (5,a), (5,0)}.

In this activation, # becomes 2, UF becomes {3, 4, 5},
S becomes {a, b}, | becomes a, Sis reduced to {b},and H,, ,
becomes {(1, a), (2,a), (3, a), (4,¢), (5, a), (5,¢)}. Now the
constraint propagation calculates

R(Hu,b {2! 5}) = {(11 a), (2. a)’ (31 a)! (4’ C), (59 a)}'

R(H, ;,1{1,3,4}) is not calculated since unit 2 is not an
element of {1,3,4}. The intersection H' becomes
{(1,a), (2,a), (3,a), (4,¢), (5, a)}. It is defined everywhere
and single-valued, so a consistent labelling has been
found. The procedure will go on to find a second
consistent labelling also.

The next section introduces various forms of parallelism
for speeding up the solution of consistent labelling
problems.

T and R remain the same, and

4. COMBINATIONAL CONSTRAINT
CIRCUITS

In procedure TREESEARCH, the computation of
R(H,, ;, f) involves at least w,=|f|x|{geR and
dom (g) = f'}| logic operations. Thus the computation of

() R(Hy 1, 1) involves
feQ
logic operations, normally done serially. To speed up the
computation, these logic operations can be done in
parallel outside the CPU in a combinational constraint
network as shown in Fig. 1. This network is of interest
because of its simplicity.
We implement H as a bit matrix that has one row per
unit and one column per label. The bit in row u and
column [ is a predicate

H(u,l) = (u,l)e H.

Corresponding to each ge R the network contains an
AND gate whose output is

p Wy
feqQ

g(H) = AND (H(u,1))
(u,l)eg

=g< H.
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Fig. 1 is a schematic diagram that includes a combinational
constraint network that can perform logic operations in
parallel outside the CPU.

Corresponding to each triple (f,u,/) the network
contains an OR gate whose output is

(g(H))

dom(g)=£}
= there exists geR with (u,/)eg
satisfying dom(g)=f and gc< H.

OR

lgl(u,l)eg and

fu.t(H) =

This definition can easily be related to our definition of
R(H, f). If f,, (H) = P, then constraint / has ruled out
(u,l)eH.

The output of the constraint network is a bit matrix H’
that has the same dimensions as H. There is one AND
gate for each bit in H’; and the bit in row « and column
! of H" is the predicate

H'(u,l)= AND (f, (H)) (1
{feT|uef}
= {(v,n)e H [(v,n) has not been ruled out by
any constraint feT.}.

Itis easy to see that H" is exactly the H’ computed within
the procedure TREESEARCH, although the network
does some unnecessary but harmless extra work. For
example, if u is the current unit, then the procedure
TREESEARCH intersects R(H, f) over fe Q whereas the
network ANDs f, , (H) over {fe T |ue f} which is a
superset of Q. ANDing over Q is all that is really
necessary, but the network is simplified by omitting the
condition f'n UF # .

H'’ is a matrix of product-of-sum-of-product functions
of H. This structure makes the constraint network an
obvious candidate for programmable logic array imple-
mentation. If the PLAs are electronically re-program-
mable,® then our constraint network can be re-used for
different consistent labelling problems provided that the
dimensions of H are adequate.

Referring now to Fig. 1, H" is the bit matrix of outputs
from the constraint network. All the bits of H” are input
to status circuits whose two outputs are the predicates
DEFINED_EVERYWHERE(H’) and SINGLE_
VALUED (H’) that we have defined and used previously.
The provision of these simple status circuits is intended
to save CPU time.

Hygg i1s a two-dimensional register that sometimes
stores H and sometimes stores H,, ;, as we shall explain.
Recursive CALLs of TREESEARCH automatically
stack H’, and RETURN:S restore the previous H. In Fig.
1, Hg i and H' are hardwired to the constraint network,

and it is therefore expedient to handle the stacking and
unstacking of bit matrices explicitly. For this purpose the
memory in Fig. 1 includes, along with the program and
variables, blocks (or bit planes) C,,C,,...,C,,...,Cy,
where N is the number of units. Each of these blocks has
the same dimensions as H. At the time of the initial call
of the procedure, block C, contains the initial H.

To explain how the CPU actually uses the external
hardware we now give an appropriately modified version
of TREESEARCH with explanatory comments enclosed
between ‘(*’ and ‘*)’. UF is implemented as a bit vector
that has one bit for each possible label. Hy g[u] is the row
of Hg i that corresponds to unit u.

procedure EXTREESEARCH(UF);
u := DELETEFIRST(UF);
Hy g := C,; (*block transfer done by DMA*)
§:= Hggglul; (*bit vector copied from Hygpe to
memory*)
For each /in S do
begin
B := bit vector comprising the selected / in S with all
other bits of B reset to p;
HREG [u] = B; (‘ll‘l eﬂ‘ect HREG = H“.l*)
(*constraint network computes H’ using contents of
Hy g as a new H*)
if DEFINED EVERYWHERE(H’) (*CPU gets this
from status circuits*)
then if SINGLE_VALUED(H’) (*CPU gets this from
status circuits*)
then OUTPUT(H’) (*CPU reads and encodes H'*)
else
begin
C,s,:= H’; (*done by DMA¥*)
CALL EXTREESEARCH (UF);
Hgge := Cy; (*done by DMA¥*)
end
endif
endif
end;
return;
end EXTREESEARCH

This formulation is simplified in that complete transfer
of blocks, e.g. Hg g := C,, is unnecessary when u > /.
Because units 1,2, ..., u— | have already been instantiated
we only need to keep copies of rows u,...,N of H.
Otherwise if, for example, u = 6, then the first four rows
of C, will be identical to the first four rows of C,. We can
eliminate this inefficiency by appropriate elaboration of
EXTREESEARCH.

5. ARRAY PROCESSOR
IMPLEMENTATION

School timetabling and most of the consistent labelling
problems reviewed in Haralick and Shapiro! can be
formulated such that the cardinality of f is two for all
SeT. Subject to this restriction on T we now introduce
a parallel (SIMD) array processor algorithm for
computing A’ from H. This is faster than a conventional
computer implementation, but with greater storage
requirements than the Fig. 1 implementation. The array
processor implementation has no problem of re-
programmability and could easily run on many of the
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SIMD processors that are commercially available or
described in the literature.”-®

Our array processor algorithm processes each (1, /)e H
in turn to evaluate H'(u,/). At any given time, variables
u and / have had values assigned to them by this
sequential process. If ge R contains (u,/)e H; that is
g={(u0), (', I}, and H(u,l) = 1, then

g(H) = H(u,l) AND H(u', )
= H(w',I’),
and for f={u,u’}eT, we have

JuH) = OR

(@’ (b, (' 'NeR)
For given f, ((H), « is fixed, so (2) can be rewritten

(HW',I) (2)

Ju (H) = IOEIE (H@w',I') AND (((u, 1), (', 1))€ R)) (3)
Expression (1) can be rewritten

H'(u,l) = z?‘T:IP ((u, )¢ T OR f, ((H)) 4)

To manipulate this into a useful form, note that for any

given u’
OR (H(w'\,I))

lel

has truth value 1, so we can write
(u,u’)¢ T = (OR (H(u', 1)) AND ((u,u') ¢ T)
el

Substituting this into (4), using (3) and factoring we
obtain

H'(u,l) = AND (OR (H(u',!’) AND ((u, ') ¢ T OR
leL

uel
((u, 1), (W', I'))ER)))...
Our array processor implementation uses | U | x | L | bit
matrices K, ; whose contents remain unchanged during
the entire tree search. Each matrix K, , is such that
Ky (W', I) = ((u,u)¢ T)OR (1), (W', I')) € R)
Substituting this into (5),

H'(u,l) = AND (OR (H(,l’) AND K,, ,(u',1")))
uel lelL

= DEFINED EVERYWHERE(HANDK,, ;)

(6)
where the AND is of corresponding bits in H and X, ,.
Thus DEFINED EVERYWHERE is evaluated by
ORing over each row and ANDing these ORs over all
rows. In our array processor implementation H’ is
computed by

for each ue U do
for each /e L do
evaluate (6).

Evaluation of (6) is fast because K, , is simply obtained
from memory, and the AND operation is a parallel AND
operation on bit planes.

This implementation is slower than the Fig. 1 system

because it processes all (u,/) pairs serially. The Fig. 1
system does not require storage of bit planes K,, ;, but
instead uses a substantial number of combinational gates.

6. NETWORK COMPUTER
IMPLEMENTATION

Even with the use of parallel hardware, the execution time
may be intolerably slow for man-machine interactive
school timetabling or for real-time control of an
automatic packing machine. To reduce elapsed time for
finding consistent labellings, we can subdivide the search
tree into M subtrees and use M separate processors to
search these subtrees simultaneously, with no need for
any synchronisation between these fully independent
processors. Each processor could have its own constraint
propagation hardware as discussed in the previous
section, or several processors could share the same
constraint propagation hardware.

A specific method for this is to partition the label set
L into M subsets, L,, ..., L,,;. The first processor would
try to solve the consistent labelling problem, restricting
the label assigned to the first unit to come from L,. The
second processor would try to solve the consistent
labelling problem, restricting the label of the first unit to
come from L,, and so on. Each processor would, to avoid
memory access delays, have its own memory containing
copies of all required data and code, and would execute
the backtrack algorithm of section 4, thus searching a
disjoint subtree.

Unfortunately this simple idea may not make optimal
use of the M processors to find all consistent labellings
in minimal elapsed time. For it is the case that even if each
of the M subsets contains the same number of possible
labels, the M processors may not all take an equal amount
of time to complete their subtree search, exactly because
of differences in the effectiveness of tree pruning.
Practical experience with algorithms of this type suggests
that the elapsed time for one processor may turn out to
be many times greater than that for another. Processors
that have finished their work may wait idly for others to
finish. Thus by using M parallel processors we may not
succeed in reducing the overall elapsed time by a factor
of M.

Overall elapsed time could be further reduced by
interconnecting the M processors in a computer network
as in ref. 2. One of the many possible operating policies
is that when a processor completes its subtree search it
interrogates all other processors that are still searching
and then takes over half of the remaining search of the
processor whose search is furthest from completion,
leaving this processor to complete only the other half of
its subtree search. When this network starts operating,
with all processors searching (hopefully) equal-sized
subtrees, there is at first no delay due to exchange of
messages between processors. When more and more
processors finish searching subtrees, more and more
messages are exchanged, and this eventually constitutes
a significant overhead. To prevent this overhead from
exploding, we impose a restriction that no processor ever
starts searching a subtree of less than a threshold size: if
no subtree greater than or equal to this size is available
for a processor than this processor becomes idle and is
in effect deleted from the network. The threshold size

THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985 109

TTOZ ‘T 18qWiaoaq Uo Jausd 81enpels) 3I0A MaN 40 Alsianlun AuD 1e /610sjeuinolpioxo’uliod//:dny woiy papeojumod



J.RRULLMANN, R. M.HARALICK AND L. G.SHAPIRO

should of course be chosen so as to minimise overall
elapsed time.

This networking policy depends on splitting the subtree
whose search is furthest from completion. How far a
processor is from completion of a subtree search is easily
determined by the number of as yet uninstantiated units.

Simulation of a variety of network architectures
uniformly indicates that all other things being equal, (1)
processors should execute the search in a depth-first
rather than breadth-first manner so that there are as large
subtrees as possible that the busy processors can give to
a free processor, (2) busy processors should first hand off
subproblems to the free processors least centrally located
in the network wherever there is a choice.

7. CONCLUSIONS

In this paper we have given several examples of consistent
labelling problems and have generalised the original fixed

dimensional relational form of the consistent labelling
problem. Using this generalised form, we described a
forward-checking-like constraint propagation technique
to help perform the tree search required to solve a
consistent labelling problem. Then we sketched the design
of some special-purpose parallel hardware that executes
the constraint propagation. Finally we indicated how the
entire design could be done in a multiple CPU network.

Because solving consistent labelling problems is so
closely allied to solving general combinational reasoning
problems, parallel algorithms and associated computer
architectures for their fast solution are important to have
in our toolbox. Knowledge of them will be of definite help
in creating the parallel algorithms and associated parallel
computer architectures for efficiently solving the most
general predicate calculus types of problems. The efficient
solution of this kind of problem will be the hallmark of
the next generation of smart computers. We shall be
discussing these issues in a future paper.
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APPENDIX A

A school timetabling problem

We consider the scheduling of lessons over a fixed period
such as one week, assuming that instructors have already
been assigned to lessons. The problem is to assign, to each
lesson, a time and classroom satisfying the constraints
that (1) any pair of lessons attended by the same
instructor or same student must be at different times, and
(2) no distinct pair of lessons is assigned to the same time
and room. This problem fits the consistent labelling
model as follows.

Uis the set of all lessons. For example, if there are three
history lessons then for each of these there is a separate
element of U. L is a set of pairs of the form (time,
classroom) which includes all possible lesson times and,
for each time, all possible classrooms available at that
time. The unit constraint set 7 consists of unary
constraints and binary constraints. The unary constraints
are for those lessons that a priori cannot be scheduled in
a particular (time, classroom) pair. The binary constraints
consist of all pairs of distinct lessons since (1) these are
constrained not to meet in the same classroom at the same
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time, and (2) a subset of these are constrained not to meet
at the same time. From this we get

T=TUT,

where 7, ={{u}|ueU and u cannot be scheduled at
time ¢, classroom ¢ for some pair (¢, c)e L}

and T, = {{u, u,}|u,u,€eU and u, # u,}.
Furthermore, R = R, | R,, | J R,, where

R, ={(u,N)}|{u}e T, and a priori knowledge
says that label / can be assigned to u}.
Ry = {(uy, 1), (g, L)} | {uy, un} € T, and [ # 1},
and R,, = {{(u,, ],), (uy, 1)} |[{u,, u;} € T,, there exists a
person who must attend both u, and u,, and
time(/,) # time(/,)}.

Other constraints can be added to the model as
required. For instance, if there are pairs of lessons that
must be given in consecutive hours, we can define

T, = {{(u,, u,} | u,, u, € U and u, must be scheduled
the hour after u,}
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